
Frontiers in Sustainability 01 frontiersin.org

Multi-objective optimization for 
the sustainable planning of yam 
cultivation and distribution in the 
Colombian Caribbean
César José Vergara Rodríguez , Gean Pablo Mendoza-Ortega *, 
Mayerlis Mármol Barriosnuevo  and Mayerly Díaz Sierra 

Engineering and Architecture, Department of Basic Sciences, Corporación Universitaria del Caribe 
CECAR, Sincelejo, Colombia

Yam agri-food chains in the department of Sucre experience logistical losses 
exceeding 30% in certain stages, compromising both economic performance 
and social sustainability. To address these inefficiencies, this study develops a 
multi-objective optimization model that supports strategic planning by integrating 
profit maximization and loss minimization criteria. The model was implemented 
in GAMS (version 49.6.1) using the CPLEX 12.8 solver and solved through the 
AUGMECON method. The resulting Pareto-efficient solutions were evaluated 
using slope analysis and the TOPSIS multi-criteria decision method. The results 
reveal a clear trade-off between economic benefit and loss reduction, identifying 
Solution 14 as the most balanced configuration, achieving approximately USD 4.241 
million in profits and 683,818 kg in losses. These findings highlight the potential of 
combining multi-objective modeling and decision-support analysis to promote 
more sustainable planning in agri-food chains. The proposed strategies—focused 
on loss reduction, supplier diversification, and optimized sowing planning—offer 
practical guidance for improving territorial sustainability and decision-making in 
regional agricultural systems.
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1 Introduction

According to FAO et al. (2024) in 2020 one in three people worldwide (2.37 billion) lacked 
adequate food, representing an increase of nearly 320 million in a single year. In addition, it is 
estimated that around 670 million people will suffer from hunger in 2030, equivalent to 8% of 
the world’s population (FAO et al., 2022). In Colombia, a 2022 humanitarian needs study 
revealed that approximately 7.3 million people are food insecure and malnourished (Global 
Panel, 2020; FAO et al., 2024). This situation persists due to low food security indicators.

In the Department of Sucre, Colombia, food insecurity has increased, reaching an 
alarming 73.4%, according to data from the director of the Department of Social Prosperity 
in Sucre (Sucre noticias, 2019). The deterioration of food security over time is the result of 
weak food systems, influenced by various factors.

In this context, strengthening Food Systems (FS) requires sustainable management of 
agri-food supply chains to improve food security indicators (FAO et al., 2024). Tapia (2016) 
emphasize that strengthening the agricultural sector is crucial for industrial development, food 
security, and sustainability.
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Agricultural efficiency has been widely analyzed using 
productivity growth approaches such as the Malmquist index (Zuniga 
González, 2020). These studies provide a foundation for more 
advanced approaches by evaluating agricultural systems in terms of 
efficiency and productivity. Building on this perspective, the present 
study goes beyond descriptive analyses of productivity to propose a 
prescriptive, multi-objective optimization model that directly supports 
decision-making in crop planning and supply chain management.

Optimization techniques are widely applied to solve complex 
problems in resource allocation, transportation, logistics, project 
selection, and planning. These challenges, common in manufacturing 
and business, also occur in agricultural systems, for example in crop 
selection (Detlefsen and Jensen, 2004).

Weintraub and Romero (2006) highlight that a wide range of 
agricultural resource management problems have been formulated as 
mathematical programming models and solved with diverse 
optimization methods. The approaches presented in the study range 
from simple models to complex multi-objective configurations, 
covering both linear and non-linear formulations. The optimization 
techniques applied in these studies include conventional methods as 
well as computational intelligence-based approaches.

In scientific literature, several agricultural planning problems have 
been modelled as multi-objective problems (Francisco and Ali, 2006; 
Joubert et al., 2007). However, these problems are often solved using 
single-objective models by methods such as conventional goal 
programming or compromise programming approaches. While many 
critical decisions are based on these single-objective solutions, 
approaches that simultaneously optimize all objectives could provide 
more robust solutions and a more complete understanding of the 
problem. This would be critical to improve decision-making in the 
highly competitive environment of today’s markets.

Multi-objective optimization addresses problems with two or 
more conflicting objectives, generating a set of Pareto-efficient 
solutions instead of a single optimum. These approaches are 
particularly useful in agri-food contexts where economic, social, and 
environmental criteria coexist.

This paper presents a bi-objective linear model for yam crop 
planning in Sucre, Colombia, and proposes sustainable strategies for 
its agri-food supply chain. Our aim is to provide insight into solving 
multi-objective optimization problems and to demonstrate the 
usefulness of these tools in generating sustainable strategies for 
crop planning.

Recent research has underscored the relevance of designing 
innovative models for the bioeconomy, aimed at aligning agricultural 
planning with sustainability goals (Zuniga-Gonzalez et al., 2024). In 
line with this perspective, the present study develops a multi-objective 
optimization model applied to the yam supply chain in Sucre, 
Colombia, integrating both economic and social dimensions to 
support sustainable agricultural strategies.

To this end, we validate a multi-objective optimization model 
through an applied linear programming (LP) case study, focusing on 
the economic and social aspects that foster sustainability. In social 
terms, we seek to minimize losses in the chain, while in economic 
terms we  seek to maximize profitability. After evaluating the 
performance of the proposed model, we will identify strategies to 
improve the sustainable management of yam cultivation in Sucre. Our 
aim is to promote a profitable and sustainable supply chain that also 
contributes positively to food security.

In addition, we explore solutions using the conventional method 
known as the augmented ε-constraints or AUGMECON method to 
solve a simple multi-objective problem. From this basis, we extend our 
analysis to the solutions found, focusing on determining different 
solution scenarios, which are conducive to strategy generation.

The article is structured as follows: Section 2 presents the crop 
planning problem and its mathematical formulation. Section 3 
describes three multi-objective optimization methods, illustrated with 
a numerical example. Section 4 applies the AUGMECON method to 
solve the proposed model and complements it with a TOPSIS-based 
analysis to identify the most balanced solution. Section 5 discusses the 
results, and the final section summarizes conclusions and directions 
for future research.

2 Literature review

This section reviews research on the sustainable management of 
agri-food supply chains through mathematical modeling, focusing on 
strategies proposed for sustainability using optimization approaches. 
The following is a brief review of the literature related to the topic 
of study:

Gholian-Jouybari et al. (2023) propose a multi-objective model 
for agricultural supply chain management, applying marketing 
strategies. The main objective of this approach is to simultaneously 
improve the key aspects of sustainability: environmental, social and 
economic. This is achieved by optimizing total profit, customer 
satisfaction and efficient water management. Chandrasiri et al. (2022) 
developed a multi-decision simulation and optimization model to 
determine the ideal structure of the banana agri-food supply chain in 
Sri  Lanka. For this study, aspects such as the reduction of the 
environmental impact of the chain were considered, considering the 
reduction of greenhouse gases and post-harvest losses.

Considering an altruistic consumer-oriented approach, Wei et al. 
(2022) build an optimization model for operational decision-making 
in a CSA engaged in agricultural production in a Chinese province, 
balancing the economic, social and environmental dimensions of 
sustainability. The model’s operational decisions include setting 
wholesale prices by producers and retail prices by retailers, as well as 
determining the rate at which producers reduce pollutant emissions. 
Xie et al. (2022) designed a sustainable network for the agri-food 
supply chain (ASC) of mushrooms under uncertainty. The sustainable 
approach is considered in the model from the environmental point of 
view by minimizing pollutants in the network, and from the economic 
point of view by minimizing the total costs of the network. In this 
work, a multi-objective optimization model is proposed, which 
considers uncertainty in demand. The uncertainty in the model is 
worked under a robust optimization approach.

In the work by Perdana et  al. (2022), a mixed integer linear 
programming model is constructed for distribution management in a 
rice supply chain, which seeks to maximize demand fulfilment from 
the retailer’s point of view, in a province of Indonesia. This model also 
considers sustainability pillars such as the social pillar, as it seeks to 
reduce hunger and increase the welfare of farmers by maximizing the 
fulfilment of rice demand. Similarly, the tool aims to maximize profits 
for chain actors by minimizing costs, thereby reducing the network’s 
carbon footprint and supporting the environmental pillar 
of sustainability.
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Krishnan et al. (2022) in their research, propose a robust and 
integrated multi-objective optimization model for the design of a 
Sustainable Agri-Food Supply Chain (ASSC) in an Indian mango pulp 
supply chain. This model incorporates the three dimensions of 
sustainability—social, environmental, and economic, while also 
accounting for product perishability, food waste valorization, and raw 
material supply uncertainty. This uncertainty is modelled using a 
robust optimization approach and the impact of uncertainty on 
sustainability dimensions and business decisions is assessed. 
Moreover, the sustainable economic dimension is addressed in the 
model by minimizing the costs associated with the chain, the 
sustainable environmental dimension is focused by decreasing the 
total emissions in the chain, and the sustainable social dimension is 
incorporated by maximizing the total number of job 
opportunities created.

2.1 Multi-objective optimization methods

Different approaches have been developed to solve multi-objective 
problems, commonly classified as a priori, a posteriori, and interactive 
methods (Mavrotas, 2009). These categories differ in the stage at 
which decision-maker preferences are incorporated.

In the priori approach, the decision-maker specifies preferences, 
such as the weighting of objectives, before the optimization process. 
In contrast, the posteriori approach selects a set of solutions after the 
optimization results are obtained. A third category includes interactive 
methods, in which the decision-maker analyzes partial information 
during the optimization process and provides feedback in real time. 
Next, 2 methods of a priori solutions are proposed; the weighted sum 
method and the epsilon method, where according to a review of the 
literature carried out for the year 2013, 696 and 399 articles had been 
written, respectively, (Aranda and Orjuela, 2015).

2.1.1 Weighted summation method
This method transforms a multi-objective model into a single-

objective model by assigning coefficients (weights) to each objective, 
where each weight reflects the relative importance of that objective 
compared to the others. These weights are parametrically adjusted to 
generate a set of solutions, from which the researcher or decision-
maker can analyze and select the optimal solution to the problem in 
his/her judgement (Marler and Arora, 2010). According to Mendoza 
(2010) this method can be expressed mathematically as shown in 
Equation 1, where represents the set of objective functions and is the 
weight assigned to each function. Where xf  represents the set of 
objective functions and iW  is the weighted weight assigned to each 
function. The decision on the solution obtained by this method can 
be made either priori or posterior (Torres, 2016).
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2.1.2 Methodology of ε -restriction or epsilon
The ε-constraint method, proposed by Ehrgott and Ruzika (2008), 

transforms a multi-objective problem into a single-objective one. The 

most important objective function is optimized, while the others are 
incorporated as constraints with specific ε-thresholds (Cruz et al., 2009). 
Both the prioritized objective function and the set constraints reflect the 
subjective preferences of the decision maker. In this way, the multi-
objective problem becomes a single-objective problem. However, this 
approach does not always guarantee Pareto-efficient solutions, unless 
the problem has a single optimum (Soler, 2013). The resulting solution 
corresponds to the objective defined as a priority, as shown in Table 1.

The ε-constraint method offers significant advantages over the 
previously described weighted sum approach. Several studies have 
documented its effectiveness in solving bi-objective problems, as 
evidenced in Osorio et al. (2014). Likewise, an improved variant of the 
method is presented by Mavrotas (2009), where the author develops 
an algorithm in General Algebraic Modeling System (GAMS) to 
address multi-objective optimization problems, validated by multiple 
test instances. However, its implementation requires specific 
considerations, as warned by (Mavrotas, 2009). These include: the 
need to determine the range of the objective functions, the evaluation 
of the efficiency of the obtained solutions and the possible extension 
in computational resolution times.

2.1.3 Lexicographical method
The lexicographic method optimizes objective functions in 

hierarchical order: first the highest-priority function, then the second 
within the set of optimal solutions, and so forth. This approach 
ensures that the objective functions are considered according to their 
relative relevance within the problem. As indicated by Mavrotas 
(2009), the method operates as follows in Table 2.

The lexicographic method is particularly useful when the decision-
maker’s preferences can be clearly ranked. However, its implementation 
can become computationally complex, especially when multiple 
objective functions are involved or when the set of optimal solutions 
is very large. This complexity arises because the method requires 
solving a sequence of optimization problems, each conditioned by the 
optimal solutions of higher-priority objectives, which can significantly 
increase computational time and difficulty (Ehrgott and Wiecek, 2005).

TABLE 1  Formulation of the epsilon constraint method.

Multi-objective 
mathematical programming 
problem

Epsilon restriction 
method

( ) ( ) ( )( )…max , , , .1 2f x f x f xk   subject to

∈x S

( )max ,1f x

 subject to

( ) ε≥ ,2 2f x

( ) ε≥ ,3 3f x

…

( ) ε≥ ,f xk p
∈x S

Where x is the vector of decision variables 

( ) ( )…,1f x f xk  are the k objective 

functions, and S is the feasible region of 

the problem.

From the variation of the right-hand 

side of the constraints ε i, the 

solution to the problem is obtained. 

ε i The values of the objective 

functions are represented by the 

Pareto optimal set and are altered to 

obtain the Pareto optimal set in a 

desired range.
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2.1.4 Augmented ε-constraints method or 
AUGMECON method

The augmented ε-constraint method (AUGMECON) extends the 
classical ε-constraint approach in multi-objective optimization. 
Proposed by Mavrotas (2009) it improves the generation of efficient 
solutions in mathematical programming problems with multiple 
objectives subject to equality and inequality constraints.

AUGMECON introduces an additional variable ε, which acts as 
a penalty parameter in the constraints of non-prioritized objectives. 
This variable gradually relaxes the constraints, facilitating exploration 
of feasible space and the identification of solutions closer to the global 
optimum. The method is based on linear programming techniques 
and iterative search algorithms, adjusting the value of ε to generate 
different feasible solutions along the Pareto front.

One of the main advantages of this approach is that it allows 
finding efficient solutions without the need for all (p − 1) constraints 
of the objective-secondary functions to be  strictly active, thus 
overcoming one of the limitations of the classical ε-constraint method. 
Thanks to this penalty mechanism, AUGMECON improves the 
representation of the efficient frontier and reduces the probability of 
generating dominated solutions, as shown in Equation 2.
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To ensure that the solutions obtained are efficient, the model can 
be reformulated by transforming the constraints corresponding to the 
objective functions into equalities, by explicitly introducing slack 
variables …2 3, , , pS S S . These variables represent the allowed deviation 
from the set values (ε ε ε…2 3, , , p) and are incorporated as a second term 
in the objective function, weighted by a small positive coefficient EPS, 
which reflects a secondary priority under a lexicographic scheme. This 
formulation forces the model to minimize deviations, generating only 
efficient solutions. The reformulated problem is expressed in Equation 3.

	

( ) ( )

( )
( )

( )

ε
ε

ε

+ × + +… +

− =
− =
…
− =
∈

1 2 3

2 2 2

3 3 3

max , ,

,
,

,

p

p p p

f x EPS S S S

Sujeto a
f x S
f x S

f x S
x S 	

(3)

The application of the model formulated using the 
AUGMECON method guarantees the generation of only Pareto 
optimal or non-dominated solutions, avoiding weakly efficient 
solutions. This is because the method incorporates, at a second level 
of priority, the maximization of the slack variables within the 
objective function, which acts as a corrective mechanism. Thus, 
even if dominated solutions appear in the initial results table, the 
AUGMECON-adjusted model ensures that valid solutions 
representative of the efficient frontier are obtained (Mavrotas and 
Florios, 2013).

Although the preceding literature review is comprehensive, 
Table  3 summarizes key multi-objective optimization approaches 
applied to agri-food and supply chain contexts. The comparison shows 
that, while previous studies addressed perishability, fairness, closed-
loop sustainability, or resilience, none combined agricultural planning 
cycles, explicit loss minimization, and a compromise solution 
approach (AUGMECON with TOPSIS) for yam production in Sucre, 
Colombia. This underscores the novelty and applicability of the 
proposed model for producer associations.

3 A crop management problem

This section addresses a crop planning problem, which requires 
considering multiple factors such as soil type, yield rate, climatic 
conditions, product demand, and production costs. While many of 
these factors are measurable, others—such as rainfall, floods, or 
extreme weather events—are highly uncertain and difficult to predict. 
However, even with the exclusion of these non-quantifiable factors, 
the appropriate use of available information can generate valuable 
recommendations for decision-making.

In the department of Sucre, a wide variety of agricultural products 
are grown on land with different capacities, including single, double 
and triple cropped land. The allocation of crops to each soil type 
depends on factors such as fertility, geographic location, farming 
practices (e.g., irrigation), and expected profitability. For each soil type 
there are multiple possible combinations of annual sowings, the 
selection of which directly influences productive and economic 
efficiency. In this sense, optimal crop planning seeks to maximize the 
use of available land through decision-support tools, especially in 
strategic agro-food chains for the region.

A notable example is the yam (Dioscorea spp.) value chain in 
Montes de María, prioritized for its role in regional food security and 
its importance in the local diet (Gobernación de Sucre, 2013). This 
chain involves actors such as producers, collection centers, 
transporters, traders and intermediaries at different levels (local, 
municipal and national). However, producer organizations face 
structural barriers to international markets, mainly due to strict 
export protocols and high shipping costs that require investments 
beyond their reach (Arroyo, 2017).

The proposed multi-objective model for the management of the 
yam agri-food supply chain aims to optimize strategic and operational 
decisions related to the cultivation and distribution of the product for 
a specific case of an association in the department of Sucre. It seeks to 
determine the best times for planting and harvesting, as well as the 
optimal quantities of yam to transport from production sites to storage 
centers and then to demand points. The overall objective is twofold: 
to maximize producers’ profits and minimize losses along the supply 
chain, contributing to a more efficient and sustainable logistics 

TABLE 2  Approach to the lexicographical method.

Optimization 
scenario

F1 F2

max 1F Min 1F

s.a: 1R

Min 2F

s.a: = ∗1F Z ; 1R

min 2F max 1F

s.a: = ∗22F Z ; 1R

Min 2F

s.a: 2R
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process. Figure  1 shows a schematic representation of the main 
components and flows of this chain.

Figure 1 illustrates the general structure of the multi-objective 
model designed to efficiently manage the yam supply chain in a 
producer association in the department of Sucre. The system considers 
two varieties of the product: spiny yam and diamond yam, as well as 
two storage warehouses represented in the center of the figure as 1A  
and 2A . These warehouses have defined capacities and are key 
intermediate nodes between production and demand. On the left, 
nodes 1S  and 2S  represent planting sites associated with initial 
inventories ( s

svqi ). Below, nodes 1P  and 2P  represent producer units or 
groups of farmers growing the two yam varieties. These units are 
directly connected to the warehouses, where the entire harvested 
produce is sent for further distribution.

On the right, the nodes 1C  to 4C  represent the different types of 
customers: exporters, chain stores, wholesalers and retailers. The 
model sets specific quality constraints on the allocation of the product 
to these customers. Exporters and chain stores only accept quality 2 
yams, while wholesalers and retailers do not receive quality 1 yams, 
thus meeting market requirements.

The system contemplates a planning horizon of 52 weeks (1 year) 
and a total of 40 planting sites (not all graphically represented), with 
known and deterministic production and transport costs. In addition, 
losses associated with transport and a fixed commission paid by 
farmers to the association are considered, which affects allocation 
decisions. Finally, yields per hectare depend on the variety of yam 

grown and are also considered as deterministic values. This schematic 
representation facilitates the understanding of the product flows and 
the interaction between the different actors in the chain, forming the 
basis for the development of the optimization model.

Table 4 summarizes the main input parameters considered in the 
model, including their values, units, and data sources. These parameters 
provide the quantitative foundation for the optimization problem and 
ensure transparency in the description of the case study.

4 Multi-objective model formulation

This section presents the formulation of a linear programming 
optimization model for production and distribution planning in the 
yam agri-food supply chain, developed as a case study. The model 
includes two objective functions designed to promote economic and 
social sustainability, considering the specific features of the case study 
such as yam varieties, planting sites, storage locations, and product 
qualities. A detailed description of the linear programming model is 
provided below.

4.1 Indexes and sets

∈s S Sites available for yam planting ( )= …1,2,3 , .s S

TABLE 3  Comparison of relevant studies on multi-objective models applied to agri-food chains.

Author(s), year Product/context Modeling 
approach

Objectives Key features Gap addressed by 
this study

Peng et al. (2024)
Fresh produce cold 

chain

Multi-objective 

optimization (time, cost, 

carbon, waste)

Minimize transport time, 

cost, emissions, waste

Monte Carlo, 

perishability, multi-

objective

Focuses on transport; no 

agricultural planning or 

profit–loss trade-offs

Yang and Liu (2025)

Global multi-product 

chains under 

uncertainty

Fairness-oriented multi-

objective optimization 

(fuzzy MILP)

Cost, responsiveness, 

service level

Fairness (Nash 

bargaining), multi-period 

capacity planning

No agricultural cycles or 

loss minimization; 

different context

Jabarzadeh et al. (2020)
Closed-loop agricultural 

supply chain

Multi-objective linear 

programming

Sustainable production-

distribution design

Closed-loop, 

sustainability focus

No specific focus on 

planning cycles or loss 

minimization in crops

Mirzapour Al-e-hashem 

et al. (2011)

Multi-site, multi-

product supply chain 

planning

Robust multi-objective 

(linearized MILP)

Minimize costs & 

shortages

Uncertainty, cost 

structure, shortages

Not focused on 

agricultural production 

planning or loss in 

perishables

Trisna et al. (2016)
Review of supply chain 

optimization literature
Literature review N/A

Classification of MOO in 

supply chains

Conceptual; lacks a 

specific model and case 

application

Ammirato et al. (2021)
Rural sustainable 

networks

Conceptual sustainability 

framework
N/A

Collaboration, 

sustainability dimensions

Conceptual; no 

quantitative optimization 

or crop-specific case

This study Yam (Sucre, Colombia)
MILP + AUGMECON + 

TOPSIS

Maximize profits & 

minimize losses

Agricultural planning 

(sites, periods, cycles), 

explicit loss modeling, 

TOPSIS compromise 

analysis

First application to yam in 

Colombia; integrates 

profit–loss trade-offs with 

agricultural planning and 

decision support for 

producers
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∈a A Set of warehouses available as collection centers ( )= …1,2,3 ,a A

∈c C Set of customers handled ( )= …1,2,3 ,c C

∈p P Set of yam suppliers outside the partnership ( )= …1,2,3 ,c C

∈q Q Set of quality yam types ( )= …1,2,3 ,q Q

∈v V Set of varieties of yam grown (v = 1,2, 3., V)

∈t T Set of periods (weeks) ( )= …1,2,3 ,t T

⊆t Ti Subsets of weeks for each sowing cycle = 1,2,3,4i

⊆t Tj Subsets of weeks viable for harvesting j= …41 , T

4.2 Parameters

γ Proportion (as a percentage) paid by producers to the association as 

commission on sales

δ Percentage of product loss attributable to transport

Cv
Preparation cost per hectare for the variety v

rsv
Crop yield (kg/ha) on site s  and variety v

ρsvq
Proportion of production with quality q on site s  and variety v

φpvqt ​ Purchase price from supplier p , variety v, quality q and week t

ηpvqt
Availability of the supplier p , of the variety v , quality q and week t

πcvqt
Customer selling price c, variety v , quality q and week t

δcvqt
Demand for yams of the variety v, of quality q, in the period t, by the 

customer c

issvq Initial inventory on site 𝑠, variety 𝑣, quality 𝑞

iaavq
Initial stock in warehouse a, variety 𝑣, quality 𝑞

λv Percentage storage loss for the variety 𝑣

µsv ​ Expected proportion of losses in the production of the variety 𝑣, from 

the sowing site s

τ1
sa

Cost of transport from the planting site s , to the warehouse a

τ2
ac

Transport costs from the warehouse a, to the customer c

TEs
Amount of available land per planting site (ha)

Ka
Warehouse capacity a (kg)

′K s
Storage capacity at sowing sitess  (kg)

θvt
Percentage of expected loss in harvest for variety v

4.3 Variables

Xsvt Quantity of products to be sown on site s , variety v , week ⊆t Ti

PRsv
Expected yield at the sowing site s  of the variety v

HCsvt
Quantity to harvest per variety ,v  per sowing sites  and period t

HRsvt
Actual harvest at s , variety v  and week t

FIGURE 1

Schematic representation of the yam agri-food supply chain in Sucre (Colombia), showing sowing sites, producers, warehouses, and customer types. 
This diagram illustrates the flows and nodes considered in the optimization model.
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QSsvqt
Quantity of products in stock on site s , variety v , quality q, week t

ISsvqt
Inventory product in stock on site s , variety v , quality q, week t

IAavqt
Inventory in stock a, variety v , quality q, week t

Wpvqta
Buy from supplier p , variety v , quality q, week ,t  to the warehouse 

a

Esvqat
Shipment from s  to the warehouse a, variety v , quality q,  

week t

ERsvqat
Actual shipping from s  to the warehouse a, variety v , quality q, 

week t

Vacvqt
Sale from stock a to the customer c, variety v , quality q, week t

VRacvqt
Actual sale from stock a to the customer c, variety v , quality q, 

week t

SMsv
Quantity of seeds of the variety v , at the sowing site s

Lalm Storage losses

cosL Harvest losses

Lpro Production losses

Ltrans Transport losses

4.4 Functions objective

The model considers two sustainability-oriented objectives: (i) 
maximizing profits to ensure the economic viability of the supply 
chain, and (ii) minimizing total yam losses to improve efficiency and 
social impact.

4.4.1 Profit maximization ( )1F
The economic objective, represented by the objective function 1F  

described in Equation 4, focuses on maximizing the net profit 
generated along the yam supply chain. This profit is calculated as the 

TABLE 4  Input parameters of the yam supply chain optimization model.

Parámetro Descripción Valor/Rango Unidad Fuente

γ Comisión pagada por productores 

a la asociación

5% % Entrevistas a expertos locales

δ Pérdida en transporte 5% % Observaciones en campo

Cv
Costo de preparación por hectárea v1: 9,399,000; v2: 7,074,000; 

v3: 7,000,000

COP/ha Encuestas a productores

rsv
Rendimiento del cultivo por 

variedad

v1: 12,000; v2: 14,000; v3: 

12,000

kg/ha FAO, reportes locales

ρsvq
Proporción por calidad Distribución por variedad y 

calidad (ver suplemento)

% Encuestas de campo

φpvqt ​
Precio de compra a proveedores 2,418–5,427 (según cliente/

calidad/semana)

COP/kg Registros de mercado

ηpvqt
Disponibilidad de proveedor Variable semanal kg Datos de campo

πcvqt
Precio de venta a clientes 2,439–11,288 COP/kg Precios de mercado, FAO

δcvqt
Demanda semanal por cliente 800–6,600 kg Encuestas a clientes, DANE

issvq
Inventario inicial en campo 0 (modelo base) kg Supuesto inicial

iaavq
Inventario inicial en almacén 0 (modelo base) kg Supuesto inicial

λv
Pérdidas en almacenamiento v1: 5%; v2: 5%; v3: 5% % Entrevistas y literatura

µsv
Pérdidas de producción esperadas 5% % Observaciones en campo

τ1
sa

Costo transporte campo–almacén 20–120 COP/kg Asociación local

τ2
ac

Costo transporte almacén–cliente 0–120 COP/kg Asociación local

TEs
Tierra disponible por sitio 40 ha (supuesto) ha Gobernación de Sucre

Ka
Capacidad almacenes 1,000,000 kg Asociación local

′K s
Capacidad almacenamiento en 

finca

1,000,000 kg Asociación local

θvt
Pérdida esperada en cosecha 2–5% según semana % FAO y literatura
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difference between the revenue obtained from sales of the product and 
the costs associated with its production andmarketing.

Total income comes from the sale of yams to different types of 
customers, considering the variety, quality and the period in which 
the transaction takes place Costs, on the other hand, include:

	•	 The cost of land preparation and sowing per hectare according to 
the variety grown

	•	 Transport logistics costs, both from planting sites to warehouses 
and from warehouses to customers.

	•	 Cost of purchasing yam from external suppliers, when this option 
is used to meet demand.

By maximizing this objective, the model identifies the optimal 
combination of planting, harvesting, transport, storage, and sales 
decisions that yield the highest returns over the planning horizon
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(4)

4.4.2 Minimization of losses ( )2F
The social objective, represented by the variable 2F  (Equation 5), 

seeks to minimize the total losses generated along the agri-food supply 
chain, which have been identified and quantified in direct 
collaboration with farmers. These losses are specifically classified into 
four main categories: losses associated with storage (Equation 27), 
losses occurring during harvesting (Equation 28), losses recorded at 
the production stage (Equation 29) and losses related to transport 
(Equation 30). Reducing these losses not only improves the 
operational and economic efficiency of the production system but also 
generates positive impacts on the local community.

	 = + + +c
2min alm os pro transF L L L L 	 (5)

4.5 Restrictions

The sales and inventory constraints (Equations 6–11) ensure 
consistency between planned and actual sales, incorporating 
transportation losses and warehouse availability. They also limit sales 
to physically available stock and restrict external purchases to 
suppliers’ real availability, guaranteeing that demand fulfillment is 
always supported by effective inventories. The transportation and 
storage constraints (Equations 12–16) regulate flows from sowing sites 
to warehouses, preventing them from exceeding available inventory 
and adjusting them by transportation loss factors. These equations 

also update inventories at sowing sites, consider maximum storage 
capacity, and differentiate yam availability by quality levels.

The planting and harvesting constraints (Equations 17–26) link 
expected production, actual harvest, and cultivated land. They ensure 
consistency between harvest and expected production, balanced 
planting across the four cycles, alignment of seed availability with final 
inventory, and compliance with yam growth cycles. The loss 
constraints (Equations 27–30) quantify losses in storage, harvesting, 
production, and transportation, associated with climatic factors, 
handling practices, and logistical inefficiencies, and are key to 
capturing the social dimension of the model.

Finally, the quality constraints (Equations 31–32) set classification 
rules for product allocation, excluding seed (quality 3) from external 
purchases and warehouse shipments, since it is preserved in the field 
for future planting cycles.
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4.6 Method of solution model for yam 
Agri-food supply chain management

The proposed model is solved using a hybrid multi-objective 
optimization approach based on the augmented ε-constraint method. 
This technique combines the principles of the lexicographic method 
and the epsilon constraint method, with the purpose of generating a 
representative set of Pareto-efficient solutions. Unlike other methods, 
this approach does not require assigning strict priorities among 
objectives but instead considers their relative importance when 
constructing compromise solutions.

Compared to traditional techniques such as the weighted sum 
method, the ε-constraint approach offers clear advantages. Weighted 
summation tends to concentrate solutions at the extremes of the 

feasible region, whereas the ε-constraint method explores intermediate 
areas of the Pareto frontier. This exploration capability contributes to 
a more complete representation of the efficient solution set. In 
addition, while weighted summation can produce redundant solutions 
due to different combinations of weights, the epsilon constraint 
method generates distinct solutions at each iteration. Another 
advantage is that this method does not require scaling objective 
functions, avoiding distortions that may compromise solution quality 
(Mavrotas, 2009).

Finally, the incorporation of lexicographic optimization allows for 
hierarchical prioritization of objectives and a better understanding of 
the behavior of conflicting objectives, facilitating the identification of 
Pareto-optimal solutions before a final decision is made.

The problem was solved using the General Algebraic Modeling 
System (GAMS, version 49.6.1) with the CPLEX 12.8 solver, running 
on a personal computer with an Intel® Core™ i5-10300H 4.2 GHz 
processor. GAMS has also proven useful for modeling and solving 
various combinatorial optimization problems (Cardoso et al., 2013).

5 Results and discussions

The augmented ε-constraint method was used to solve the multi-
objective optimization model. In the first phase, the lexicographic 
method was applied to construct the payoff table, ensuring that the 
solutions obtained from the individual optimization of each objective 
function were Pareto solutions. Initially, the problem was solved with 
profit maximization ( )1F  as the objective. Then, loss minimization 
( )2F  was addressed by incorporating the previously obtained optimal 
value as a constraint. This procedure was replicated by inverting the 
order of the objectives, as shown in Table 5.

Based on this methodology, the optimization process was 
implemented, the results of which are summarized in Table 6. In the 
first row, the results of the first optimization scenario are presented. 
The result corresponding to the optimization of the objective 1F  (profit 
maximisation) is highlighted, while the next cell shows the result of 2F  
(loss minimization), considering the previous optimal value as 
a constraint.

In the second row, the process is repeated with the objectives in 
reverse order: the second cell reflects the individual optimization of 2F
, and the first cell shows the outcome of 1F , conditional on the 
constraint imposed by the previous optimal value. This structure not 
only identifies Pareto-efficient solutions but also provides a systematic 
view of model behavior under different hierarchies of objectives.

The individual optimization of each objective reveals a clear 
conflict between the economic and social dimensions of the supply 
chain. As shown in Table 5, maximizing profits ( 1F ) increases logistic 
losses ( 2F ), while minimising these losses significantly reduces 
profits. This result is consistent with what has been observed by 
(Mavrotas, 2009), who points out that in multi-objective problems 
it is frequent that the improvement of one criterion implies the 
deterioration of another, particularly when the objectives represent 
conflicting interests.

Based on these results, it is reaffirmed that the problem presents a 
conflicting nature typical of sustainability models in agri-food chains, 
where profitability is not always compatible with social or 
environmental efficiency. Govindan et al. (2015) highlight a similar 
pattern when analyzing sustainable chains, indicating that the 
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maximization of economic profit can increase negative impacts on 
other dimensions, such as waste or emissions, if the objectives are not 
adequately balanced.

Consistent with Marler and Arora (2004), these results highlight 
the need for approaches that explicitly represent trade-offs between 
objectives, such as Pareto frontier methods. These methods offer the 
decision-maker a more complete and balanced view of the alternatives, 
allowing trade-offs to be chosen that are more aligned with the overall 
interests of the system.

Finally, the identified pattern is also in line with Ehrgott and 
Wiecek (2005), who argue that the identification of extreme points—
such as those derived from individual optimization—is only the first 
step in understanding the space of efficient solutions. From there, it 
becomes essential to apply methods such as augmented ε-constraints 
(AUGMECON), capable of generating a diverse and representative set 
of trade-off solutions, especially useful when is required to make 
decisions under multiple criteria and in contexts of high social 
sensitivity, as is the case of agri-food chains in vulnerable regions.

After determining the individual optimization results for each 
objective function, the ranges of the objective functions to be used 
as additional constraints for the optimization must be calculated. 
This is based on the results in Table  6, which presents the 
maximum and minimum values of each objective function. In this 
case, the ranges are calculated using the extremes within the 
Pareto front, i.e., the utopia and pseudo-nadir points, which 
represent the maximum and minimum value of the range for 
each function.

For profit maximization ( 1F ), the maximum value obtained is 
$4,296,438,000 and the minimum value is $1,983,749,000, giving a 
range of $2,312,689,000. For loss minimisation ( 2F ), the maximum 
and minimum values are 790,610.47 kg and 485,488.61 kg, 
respectively, resulting in a range of 305,121.86 kg. In this context, the 
utopian point is defined as the ideal vector ($4,296,438,000; 
485,488.61), while the pseudo-nadir (or anti-ideal) point corresponds 
to ($1,983,749,000; 790,610.47).

This approach is consistent with that proposed by Chan et al. 
(2025), who stress the importance of correctly defining the ranges of 
the objective functions before applying the augmented ε-constraint 
method. According to these authors, the proper identification of the 
ranges not only allows a complete exploration of the feasible space, but 

also improves the accuracy of the solutions obtained, ensuring that the 
objective functions become constraints that guide the search for 
efficient Pareto solutions.

The use of ranges and the implementation of constraints is a key 
aspect in multi-objective optimization. In this sense, Maneengam 
(2023) also underlines the relevance of using extreme points as a 
reference for the generation of balanced solutions. In his work, 
he emphasizes that extreme values, such as those obtained in Table 5, 
serve as the starting points for calculating the rank of each function 
and, in turn, help to structure the Pareto frontier more precisely. The 
use of the ε-constraint method allows not only to obtain efficient 
solutions, but also to explore different regions of the solution space 
and to better understand the trade-offs between economic and 
social objectives.

The choice of gains ( )1F  as the main function and losses ( )2F  
as the constraint is justified by the asymmetry of the ranges 
observed in Table  6. The rank of 1F  is considerably larger in 
monetary terms, reflecting its larger economic impact, while 2F  
has a tighter rank, indicating that losses are relevant, but with a 
smaller relative impact compared to gains. This choice is in line 
with Zhang et  al. (2024) who argues that, in problems with 
unequal ranges of objectives, it is critical to select the main 
function that guides the optimization process, while the other 
functions should be incorporated as constraints.

Finally, the range of 2F  is divided into =2 20q  intervals, which 
allows finer control over the density of the generated Pareto frontier. 
This approach is consistent with the proposal of Maneengam (2023), 
who explains that a larger number of intervals improves the accuracy 
in the representation of trade-off solutions. However, it should also 
be considered that a high value of 2q ​ increases the computational time 
needed to solve the model, which implies a trade-off between the 
accuracy of the solutions and the computational efficiency. In this 
study, =2 20q  was chosen, resulting in the generation of 21 
subproblems to solve the Pareto solution set.

To tackle these problems in a single computational run in 
GAMS, the code used by Mavrotas (2009) in the related study of 
augmented ε-constraints was employed. From the resolution of 
each subproblem, the set of Pareto solutions is generated, which 
is presented in Table 7. These non-dominated points are crucial 
in the Pareto analysis, as they represent the best possible solutions 
given the objectives considered, with none being superior in 
all aspects.

Each row of the table represents a solved subproblem, with its 
corresponding combination of values for the objective functions. 
These points form the Pareto front, which provides valuable 
information for decision making by identifying the possible 
optimal choices and the degree of trade-off needed between 
conflicting objectives. The variation of values in Table 7 shows 
how the gains and losses are balanced in each subproblem, 
providing a diverse set of solutions with different trade-offs 
between the two objectives.

These non-dominated points are key to the interpretation of the 
model, as they provide a visual and quantitative representation of the 
trade-offs between economic gains and logistical losses. In a real 
decision-making context, these points allow exploring possible 
alternatives that balance the two objectives, giving decision-makers 
the flexibility to choose the most appropriate solution based on the 
specific priorities of the situation.

TABLE 5  Payoff table showing extreme values of profit (F1, COP) and 
losses (F2, kg) from single-objective optimization.

Optimization 
scenario

F1 F2

Max F1 $ 4,296,438,000 790,610.47

Min F2 $ 1,983,749,000 485,488.61

TABLE 6  Ranges established for both objective functions, including 
utopia and pseudo-nadir points.

Optimization 
scenario

F1 F2

Max F1 $4,296,438,000.00 790,610.47

Min F2 $1,983,749,000.00 485,488.61

Rank (ri) $2,312,689,000.00 305,121.86

Bold values indicate the extreme (utopia and pseudo-nadir) points of each objective 
function, used to define the respective range (ri).
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The observed variation in the values of 1F  and 2F  clearly 
reflects the trade-offs between objectives: as gains increase, losses 
also increase, which underlines the conflicting nature of the 
objectives in the model. This dynamic is typically observed in 
multi-objective optimization problems, as documented by 
Mavrotas (2009) who points out that the Pareto representation of 
solutions not only helps to understand the behavior of the 
objectives, but also to identify the range of possible solutions 
based on the decision-makers’ preferences.

Figure 2 shows a clear conflict between the objectives: as gains 
increase, losses also rise, and vice versa. This pattern reflects the 
conflicting nature of the problem, where improvements in one 
dimension necessarily imply detriment in the other.

With the Pareto curve defined, which represents the 
non-dominated solutions to the problem, the next step is to select 
the most appropriate solution for the chain, based on two key 
criteria: one economic (profits) and the other social (losses). The 
graph shows that when 1F  acts as the independent variable and 2F  
as the dependent variable, changes are observed in the slope of 
each segment that makes up the curve. At the beginning of the 
curve, the slope is relatively gentle, but there comes a point where 
the slope becomes steeper, implying that, from that point 
onwards, losses will increase much faster than gains. This abrupt 
change in the slope signals a major social impact, as losses 
skyrocket compared to gains, reflecting a progressive 
deterioration in the social efficiency of the system.

To identify the optimal solution, an analysis of three possible 
scenarios is carried out to assess the impact of the trade-offs between 
the two objectives:

	 1.	 Scenario 1: Lower losses with reduced profits, representing a 
conservative solution with limited economic benefits but lower 
social impact.

	 2.	 Scenario 2: Higher profits, but also a proportional increase in 
losses, reflecting a solution aimed at maximizing economic 
benefits at the expense of higher social costs.

	 3.	 Scenario 3: Intermediate scenario, where the slope of the curve 
starts to change abruptly, indicating the inflection point where 
losses start to increase faster than gains.

This intermediate scenario is determined by analyzing the slope 
of the line segments joining each point on the Pareto curve. The slope 
of each segment is calculated using the Equation 33.

	
−

=
−

2 1
2 1
y ym
x x 	

(33)

Where m is the slope between the points ( 1 1,x y ) and ( )2 2, ,x y  
corresponding to the values of 1F  and 2F  of the consecutive 
subproblems. The calculated slopes are presented in Table 8.

Table  8 shows that from subproblem 9 onward, the slope is 
0.000163235, indicating that gains increase at a moderate rate relative 
to losses. However, as we move to subproblem 10, the slope shows a 
significant increase, reaching 0.000278127, implying that, from that 
point onwards, an increase in gains leads to a much faster increase in 
losses. This abrupt change highlights the need to carefully weigh social 
impacts (losses) against economic gains. In Figure 3, the difference in 
the change from the three scenarios can be seen.

Calculating the slopes between consecutive points on the Pareto 
curve allows us to identify subproblem 10 as a critical point on the 
curve. This point suggests a balance between profit maximization and 
loss minimization. By looking at the graph, the three scenarios 
analyzed can be  located, which are fundamental for making 
informed decisions.

The intermediate point on the curve, corresponding to the 
coordinates ($4,127,901,000; 622,793.45), serves as a reference to 
compare the extremes of the curve. In the first scenario, which 
corresponds to subproblem 1 ($1,983,749,000; 485,488.61), the range 
of gains is considerably more significant than at the end point of the 
curve ($4,296,438,000; 790,610.47). Although an increase in profits is 
observed at the last point, this increase is not significant relative to the 
losses, which have increased much more rapidly.

Based on these results, the best option would be for the association 
to set a profit limit of $4,127,901,000 and losses of 622,793.45 kg. This 
is because, by setting this limit, the loss range would remain at 137.30 
tons, a considerably lower value compared to the loss range of 305.12 
tons associated with higher profits. In this way, the social impacts of 
increased losses are minimized.

It is crucial to understand the social implications of opting for 
higher profits. While the economic gains may increase by opting for 
the extreme end of the curve, the social impact would be amplified, 
especially in terms of food security and sustainable development. 
Losses in the yam supply chain directly reduce food availability, 

TABLE 7  Non-dominated points obtained through the AUGMECON 
method, representing the Pareto frontier.

Sub-problems F1 (Profits) [$] F2 (Losses) [kg]

1 1,983,749,000 485488.61

2 2,684,688,000 500744.71

3 2,972,452,000 516000.8

4 3,257,928,000 531256.89

5 3,503,744,000 546512.99

6 3,708,608,000 561769.08

7 3,878,262,000 577025.17

8 3,979,587,000 592281.26

9 4,073,048,000 607537.36

10 4,127,901,000 622793.45

11 4,165,655,000 638049.54

12 4,198,342,000 653305.64

13 4,223,935,000 668561.73

14 4,241,862,000 683817.82

15 4,255,042,000 699073.92

16 4,266,571,000 714330.01

17 4,276,715,000 729586.1

18 4,284,842,000 744842.19

19 4,291,360,000 760098.29

20 4,295,469,000 775354.38

21 4,296,438,000 790610.47
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wasting resources that could help mitigate malnutrition in vulnerable 
communities. In addition, increased losses directly affect farmers’ 
incomes and the local economy, which in turn can increase poverty in 

rural communities, especially those dependent on yam production for 
their livelihoods.

The negative impact of losses extends beyond the economic, 
directly affecting the most vulnerable sectors of society. While 
increased profits may be an attractive option in the short term, the 
long-term social repercussions should not be underestimated.

Choosing among points on the Pareto curve requires balancing 
economic and social impacts. The intermediate scenario, with profits 
of $4,127,901,000 and losses of 622,793.45 kg, offers the most balanced 
option. This solution not only maximizes profits in a controlled 
manner, but also limits social impacts, which can benefit both farmers 
and the wider community.

On the other hand, opting for higher profits may be tempting in 
terms of immediate economic results, but the social impacts could 
be  detrimental in the long term, particularly in relation to food 
security and sustainable development. Additional losses in the supply 
chain would aggravate existing social and economic problems, which 
could compromise the sustainable benefits of the yam supply chain.

Against this background, the best solution would be to select a 
compromise point, as in the intermediate scenario, that allows a 
balance to be struck between economic performance and social.

5.1 Multi-criteria evaluation using TOPSIS

As a complement to the slope analysis, the TOPSIS (Technique for 
Order of Preference by Similarity to Ideal Solution) multi-criteria 
method was applied to rank the efficient solutions of the Pareto front 
from a global perspective, simultaneously considering the economic 
and social objectives of the model. This technique, introduced by 
(Hwang and Yoon, 1981), has been widely used in the field of supply 
chain optimization, given its ability to select solutions close to a 
theoretical ideal of maximum benefits and minimum costs.

The TOPSIS approach evaluates each alternative by its individual 
criterion values and its relative position to an ideal point (maximum 

FIGURE 2

Pareto frontier showing the trade-off between net profit (F1, COP millions) and losses (F2, kg) obtained with the AUGMECON method.

TABLE 8  Values of the slopes of the segments joining the non-dominated 
points of the problem.

Sub-
problems

F1 (Profits) 
[$]

F2 (Losses) 
[kg]

Pending

1 1,983,749,000 485488.61 -

2 2,684,688,000 500744.71 0.000021765

3 2,972,452,000 516000.8 0.000053016

4 3,257,928,000 531256.89 0.000053441

5 3,503,744,000 546512.99 0.000062063

6 3,708,608,000 561769.08 0.000074469

7 3,878,262,000 577025.17 0.000089925

8 3,979,587,000 592281.26 0.000150566

9 4,073,048,000 607537.36 0.000163235

10 4,127,901,000 622793.45 0.000278127

11 4,165,655,000 638049.54 0.000404092

12 4,198,342,000 653305.64 0.000466733

13 4,223,935,000 668561.73 0.000596104

14 4,241,862,000 683817.82 0.000851012

15 4,255,042,000 699073.92 0.001157519

16 4,266,571,000 714330.01 0.001323280

17 4,276,715,000 729586.1 0.001503952

18 4,284,842,000 744842.19 0.001877211

19 4,291,360,000 760098.29 0.002340611

20 4,295,469,000 775354.38 0.003712847

21 4,296,438,000 790610.47 0.015744159

Bold values highlight the inflection point corresponding to the optimal trade-off identified 
on the Pareto frontier.
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gain, minimum loss) and an anti-ideal point (minimum gain, maximum 
loss), weighted by the criteria’s relative importance. In this study, a weight 
of 0.6 was assigned to the economic objective (net gain) and 0.4 to the 
social objective (minimization of losses), reflecting a balanced priority 
with emphasis on the financial sustainability of the system.

This method has been validated in recent research. For their part, 
Lu et al. (2022) used it to select agricultural mechanization strategies 
under multiple criteria, while Abdel-Basset and Mohamed (2020) 
applied it to risk analysis in sustainable supply chains. Both papers 
highlight the versatility of TOPSIS to integrate quantitative variables 
and decision-maker preferences in complex logistics contexts.

In this study, the alternatives corresponded to the 21 non-dominated 
solutions obtained through the AUGMECON method. Each alternative 
was evaluated under two criteria: net profit ( 1F ) and logistical losses ( 2F
). To ensure comparability between both metrics, vector normalization 
was applied, transforming values into a dimensionless scale between 0 
and 1. Subsequently, relative weights of 0.6 for profits and 0.4 for losses 
were assigned, according to the priority defined for the analysis. Based 
on these values, the weighted decision matrix was built, from which the 
distances of each alternative to the positive ideal point (maximum profit 
and minimum loss) and the negative ideal point (minimum profit and 
maximum loss) were calculated. Finally, the relative closeness index ∗

iC  
was determined, defined as the ratio between the distance to the anti-
ideal and the sum of distances to the ideal and anti-ideal. The final 
ranking was obtained by ordering ∗

iC  from highest to lowest, where 
values closer to 1 represent alternatives closest to the ideal solution. 
Solution 14 emerged as the most balanced option. Although it does not 
maximize profits nor minimize losses individually, it achieves the best 
overall performance by significantly reducing losses while maintaining 
competitive profit levels, thus representing the most desirable 
compromise solution.

From a policy perspective, this finding suggests that intermediate 
solutions such as Solution 14 can be  particularly useful for local 
governments and cooperatives. By prioritizing both profitability and 
loss reduction, the model can guide agricultural planning programs, 

support investment decisions in storage and transport infrastructure, 
and design cooperative strategies that enhance the role of smallholder 
farmers in regional and export markets.

Figure 4 shows the evolution of the TOPSIS index for the different 
solutions evaluated. As can be seen, the intermediate solutions at the 
front tend to concentrate on the highest values, while the solutions 
located at the extremes (oriented exclusively to the maximization of 
one of the objectives) present lower levels of overall performance.

It is relevant to note that the solution prioritized by TOPSIS does 
not coincide with the one suggested by slope analysis. This difference 
is due to the nature of each approach: while slope analysis examines 
the marginal efficiency between adjacent solutions on the front end, 
TOPSIS evaluates each alternative with respect to a global ideal, 
explicitly integrating the decision-maker’s preferences. The 
complementarity of the two methods enriches decision-making by 
enabling comparison between marginal performance and overall 
performance across alternatives.

5.2 Spatial distribution and stability of 
harvest along the Pareto frontier

Figure 5 presents the spatial distribution of the variable svtHC  by 
planting site, considering all iterations generated using the epsilon 
constraint method (Pareto frontier). Each bar represents the total 
harvested at a specific site for a given iteration.

The analysis shows that total harvest at each site remains nearly 
constant across all iterations, indicating that site selection is highly 
robust to different optimization scenarios. Sites 3, 4, 7, 12, 25, 26, 27, 
28, 30 and 40 stand out for their importance, because significantly 
higher amounts are harvested than the average of the rest of the sites. 
They remain active in all iterations, regardless of the trade-off between 
economic and social objectives. They also concentrate most of the 
total production, making them strategic for the sustainability and 
efficiency of the chain.

FIGURE 3

Slopes of the segments between consecutive Pareto solutions, used to identify critical inflection points.
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These findings allow us to recommend prioritization of 
investments and logistical resources in these key sites, thereby 
maximizing the resilience and efficiency of the modelled agri-food 
system. The low spatial variability also indicates that the system is 
stable and predictable, facilitating informed long-term decision- 
making.

6 Conclusion

Farmers involved in the cultivation of agri-food crops, such as 
yams, face multiple challenges in planning and managing their 
production processes. These include deciding on the amount of land 
to plant, choosing the right time for farming, as well as defining 
storage and marketing strategies that maximize income and minimize 
losses. These decisions are even more complex in agri-food supply 
chains (ASCs), which require a holistic strategic approach to ensure 
sustainability and efficiency.

This study presented a multi-objective mathematical model aimed at 
the sustainable management of the yam supply chain in the department 

of Sucre. The formulation addressed critical aspects such as planting and 
harvesting seasons, optimal planting location, distribution systems, 
demand estimation, production and transport costs, as well as losses 
during the production process. The model adequately represented the 
complexity of the agri-food logistics problem by integrating economic 
and social objectives in a structured way.

The application of the augmented ε-constraint method allowed 
multiple scenarios to be explored under a multi-objective approach, 
facilitating the comparison of solutions that maximize gains while 
minimizing losses. One advantage of this approach is its ability to 
handle objectives expressed in different units without requiring prior 
normalization. This simplified the analysis process and provided a 
flexible tool to address sustainability from a quantitative perspective.

In this context, two complementary methods were applied to 
analyze the efficient front of solutions: slope analysis and the TOPSIS 
method. The former allowed identifying inflection points on the 
Pareto front and assessing the marginal trade-offs between objectives, 
suggesting that an intermediate solution—with profits of $4,127 
million and losses of 622,793  kg—offered a reasonable balance 
between profitability and operational efficiency.

The TOPSIS method provided a comprehensive assessment of the 
solutions, ranking them according to their closeness to a theoretical 
ideal solution. This technique simultaneously weighed economic and 
social criteria and determined that subproblem 14 had the highest 
overall performance, with a preference index of 0.947. This result 
reaffirms the relevance of considering weighted multi-criteria methods 
for final decision making in complex logistics contexts.

From the analysis of the solutions generated, critical variables were 
identified that guided the formulation of sustainable strategies in three key 
areas: loss reduction, demand satisfaction and planting management. 
Losses in storage, production and transport were consolidated as 
determining factors, suggesting the need for technological, operational 
and organizational interventions. The importance of diversifying external 
suppliers, particularly in terms of the observed preference for supplier P1, 
and of adjusting the varietal distribution of yam crops to optimize the 
overall performance of the system was also evident.

Implementing these strategies requires coordinated commitment 
from chain actors, stronger technical capacities in the region, and 

FIGURE 5

Spatial distribution of harvested yam by sowing site across Pareto iterations, showing stable patterns among key locations.

FIGURE 4

TOPSIS performance index (Ci) for the efficient solutions, ranking 
alternatives by closeness to the ideal solution.
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continuous monitoring systems to support decision-making. Beyond 
the economic impact, these actions have the potential to contribute to 
social welfare by improving farmers’ working conditions and 
promoting sustainable practices that benefit local communities and 
the environment.

In sum, the results of this study provide concrete evidence on the 
value of integrating optimization models, multi-criteria analysis and 
scenario evaluation in strategic decision-making in SWC. Their 
application in the case of yams in Sucre demonstrates the feasibility of 
designing sustainable, efficient and socially responsible supply chains.

The proposed model represents a solid tool for sustainable yam 
supply chain planning by integrating economic and social criteria under 
a multi-objective approach. However, like any mathematical formulation, 
it relies on certain assumptions that limit its scope. Among them is the 
deterministic consideration of variables such as demand, prices and 
losses, which offers clarity in decision-making, but limits the analysis in 
contexts of high uncertainty. Future work should incorporate 
environmental metrics—such as carbon footprint or water efficiency—to 
complement the economic and social analysis and provide a more 
comprehensive sustainability assessment.” It is also suggested to advance 
in (i) the development of models under robust or stochastic optimization 
approaches, (ii) the extension of the model to larger territorial scales or 
complementary crops, and (iii) the linkage with participatory simulation 
platforms or decision support tools to incorporate the knowledge of local 
actors and improve the practical applicability of the model.
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