
Frontiers in Sustainability 01 frontiersin.org

AI-IoT-graph synergy for smart 
waste management: a scalable 
framework for predictive, 
resilient, and sustainable urban 
systems
R. Anitha  and A. Parthiban *

Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 
India

Effective waste management is essential for smart cities, but fixed collection 
schedules frequently result in missed pickups, overflow events, and inefficient 
fuel consumption. This study introduces a framework that integrates Artificial 
Intelligence (AI), Internet of Things (IoT) sensors, and graph-theoretic optimization. 
A simulated dataset of 500 bins across five zones was used to train an XGBoost 
classifier for overflow prediction, combined with spatial risk mapping and routing 
optimization on a weighted bin network. The AI model achieved high predictive 
accuracy (94.1%) and recall (95.8%), ensuring reliable identification of overflow-
prone bins. Compared to a static collection model, the smart system reduced 
overflow events by 50%, missed pickups by 72.7%, and fuel usage by 15.5%, 
while improving bin utilization efficiency by 35.5%. These findings demonstrate 
that integrating AI, IoT, and graph-theoretic methods can significantly enhance 
operational efficiency and environmental sustainability in urban waste logistics. 
The framework provides a scalable solution that adheres to Industry 4.0 principles 
and serves as a foundation for future smart city infrastructures. The system’s 
modular architecture allows seamless integration with existing municipal platforms, 
enabling in real-time responsiveness and adaptive service delivery. By bridging 
operational decision-making with simulation-driven insights, the framework sets 
a precedent for data-driven governance in urban infrastructure.
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1 Introduction

One of the 21st century’s most urgent problems is the exponential increase in urban waste 
output. According to the World Bank, the amount of MSW generated worldwide is predicted 
to reach 3.4 billion tonnes per year by 2050, a 70% increase from 2016 levels (World Bank, 
2018). As a result, cities are facing increasing challenges related to public health, infrastructural 
strain, and environmental degradation. In India, almost 32% of the more than 160,000 tonnes 
of waste produced daily in cities goes unaccounted for, due to deficiencies in collection, 
treatment, and monitoring (Central Pollution Control Board, 2021). Outdated waste logistics 
strategies, jurisdictional differences, and rapid urbanization all contribute to these inefficiencies 
(Joshi and Ahmed, 2016).

Traditional waste management systems-characterized by static routing, manual bin 
monitoring, and centralized dispatching-are increasingly ineffective in dynamic urban 
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environments. These systems lead to wasteful fuel consumption, 
missed pickups, and overflowing bins, which not only compromise 
service reliability but also exacerbate greenhouse gas emissions, 
vector-borne illnesses, and public dissatisfaction (UN-Habitat, 2024; 
Gupta et  al., 2022). There has never been a greater demand for 
decentralized, data-driven, and adaptive waste infrastructure. Urban 
waste systems are undergoing a transformation through Industry 4.0 
technologies, which enable cities to shift from reactive to predictive, 
intelligent, and sustainable operations. By integrating AI, IoT, graph-
theoretic modeling, and spatial analytics, cities can implement 
SWMS that support geographic prioritization, overflow forecasting, 
route optimization, and real-time bin telemetry (Mudannayake 
et al., 2022).

Recent studies have shown that machine learning algorithms 
like XGBoost, LSTM, and Random Forest are effective in forecasting 
bin overflow and waste generation patterns (Kodihal and Akhtar, 
2024; Spiridonova, 2025). Simultaneously, graph-theoretic 
techniques have been used to model bin networks as weighted 
graphs, enabling multi-objective routing based on bin priority, 
congestion, and distance (Mondal et al., 2024). Spatial intelligence 
tools-such as risk scoring, zone grouping, and heatmaps-translate 
predictive outputs into actionable geographic insights, enhancing 
decision-making (Cui et al., 2025; Agrawal et al., 2025). Despite 
these advances, current smart waste models often operate in silos, 
focusing on either spatial risk mapping, routing optimization, or 
overflow prediction, without offering a unified architecture. To 
bridge this gap, the present study proposes a hybrid architecture that 
integrates AI, IoT, and graph theory into a cohesive decision-support 
system. The framework employs XGBoost-based overflow prediction 
trained on simulated smart bin data to estimate bin fill levels. 
Concurrently, geospatial risk mapping identifies temporal 
accumulation trends and high-risk zones, enabling proactive 
intervention. Finally, graph-theoretic decision optimization guides 
dynamic routing based on geographic distance, congestion, and 
bin priority.

This integrated system uses multi-objective cost functions, zone-
specific simulation, and clustering algorithms to ensure operational 
feasibility in real-world urban settings. The framework aligns with 
circular economy principles, supports resource recovery, and 
contributes to SDG 11: Sustainable Cities and Communities. 
Moreover, it advances the Waste 4.0 paradigm, which emphasizes the 
convergence of robotics, AI, and geospatial intelligence for 
infrastructure resilience and emissions reduction (GIZ India, 2023; 
Zhang et al., 2023). This work lays the foundation for future research 
in multi-stream waste optimization, real-time dispatching, and 
citizen-centric service design, by embedding predictive analytics into 
graph-based routing and spatial prioritization. The proposed 
framework is validated through simulation using synthetic smart bin 
data and zone-specific routing scenarios to demonstrate its operational 
feasibility in urban contexts.

In the subsequent subsections, important aspects that influence 
the development of intelligent waste systems are examined to place the 
suggested framework within larger urban, technological, and policy 
contexts. Global waste issues, social and behavioral factors, governance 
structures, technical preparedness, and the demands of the circular 
economy are a few of these. When taken as a whole, they highlight 
how urgent and pertinent integrated, AI-powered waste management 
solutions are.

1.1 The global waste epidemic and urban 
intricacy

The waste epidemic is now a global problem rather than just 
a problem in underdeveloped countries. Smart waste solutions 
have been used by cities such as Singapore, New  York, and 
Amsterdam to address inefficient routing, unlawful dumping, and 
overflow; nevertheless, many metropolitan centers still face 
challenges related to pricing and scalability. Diverse waste streams, 
varying generation rates, and jurisdictional overlaps contribute to 
the complexity of urban waste systems, making centralized 
planning challenging in the absence of real-time intelligence. An 
unsustainable rate of urban waste output is creating serious 
logistical, financial, and environmental problems. Rapidly 
urbanizing regions in Asia and Africa are projected to experience 
the steepest increases in waste generation, placing disproportionate 
pressure on cities with limited infrastructure and fragmented 
governance (Zhang et al., 2024). Large cities like Delhi, Tokyo, and 
New York are already feeling the strain of overloaded landfills, 
ineffective waste collection systems, and disjointed jurisdictional 
regulations. Some EU member states continue to dispose of more 
than 60% of household waste in landfills, indicating the need for 
more environmentally friendly waste management practices 
(European Environment Agency, 2024b). Many cities throughout 
the world have responded by developing novel approaches to deal 
with this issue. By 2050, Amsterdam wants to achieve the lofty aim 
of becoming a zero-waste city. Japan enforces strict waste 
categorization laws, with some municipalities managing over 45 
distinct waste categories to improve recycling and material 
recovery (Ministry of the Environment, 2023). Barcelona has also 
adopted IoT sensor technologies to optimize bin collection and 
reduce fuel consumption by 20%. These illustrations demonstrate 
the pressing need for integrated, intelligent, and scalable waste 
management systems that can keep up with the expanding needs 
of metropolitan areas.

1.2 The social and behavioral aspects

Smart waste management is not solely a technological 
challenge-it is deeply influenced by human behavior. Studies 
consistently show that recycling practices, community participation, 
and digital engagement significantly affect the performance and 
sustainability of waste systems. For instance, the implementation of 
door-to-door recycling programs in Italy, supported by tax 
incentives, led to a 35% increase in public involvement, 
demonstrating the effectiveness of financial incentives in promoting 
behavioral change (Gilli et al., 2018). In Greece, the Bitter Orange 
Project used mobile applications and reward-based mechanisms to 
encourage organic waste collection and foster environmental 
responsibility. Similarly, a study in Slovenia found that installing 
smart bins with emotional feedback screens improved waste sorting 
behavior by 22%, highlighting the positive impact of interactive 
technologies on daily routines (Guna et al., 2022). These examples 
illustrate that integrating behavioral analytics and citizen 
engagement strategies is essential for achieving long-term impact 
in intelligent waste systems.
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1.3 Significance of policy and governance

Waste infrastructure is being matched by governments around the 
world with SDG targets, zero-waste roadmaps, and climate action 
plans. In India, decentralized waste management and digital 
transformation are key components of the National Action Plan for 
Climate Change and the Swachh Bharat Mission (Urban). The 
proposed AI-IoT-graph framework facilitates data-driven decision-
making, emissions reduction, and equitable service delivery, directly 
supporting these sustainability objectives. Globally, efficient waste 
management is becoming increasingly acknowledged as a 
governmental priority and an environmental requirement. National 
and international sustainability goals are closely aligned with the 
suggested AI-IoT-graph framework. Over 7,800 projects in India have 
been mapped to 51 SDG targets by the Smart Cities Mission, while 
waste reduction and circularity are highlighted by the CSCAF 
(Ministry of Housing and Urban Affairs, 2023; Ministry of Housing 
and Urban Affairs and National Institute of Urban Affairs, 2022). 
Cities around the world are being pushed toward more intelligent 
waste systems by the EU Waste Framework Directive, which requires 
the separate collection of textiles and organics by 2025 (European 
Environment Agency, 2024a). SDGs 11 (Sustainable Cities) and 12 
(Responsible Consumption) are advanced by the suggested 
framework, which makes predictive, zone-aware, and resource-
efficient waste logistics possible. However, the success of such 
frameworks depends on municipal capacity, inter-agency 
coordination, and the availability of interoperable digital 
infrastructure. Technological preparedness helps realize this goal. 
Over 18,000 IoT sensors have been installed in cities like Barcelona, 
which has saved €555,000 a year in waste management; Amsterdam’s 
AI-powered smart grid has also decreased energy use by 15% 
(Madakam and Ramachandran, 2015; Angry Nerds, 2024). Pilot 
programs for smart bins have decreased fuel use by 30% and public 
complaints by 60% in India (Agrawal et al., 2025). The modular design 
of the suggested system makes it simple to integrate with GIS platforms 
and municipal dashboards, increasing the likelihood that it will 
be adopted in practice. Despite being historically disregarded, textile 
waste is becoming a significant urban stream, particularly in areas like 
Tamil Nadu where volume, potential for reuse, and socioeconomic 
consequences all come together. The suggested AI-IoT-graph 
framework’s modular design enables zone-specific diversion and 
resource recovery techniques by adapting it beyond general MSW to 
specialized categories like organics and textiles. Circular economy 
principles are promoted via anticipatory waste management, which 
goes beyond logistics. With the use of precise overflow forecasts, 
organic waste may be promptly diverted to compost and hotspots for 
textile waste can be identified for upcycling and reuse. Such models 
have been shown to divert thousands of tonnes of waste while creating 
jobs in Tamil Nadu (Härri and Levänen, 2024; GIZ India, 2023). In 
this way, the suggested paradigm helps cities transition from linear 
disposal models to sustainable, circular urban systems.

1.4 Technological development and 
integration capabilities

Cloud-based analytics, edge computing, and the maturity of IoT 
sensors have made smart waste systems more practical than ever. 

Current platforms provide features like predicting maintenance needs, 
adjusting routes on the fly, and monitoring containers, which have 
shown in tests to cut emissions by up to 60% and lower operational 
costs by 40% (Idoko et  al., 2024). Despite these advancements, 
challenges such as legacy system compatibility, data standardization, 
and cybersecurity must be addressed to ensure seamless integration. 
AI and IoT technologies have advanced past the experimental stage 
and are now prepared for deployment, with shown advantages in 
urban settings. Barcelona’s Sentilo platform, for example, incorporates 
more than 18,000 IoT sensors, which lowers waste collection expenses 
by €555,000 annually (Angry Nerds, 2024). To illustrate the observable 
benefits of intelligent infrastructure, Amsterdam’s AI-enabled smart 
grids have reduced energy consumption by 15%. According to 
preliminary research, installing smart bin networks in India can save 
fuel use by 30% and citizen complaints by 60%. To improve its 
practicality and scalability for real-world application, the proposed 
AI-IoT waste management system’s modular architecture enables 
seamless interaction with current GIS, urban innovation labs, and 
municipal dashboards. The modular architecture of the proposed 
AI-IoT waste management system enables seamless integration with 
existing GIS, urban innovation labs, and municipal dashboards, 
enhancing its practicality and scalability for real-world application.

1.5 Circular economy and resource 
recovery

AI-enabled smart waste systems facilitate resource recovery by 
enabling real-time diversion of organics, recyclables, and residuals to 
appropriate treatment streams. AI-enabled smart waste systems 
facilitate resource recovery by enabling real-time diversion of organics, 
recyclables, and residuals to appropriate treatment streams. Cities can 
reduce their reliance on landfills by rerouting organics to composting, 
recyclables to sorting centers, and residuals to energy conversion by 
mapping waste hotspots and forecasting overflow (Soni et al., 2025). 
In addition to being a tool for bettering waste collection, overflow 
prediction is an essential component of resource recovery and circular 
economy strategies. Methane emissions from landfills can be greatly 
decreased by towns utilizing predictive mapping to redirect organic 
waste to composting facilities. Finding hotspots for textile waste can 
also help direct upcycling and reuse projects, especially in low-income 
areas where they benefit the environment and society. To divert more 
than 20,000 tonnes of waste yearly and create almost 400,000 person-
days of work, for instance, inclusive textile waste models are being 
implemented in Tamil Nadu (GIZ India, 2023). Technologies such as 
RFID tagging and blockchain-based traceability can further enhance 
material tracking and accountability across the waste value chain. To 
assist urban systems in moving from linear disposal models toward 
circular resource loops that put sustainability and local economic 
development first, the suggested AI-IoT-graph framework facilitates 
these waste-to-value transformations.

1.6 Related works

The capabilities of smart waste systems have been greatly 
enhanced by the integration of AI and IoT technology, making 
automated decision-making, real-time monitoring, and predictive 
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analytics possible. According to recent research, dynamic routing 
algorithms in conjunction with IoT-enabled smart bins can optimize 
bin placement in urban settings, decrease overflow events, and 
increase collection efficiency (Alaoui et  al., 2025). Deep learning 
models such as CNNs and YOLO have been applied for real-time 
waste classification, improving sorting accuracy and reducing manual 
labor (Gaikwad et  al., 2025). By reducing needless travel and 
emissions, these solutions not only increase operational efficiency but 
also support environmental sustainability.

Forecasting waste generation and assisting with long-term 
planning have both been successfully accomplished using machine 
learning models. In predicting residential and non-residential 
waste patterns, a recent study showed that ANNs performed better 
than SVMs and MLR, with 2R  (coefficient of determination) values 
as high as 99.9% (Billal and Kumar, 2025). Reduced travel 
distances and increased service dependability have been achieved 
by integrating waste volume forecast into route planning using 
graph-theoretic models to optimize waste sorting and 
transportation networks (Cui et al., 2025). Adoption of Industry 
4.0 technologies-including AI, IoT, and predictive analytics-has 
been shown to enhance waste efficiency in supply chains, aligning 
smart waste systems with broader sustainability goals such as SDG 
11 and Net Zero targets (Gaur et al., 2025). The primary themes in 

the literature are listed in Table  1 below, which synthesizes 
important contributions from various fields. However, many of 
these models operate in isolation-focusing on either prediction, 
routing, or spatial mapping-without offering a unified 
operational framework.

The studies included in Table 1 were chosen based on two main 
criteria: (i) methodological relevance, which included AI models for 
prediction, IoT-enabled sensing, graph-theoretic routing, and 
GIS-based spatial mapping; and (ii) representativeness, which 
highlighted recent and influential contributions from 2018 to 2025 
that collectively illustrate the evolution of smart waste research. These 
studies were selected because they exhibit either unique techniques or 
common constraints (e.g., focussing solely on prediction, routing, or 
spatial mapping), highlighting the necessity for an integrated AI-IoT-
graph framework.

This corpus of work demonstrates the growing convergence of AI, 
IoT, spatial intelligence, and graph theory in advancing intelligent 
waste systems. However, most existing approaches remain fragmented 
focusing narrowly on routing, spatial mapping, or prediction in 
isolation. Few studies provide a comprehensive operational framework 
that combines these dimensions into a coherent decision-support 
system. To address this gap, the present study develops an AI-IoT-
graph framework that blends overflow prediction, spatial risk 

TABLE 1  Summary of literature review on smart waste management.

Author(s) and 
year

Methods Key contributions

Ardiansyah and 

Maryono (2018)

Spatial statistics and GIS for waste mapping Mapped the patterns of solid waste generation in Indonesian cities, assisting in the formulation 

of spatially informed policies.

Mora Murillo et al. 

(2021)

Graph theory + Traveling Salesman Problem + 

Dynamic Programming

Reduced the route distance by 66.6% and proved that graph-based routing is effective in actual 

urban environments.

Ahmed S. et al. (2022) Deep learning models (1D CNN, LSTM, GRU, 

Bi-LSTM) for bin fill prediction

The best accuracy (MAPE = 1.855%) was attained by LSTM, proving the usefulness of time-

series models for overflow prediction.

Sinthiya et al. (2022) Systematic Literature Review (SLR) of 40 AI-

based smart waste studies

Highlighted the absence of integrated frameworks that combine prediction, routing, and 

geographical mapping; identified the most common AI models (ANN, Fuzzy Logic, Expert 

Systems).

Mudannayake et al. 

(2022)

ML/DL models for multi-step forecasting of 

MSW generation

In waste logistics, LSTM and GRU models performed better than conventional techniques and 

aided in long-term planning.

Fang et al. (2023) Comprehensive review of AI applications in 

smart city waste systems

Highlighted the difficulties in integrating AI and its applications in waste classification, route 

optimization, and citizen involvement.

Vilchez-Torres et al. 

(2023)

Chinese Postman Problem + Binary Integer 

Programming

Non-Eulerian waste routes were optimized, and in Peruvian municipalities, the average route 

length was lowered by 66.6%.

Vikram and Bhardwaj 

(2023)

GIS and IoT-based spatial analysis of urban 

waste zones

Enabled infrastructure gap analysis and hotspot detection; facilitated service delivery and fair 

bin placement.

Reddy and Asadi 

(2024)

GIS-based site selection using geospatial and 

environmental criteria

Using proximity, slope, and land use analysis, the landfill was successfully positioned, 

supporting sustainable planning.

Dawar et al. (2025) Hybrid ML models (Random Forest, XGBoost, 

LSTM) for classification

Hybrid approaches prioritized ensemble learning for waste forecasting while increasing 

prediction accuracy and decreasing overfitting.

Fatorachian and 

Pawar (2025)

Qualitative study using interviews and NVivo 

analysis; focus on Industry 4.0 in cold chains

Emphasized real-time monitoring and digital integration for sustainability; demonstrated how 

AI, IoT, and predictive analytics cut waste and pollution.

Kuhaneswaran et al. 

(2025)

GIS + AI + Multi-Criteria Decision Analysis 

(AHP, Fuzzy, ANP)

Analysis of 48 research revealed that hybrid GIS-AI models enhance risk mapping, landfill 

siting, and spatial prioritization.

Belhiah and El Aboudi 

(2025)

IoT-based mesh sensor network for smart bins Decreased overflow events and increased collection effectiveness; brought attention to issues 

with sensor calibration and network dependability
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mapping, and graph-theoretic optimization into a scalable architecture 
for sustainable urban waste logistics.

2 Problem statement

Traditional MSW collection practices-characterized by static 
schedules and reactive maintenance-often lead to missed pickups, bin 
overflow, excessive fuel consumption, and increased labor costs. These 
inefficiencies are particularly pronounced in rapidly urbanizing areas, 
where waste generation patterns vary significantly by zone, time, and 
consumption behavior. Despite technological advancements, most 
urban waste systems lack integration with real-time data sources such 
as smart bins and do not possess predictive intelligence. Additionally, 
current models frequently overlook the complex spatial relationships 
between collection points, resulting in suboptimal routing and delayed 
responses. There is a pressing need for an intelligent, adaptive, and 
graph-aware framework that can anticipate overflow risks and 
optimize waste collection in a scalable and sustainable manner. 
Figure 1 illustrates the rationale for this study, highlighting existing 
inefficiencies, the proposed AI-IoT-graph-theoretic approach, and its 
anticipated operational and environmental benefits within the 
Industry 4.0 paradigm. Addressing these challenges is essential for 
building resilient, data-driven waste systems aligned with smart city 
and sustainability goals.

3 Research significance

This study presents a novel AI-IoT-Graph-Theoretic framework 
aimed at transforming traditional waste collection systems into 
responsive, efficient, and predictive networks. To bridge the gap 
between intelligent forecasting and structural design, the study 
combines machine learning, smart IoT bin data, and graph-based 
optimization algorithms. Grounded in Industry 4.0 principles-such as 
cyber-physical infrastructure, real-time sensing, and system-wide 
optimization-the approach is highly relevant to the evolving needs of 
smart cities. The methodological innovation of this work contributes 
to academic discourse while offering practical value for municipalities 
seeking to reduce operational costs, lower environmental impact, and 
enhance service delivery. The proposed framework not only addresses 
current inefficiencies in waste systems but also offers a scalable model 

adaptable to other critical urban infrastructures such as energy grids, 
water distribution, and traffic management.

4 Methodology

This project creates a single smart waste management system by 
combining AI, IoT, and graph-theoretic modeling. The system begins 
with simulated smart bin data, which includes temporal fill levels, 
geospatial positions, and overflow events. The simulation pipeline 
followed a structured sequence: (i) daily fill levels were generated for 500 
bins across five zones using zone-specific growth functions; (ii) overflow 
risk was assigned based on the >90% threshold; (iii) XGBoost was 
trained on 80% of the data and validated on 20%; (iv) predictions were 
aggregated zone-wise to calculate percentages of high-risk bins (Table 2); 
(v) comparative benchmarking against a static model yielded efficiency 
percentages (Table 3). This step-by-step approach, illustrated in Figure 2, 
avoids uncertainty in percentage computation and ensures reproducibility.

These data points are used as approximations for real-time sensor 
inputs in urban deployment scenarios. The predicted scores provided 
by XGBoost are integrated in a directed, weighted graph of the city’s 
waste collection network, with nodes representing bins and edges 
representing accessible routes weighted by distance. Clustering 
methods and centrality measures (such as betweenness and degree) are 
used to discover high-priority nodes and optimize route construction.

To support spatial decision-making, heatmaps are generated using 
spatial interpolation techniques to visualize zone-wise accumulation 
trends and overflow risk. These visual tools help municipal planners 
detect service shortages and high-risk zones. The framework models 
an Industry 4.0 infrastructure in which routing decisions are 
dynamically informed by predictive analytics and spatial intelligence. 
To determine its effectiveness, the suggested system is compared to a 
traditional static model utilizing performance measure such as fuel 
consumption, bin utilization efficiency, and overflow occurrence 
frequency. As shown in Figure 3, the system design is divided into four 
stages: smart bin data simulation, overflow prediction, geographical 
risk mapping, and graph-based routing optimization.

5 Materials and methods

This section outlines the technological components and 
experimental setup employed in the study. The framework integrates 

FIGURE 1

Problem-approach-impact framework illustrating the AI-IoT-graph-based solution for smart waste management.
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spatial mapping, machine learning-based overflow prediction, 
synthetic data generation, and graph-based optimization to simulate 
a smart waste monitoring system grounded in AI, IoT, and 
network theory.

5.1 Data simulation and smart bin 
configuration

A realistically structured simulation approach was chosen, 
simulating 500 smart bins across five urban zones (A–E), each with 
distinct waste generation patterns because there were no fine-grained 
smart bin datasets available to the public at the metropolitan scale. 
This approach is in line with procedures in recently developed smart 
infrastructure research, which use simulated datasets for system 
benchmarking and pilot-scale validation (Ahmed A. K. A. et  al., 
2022). Each of the five urban zones (A–E) with different waste 
generation rates and behavioral patterns was represented by 100 smart 
bins in the simulation.

Each smart bin was configured with the following attributes:

	•	 Fill levels every day (in %).
	•	 Co-ordinates of a geospatial location (for mapping purposes).
	•	 Overflow risk labels (classification in binary: Yes, if anticipated 

fill is greater than 90%, else No).
	•	 Timestamped updates (to record patterns over a period of 

7 days).

Using design ideas from current IoT-based smart waste 
deployments, this simulation model was created. Sensor characteristics, 
such as GPS transmitters, ultrasonic fill sensors, and ambient context, 
were digitally incorporated into the dataset structure to align with 
smart bin telemetry in the actual world (Kumar et al., 2021).

With this method, we  were able to account for zone-specific 
variances and peak accumulation times (such weekends) while 
training and testing prediction models under operational conditions 
that were almost realistic. The simulated dataset preserved waste 
buildup variability impacted by proxy variables such as residential 
clustering and commercial density (Abba and Light, 2020). Using 
simulated data was primarily done to allow for a controlled 
examination of the suggested AI-IoT-Graph architecture without the 
biases or gaps in data that are frequently present in public repositories. 
This also facilitated downstream interface with graph-based routing 
modules, providing optimization workflows in line with clustering-
based graph-theoretic waste collection techniques (Balaga, 2020).

The simulation monitors daily fill levels over a 7-day period, and 
the model forecasts overflow on day 8 based on historical data. 
Although simulated data were used, the design was evidence-based. 
Overflow criteria (>90% fill level) were derived from IoT-based smart 
bin experiments conducted in Barcelona and pilot implementations 
in Indian cities (Agrawal et al., 2025). Zone-level waste generation 
rates were benchmarked against urban averages reported by the World 
Bank (2018) and the Central Pollution Control Board (2021), 
confirming that the synthetic dataset accurately represents fill-level 
dynamics and operational constraints. These design choices enhance 
the credibility of the simulation and support the validity of the 
predictive analysis. Table 4 presents a summary of the benchmarking 
parameters and their sources.

5.2 AI-based overflow prediction

Utilizing XGBoost, we  developed a machine learning-based 
prediction module to foresee possible bin overflow incidents and 

TABLE 2  Performance metrics of the XGBoost model for bin overflow 
prediction.

Metric Value

Accuracy (%) 94.1

Precision (%) 91.7

Recall (%) 95.8

AUC-ROC score 0.96

RMSE (fill %) 6.2

TABLE 3  Priority bin clusters identified through graph-theoretic metrics.

Bin 
ID

Zone Overflow 
risk (%)

Degree 
centrality

Priority 
level

B03 A 96 0.22 High

B09 B 91 0.18 High

B14 A 89 0.16 Medium

B22 B 94 0.15 High

B2 C 87 0.14 Medium

Degree centrality values are normalized (scaled from 0 to 1) based on node connection in 
the bin network.

Generate Daily Fill Levels
(500 bins)

Classify Overflow 
( > 90% )

Train XGBoost Model 
(80/20 Split)

Zone-Wise Aggregation
(High-Risk Bins )

Benchmark vs. Static 
Model

Metrics (%)

FIGURE 2

Simulation pipeline for overflow prediction and benchmarking.
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proactively schedule waste pickup. Based on recent waste analytics 
research, this supervised learning technique was chosen for its 
demonstrated efficacy in binary classification problems with high-
dimensional, tabular data and temporal dependencies (Chen and 
Guestrin, 2016; Vaisharma, 2023).

An overflow condition was labeled “Yes” if the anticipated fill level 
for the following day was greater than 90%; if not, it was labeled “No.” 
The goal variable was a binary overflow status (Yes/No). From every 
smart bin record, a few essential features were taken out to properly 
train the model. A categorical encoding of the Bin ID was used to 
capture bin-specific usage patterns, the daily growth trend in fill level 
(ΔFill/day) was used to capture trajectory, the average fill percentage 
at the zone level was used to contextualize accumulation behavior, and 
historical fill levels from Days 1 through 3 of the previous 3 days were 
included. For supervised training and performance assessment, these 
manufactured characteristics were organized and supplied into the 
XGBoost classifier. The model was implemented using Python 3.10 
and the Scikit-learn and XGBoost libraries.

Model evaluation metrics:
Key classification metrics were used to assess the model after it 

was trained using a stratified 80–20 train-test split:

	•	 Accuracy: 94.1%.

FIGURE 3

Methodological workflow of the AI–IoT–graph-based smart waste management system.

TABLE 4  Benchmarking parameters for simulated dataset.

Parameter Source Justification

Overflow threshold 

(>90% fill level)

IoT-based smart bin 

deployments in 

Barcelona and pilot 

studies in India 

(Agrawal et al., 2025)

Reflects the operational 

trigger levels used in smart 

bin deployments.

Bin fill rate (kg/day) Central Pollution 

Control Board (2021) 

and World Bank 

(2018)

Calibrated to match urban 

waste generation averages.

Zone-wise bin 

distribution

Indian Municipal 

Reports, World Bank 

(2018)

Based on population 

density and waste 

generation per capita

Collection frequency Smart bin pilot 

protocols (India, 

European Union)

Simulated to mimic 

dynamic routing in smart 

systems.

Fuel consumption per 

trip

Factors that influence 

municipal fleet 

conversion

Used to calculate 2CO  

emissions from vehicle 

operations.
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	•	 Precision: 91.7%.
	•	 Recall (sensitivity): 95.8%.
	•	 AUC-ROC Score: 0.96.
	•	 Root Mean Square Error (RMSE) of fill level prediction: 6.2%.

The high recall rate guarantees that overflow-prone bins are not 
overlooked, which is essential in urban waste environments where 
even a single overflow incident can compromise service dependability 
and public health.

XGBoost was well-suited to the bin network due to its scalability 
and robustness to sparse inputs. Additionally, it facilitates feature 
importance extraction, which makes it possible to determine which 
variables have the greatest impact on overflow prediction in a 
transparent and interpretable manner. XGBoost consistently 
outperformed other classification models, including logistic 
regression and decision trees, in terms of precision and recall. This 
strategy aligns with recent research that tested several prediction 
models and discovered that deep learning models like LSTM and 
XGBoost surpassed traditional classifiers in smart waste bin 
forecasting tasks (Liu et al., 2025). Furthermore, the 90% threshold 
for defining overflow was adopted in accordance with prior smart bin 
studies (e.g., Fang et al., 2023), ensuring timely intervention before 
spillage occurs and aligning with operational standards in 
IoT-enabled waste systems.

5.3 Spatial risk mapping

As part of the smart waste monitoring system, a spatial mapping 
module was created to convert AI-predicted overflow concerns into 
useful geographic intelligence. This element was essential in helping 
municipal planners with proactive action, visualizing high-risk 
areas, and streamlining collection routes. Five simulated 
metropolitan zones (A through E) were used to spatially distribute 
the fill-level and overflow probability outputs produced by the AI 
algorithm. Coordinates that were in line with proxies for urban 
density were used to map the position of each smart bin. High-risk 
nodes were defined as bins having an overflow probability of > 90% 
within the following 24 h. After that, these were combined zone-by-
zone and plotted using a heatmap visualization approach that was 
created using the folium and seaborn libraries in Python. These 
libraries enabled both static and dynamic mapping of overflow risk 
across time and space.

Under resource constraints, it has been demonstrated that spatial 
clustering enhances service prioritization and improves the 
interpretability of bin-level predictions (Borase et al., 2024). Together 
with static heatmaps, the system also included dynamic temporal 
mapping, which allowed for the detection of patterns by observing 
risk intensity over a series of days (e.g., frequent overflows near 
transport hubs or commercial zones). For example, in accordance 
with the simulation’s population density assumptions, Zones A and 
B continuously showed higher concentrations of anticipated overflow 
accidents. This allowed adaptive dispatching techniques to 
be simulated in addition to validating the predictive structure of the 
AI model.

The average overflow probability, total bins, and forecasted high-
risk bins were reported in zone-wise summaries to further include 

spatial intelligence into decision-making. Using the following formula, 
a zone-priority score was determined:

	

− = × 
 

    
 

High Risk BinsZone Priority Average Overflow Risk
Total Bins

By measuring spatial urgency, this metric made it easier for the 
routing engine to schedule order. These zone-priority scores were then 
used to adjust edge weights in the graph-based routing module, 
ensuring that high-risk areas received prioritized service. Recent 
research on smart cities has accelerated the application of geospatial 
mapping in urban waste systems because it can connect physical 
infrastructure planning and predictive analytics (Singh, 2021). In 
summary, the spatial risk mapping module served as more than just 
visual assistance; it was a fundamental decision-support layer that 
made it possible to implement risk-aware routing, zone-based 
prioritization, and real-time situational awareness-all essential 
components of an urban infrastructure that is in line with Industry 
4.0. In summary, the spatial risk mapping module functioned not only 
as a visualization tool but as a core decision-support layer, enabling 
zone-based prioritization, risk-aware routing, and real-time situational 
awareness-key features of an Industry 4.0-aligned urban infrastructure.

5.4 Graph-theoretic decision optimization

A graph-theoretic optimization framework was developed to 
enhance waste collection efficiency by modeling the urban bin 
network as a directed, weighted graph that prioritizes high-risk bins 
and minimizes resource usage.

The urban waste network was represented by the graph ( )= ,G V E
, where V  is the set of vertices that stand in for smart bins and E  is the 
set of directed edges that provide potential routes for traversing 
between bins. A weight ijw  is assigned to each edge ∈ije E. This weight 
is increased by overflow priority or congestion penalties and 
corresponds to the Euclidean or route-based distance between bins i 
and j . Edges were annotated with distance, static or simulated 
congestion penalties, and optional zone weights, while nodes were 
annotated with degree centrality, historical fill patterns, and overflow 
risk ratings (derived from the XGBoost model). The goal of the 
optimization objective, which was presented as a multi-objective 
shortest path problem, was to minimize the overall distance, minimize 
missed pickups, and maximize bin prioritization based on estimated 
overflow risk. This was formulated as a weighted decision function:

	

( )
( )

( )
,

ij i ij
i j P

f P d r cα β γ
∈

= ⋅ + ⋅ + ⋅∑

where ijc  is the congestion factor for edge ( ), ,i j  ir  is the overflow 
risk score for bin i, and ijd  is the distance between bins i and j . The 
coefficients α, β, and γ were calibrated through iterative tuning based 
on domain knowledge and preliminary simulations to ensure a 
balanced prioritization of distance, overflow risk, and congestion. To 
improve computational scalability and adapt to urban complexity, a 
two-stage optimization strategy was adopted according to geolocation 
and overflow risk to increase scalability and routing efficiency in 
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congested urban layouts. Anchor bins were then identified inside each 
cluster using centrality measures including degree and closeness. This 
method combines real-time predictive bin status with the underlying 
network structure, which enables dynamic, context-aware route 
selection, in contrast to traditional vehicle routing problems (Balaga, 
2020; Cui et al., 2025). This hybrid methodology is well-suited for 
smart city logistics, where scalability, adaptability, and real-time 
responsiveness are critical (Li et al., 2024).

5.5 System architecture and workflow

The proposed system connects real-time sensing, predictive 
analytics, and graph-theoretic decision-making through a modular, 
layered architecture. IoT-enabled smart bins, equipped with LPWAN 
technologies such as NB-IoT and LoRaWAN, continuously transmit 
data on fill levels, timestamps, and geolocation. Although simulated 
data was employed in this study, live data integration is supported by 
the system’s design. After being gathered, bin data is pre-processed 
and normalized before being entered into an overflow risk prediction 
XGBoost model. The prediction output is then used to assign risk 
scores to each bin, which are passed to the graph-based decision layer 
for route optimization. Priority risk zones are simultaneously 
identified throughout the urban landscape using spatial grouping 
logic. The bin network is abstracted as a directed weighted graph by 
the decision layer, with nodes standing in for bins and edges for 
collecting pathways that are weighted by proximity and overflow risk. 
Graph-theoretic methods, such as cluster discovery and centrality 
measures, are used to optimize routing and find important collection 
locations. Making decisions quickly and with few resources is made 
possible by this organized workflow. As seen in Figure  4, the 
architecture serves as a practical tool for intelligent municipal waste 
logistics, supporting interoperability, scalability, and real-world 
deployment readiness. The modular design ensures compatibility with 
existing municipal dashboards, GIS platforms, and cloud-based 
analytics systems.

6 Results

This section presents the results of the proposed AI-IoT-graph-
based smart waste monitoring system, focusing on overflow 

prediction accuracy, spatial risk distribution, graph-theoretic 
clustering, and comparative performance evaluation. The simulated 
data used to represent 100 smart bins spread throughout five city 
zones (A–E) over a week is the source of all results. The rising use of 
AI and IoT in smart waste systems is supported by recent research. 
According to studies, sensors built inside bins may track fill levels in 
real time and transmit data via Internet of Things systems, enabling 
waste collection decision-making that is responsive and predictive. 
Additionally, in line with Industry 4.0 objectives, graph-theoretic 
study of bin networks aids in the strategic construction of optimal 
collection paths.

6.1 Accuracy of AI prediction for bin 
overflow

Using XGBoost classification, the model predicted the likelihood 
of bin overflow based on historical fill level patterns. In Table 5, an 
example of the simulated input data is presented.

The XGBoost classifier showed a high degree of predictive power 
in predicting bin overflow incidents using fill-level data from the past. 
With an overall accuracy of 94.1%, precision of 91.7%, and recall of 
95.8%, as shown in Table 2, the model demonstrated its efficacy in 
reducing false positives and false negatives. It is further confirmed that 
the model is robust in differentiating between bins that overflow and 
those that do not by the strong AUC-ROC score of 0.96. The model’s 
low margin of error, as indicated by its fill-level forecast RMSE of 
6.2%, further qualifies it for real-time deployment in intelligent waste 
systems. These findings support the notion that XGBoost is a 
dependable engine for anticipatory waste monitoring in urban 
settings. These outcomes demonstrate that the AI model can 
accurately forecast bins that are prone to overflow within a 
24-h period.

6.2 Overflow risk mapping by zone

As anticipated, the proportion of high-risk bins (fill level > 90%) 
each zone was determined. Real-time sensor input-based dynamic 
routing techniques are justified by this spatial risk analysis. As seen in 
Figure 5, the heatmap identifies places with a higher risk of overflow, 

IoT Sensing Layer

Smart bins,
LPWAN

(NB-
IoT/LoRaWAN)

Data Preprocessing 
Layer

Data cleaning &
normalization

Prepare inputs for
prediction

AI Prediction Layer

Overflow risk
prediction 
(XGBoost)

Graph-based
route

optimization

Decision Support
Layer

Municipal 
dashboards

GIS systems &
cloud analytics

FIGURE 4

System architecture and workflow illustrating the layered design of the proposed solution.
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supporting the use of dynamic routing techniques in high-density 
regions and confirming the distribution patterns.

Zone-priority scores calculated using the methodology’s formula 
were consistent with the percentages shown in Table 6. Zones A and 
B, for example, had the highest priority rankings due to a higher 
percentage of high-risk bins and higher average overflow probability.

6.3 Graph-theoretic analysis of bin clusters

Inter-bin relationships were analyzed using a graph-based 
methodology. Edges indicate proximity or route dependency, whereas 
each node represents a bin. Metrics of centrality and clustering 
identified areas for strategic intervention.

Due to their high centrality and overflow risk, bins B03, B09, and 
B22 emerged as high-priority nodes, as identified in Table  3, 
underscoring the need for targeted interventions. Localized actions 
are supported by the graph-theoretic paradigm, particularly in densely 
connected, high-risk zones. As illustrated in Figure 6, the smart bin 
network is represented as a graph where nodes indicate bins and edges 
reflect route proximity-thicker edges denoting shorter or more critical 
paths. High-risk bins are visually emphasized through red nodes, 
highlighting structurally important collection points. This 
visualization reinforces the analytic findings and confirms the utility 
of graph-theoretic routing strategies in optimizing waste collection.

These results align with the methodology’s multi-objective 
decision function, where distance ijd , overflow risk ir  as well as 
congestion fines ijc  were considered together during the process of 
setting priorities. Due to their higher overflow probabilities, bins B03, 
B09, and B22 had the highest ranking under the β ir term, and their 
strategic value was further bolstered by their network centrality. This 
shows how structural position and prediction risk are operationally 
translated into practical collection priorities by the weighted function.

6.4 Comparative analysis of smart and 
static monitoring systems

A conventional static scheduling system was used as a benchmark 
for the intelligent AI–IoT paradigm. Table 7 provides a summary of 
the findings.

As illustrated in Figure 7, these performance metrics are derived 
from the simulation results of the proposed model. The results 
highlight the operational and environmental advantages of intelligent 
waste systems, including improved collection efficiency, reduced fuel 
consumption, and enhanced service reliability.

6.5 Statistical validation

Statistical tests were carried out to ensure that the findings were 
reliable. A Wilcoxon signed-rank test comparing overflow incidents 
across static and smart models revealed a significant difference 
( = <15, 0.01W p ), indicating that the observed reductions were not 
caused by random variation. A Chi-square test showed a significant 
correlation ( )χ = <2 27.6, 0.001p  between anticipated and observed 
overflow labels, indicating the AI model’s predictive validity. The 
detailed results of these tests are summarized in Table 8. As shown in 
Figure 8, the predicted overflow closely aligns with observed outcomes 
across the simulation period. Figure 9 depicts the performance of 
overflow classification by comparing the number of bins predicted to 
overflow with actual observations. The model correctly recognizes 
both overflow and non-overflow bins, with small differences between 
predicted and observed numbers. This agreement strengthens the 
validity of threshold-based classification and promotes the use of 
predictive analytics in operational planning.

These statistical validations underscore the proposed framework’s 
dependability and scalability. The following section explores its 
compatibility with Industry 4.0 capabilities, situating the findings 
within the evolving paradigm of digitally enabled urban systems.

7 Industry 4.0 integration for smart 
waste management

Intelligent technologies like IoT, AI, CPS, and real-time analytics 
have transformed traditional urban services with the introduction of 
Industry 4.0. Waste management is a critical pillar of urban 
sustainability and is undergoing a paradigm shift toward data-driven, 
predictive technologies aligned with Industry 4.0 objectives. This 
section describes the ways in which the suggested AI-IoT-based smart 
bin monitoring framework supports smarter, more resilient urban 
settings and is consistent with the fundamental ideas of Industry 4.0.

7.1 Smart bins and cyber-physical systems 
(CPS)

Industry 4.0 relies heavily on CPS, which allow machines to interface 
with digital platforms and with one other. In the proposed framework, 
smart bins function as cyber-physical assets equipped with sensors that 
monitor fill levels, temperature, and overflow risk in real time. This 
IoT-enabled physical layer continuously streams data to a cloud-based 
analytics engine, enabling real-time decision-making. A centralized 
processing unit receives data from each bin, which acts as a node in a 

TABLE 5  Input data samples from smart bin simulations.

Bin ID Zone Day 1 (%) Day 2 
(%)

Day 3 
(%)

Day 4
(%)

Day 5
(%)

Day 6 
(%)

Day 7 
(%)

Overflow (Day 
8)

B01 A 60 72 80 85 91 95 98 Yes

B02 B 40 52 58 63 68 72 76 No

B03 A 65 75 83 87 91 94 96 Yes

B04 C 50 62 68 70 73 76 78 No

B05 B 78 83 88 90 93 96 99 Yes

https://doi.org/10.3389/frsus.2025.1675021
https://www.frontiersin.org/journals/Sustainability
https://www.frontiersin.org


Anitha and Parthiban� 10.3389/frsus.2025.1675021

Frontiers in Sustainability 11 frontiersin.org

decentralized sensor network, using wireless networks (such as LPWAN, 
4G, and 5G). The three main markers of a successful CPS-based smart 
city system-autonomy, transparency, and scalability are improved by this 
framework (Rajput and Singh, 2020). A key component of CPS in 
Industry 4.0 systems, closed-loop feedback control is made possible by 
the interplay of the physical environment (waste accumulation), digital 
infrastructure (data processing and AI algorithms), and human interface 
(municipal operators) (Lee et al., 2015). This continuous feedback loop 
between physical conditions, digital analytics, and human decision-
makers exemplifies the core principles of CPS in Industry 4.0.

7.2 AI-driven intelligence and predictive 
analytics

The development of Industry 4.0 relies heavily on artificial 
intelligence (AI), which gives systems the ability to learn from data, 
forecast results, and suggest the best course of action. Our approach uses 
historical fill level data and supervised machine learning, specifically 
XGBoost classification, to predict bin overflow risk. Proactive scheduling, 
overflow incident reduction, and collection route optimization are made 
possible by this method. A further layer of structural intelligence is 
added by the incorporation of graph theory, which models bin 
interactions and finds priority nodes based on centrality. When these 
two elements are combined, static waste systems become self-learning, 
adaptive infrastructures that change based on usage patterns.

In this system, predictive analytics also makes it easier to:

	•	 Forecasting load by zone.
	•	 Prioritization based on risk.
	•	 High-density bin clustering.
	•	 Rerouting possibilities in real time (future extension).

According to Industry 4.0 paradigms, data-driven automation 
minimizes environmental impact, enhances operational efficiency, 
and reduces manual intervention-reflecting the core promises of AI 

in Industry 4.0: automation, intelligence, and sustainability (Wamba 
et al., 2017).

7.3 Compliance with Industry 4.0 objectives

The four Industry 4.0 design concepts are directly aligned with the 
proposed framework:

	•	 Interconnection: Made possible by wireless data transfer between 
the central AI model and smart bins.

	•	 Information transparency: Guaranteed by stakeholder-accessible 
predictive insights and visual analytics (heatmaps, graphs).

	•	 Technical support: By predicting high-risk bins and suggesting 
intervention zones, AI supports human decision-making.

	•	 Decentralized decisions: Independent bin-level status reporting 
and risk assessment are made possible by the distributed design 
of the system.

Thus, in addition to serving as a monitoring tool, the smart waste 
system facilitates digital transformation, thereby advancing the long-
term objectives of sustainable development, smart governance, and 
the circular economy. This integration exemplifies how Industry 4.0 
can transform public services by embedding intelligence, adaptability, 
and sustainability into core municipal operations (Lasi et al., 2014). 
The key components of Industry 4.0 integration in the proposed smart 
waste management system are summarized in Figure 10.

8 Enhancements to the proposed 
framework

This section presents a suite of enhancements that address 
practical implementation, comparative benchmarking, and policy 
scalability, reinforcing the applicability and transformative potential 
of the proposed AI-IoT-enabled waste management system. Digital 
solutions must not only function effectively in simulations but also 
provide quantifiable socio-economic advantages, outperform current 
systems, and comply with public infrastructure policies as urban 
centers transition to Industry 4.0 and Smart City paradigms.

8.1 Cost–benefit evaluation of AI-IoT 
integration

The observable financial and operational advantages of intelligent 
systems are among the strongest justifications for their adoption. To 
do this, we compared our AI-enabled system with traditional static 

FIGURE 5

Overflow risk intensity across zones A–E. Darker shades indicate higher concentrations of high-risk bins.

TABLE 6  Zone-wise distribution of high-risk bins (overflow risk > 90%).

Zone Total bins High-risk 
bins

% at risk

A 25 9 36.0%

B 20 6 30.0%

C 20 2 10.0%

D 15 1 6.7%

E 20 0 0.0%
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waste collecting methods using a simulation-based cost–benefit 
analysis. Fuel usage, labor hours, fines for overflow, and missing 
pickups are examples of key performance indicators. Table 9 provides 
specifics on the expected yearly savings obtained by switching from a 
static scheduling system to the suggested smart monitoring framework.

The results show that smart solutions significantly cut down on 
operational waste and inefficiency. Fuel consumption fell by more 
than 15% annually, which resulted in lower greenhouse gas emissions 
and financial savings. The 41.7% reduction in labor hours supports the 
case for operational streamlining, and the significant 60% decrease in 
overflow penalties indicates better service delivery and regulatory 
compliance. These findings align with prior research highlighting the 
environmental and economic benefits of adopting smart waste 
technologies (Batty et al., 2012).

8.2 Comparative review of existing 
methods

To put our approach’s uniqueness into perspective, we conducted 
a comparative analysis of current smart waste research methodologies. 
This makes it easier to compare our model to earlier attempts and 
highlights the degree of integration and optimization expertise of our 
contribution. The strategies presented in Table 10 show a distinct 
move toward real-time optimization and predictive analytics in smart 
waste systems as compared to previous approaches.

Recent studies have demonstrated the expanding use of smart 
technologies in waste management, particularly in areas such as 
AI-driven prediction, IoT-enabled monitoring, and optimization 
algorithms (Fang et al., 2023). However, many of these approaches rely 
on static optimization techniques or limited data streams. In contrast, 
the proposed framework in this study integrates AI-based overflow 
prediction (XGBoost), graph-theoretic routing, and priority-based 
flow optimization using simulated smart bin data. This combination 
offers a more comprehensive and scalable solution aligned with 
Industry 4.0 principles by enabling both predictive accuracy and 
structural decision-making.

8.3 Recommendations for policy 
integration

The widespread implementation of smart waste frameworks in 
urban environments requires strong institutional and governance 

FIGURE 6

Graph visualization of smart bin network. Edge thickness denotes route weight, whereas node color intensity indicates overflow risk.

TABLE 7  Performance comparison: static vs. smart monitoring systems.

Metric Static 
system

Smart 
system

Improvement

Overflow 

Events 

(weekly)

18 9 −50.0%

Missed Pickups 11 3 −72.7%

Avg. Bin Fill at 

Collection (%)

62 84 +35.5%

Fuel Usage (L/

week)

110 93 −15.5%

Performance gain is represented by negative figures, which indicate reductions.
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FIGURE 7

Comparative performance metrics between AI-IoT-based smart waste system and traditional static scheduling.

TABLE 8  Statistical test results for model validation.

Test Comparison Statistic p-value Interpretation

Wilcoxon signed-rank test Overflow events: static vs. smart 

model
= 15W < 0.01 Significant reduction in overflow 

events.

Chi-square test Predicted vs. observed overflow 

outcomes.
χ =2 27.6 < 0.001 Strong association; high predictive 

validity.

FIGURE 8

Daily comparison of observed and expected overflow incidents throughout a 7-day simulation period.
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frameworks to facilitate technological innovation. The following are 
our multi-level policy recommendations:

	•	 The installation of smart bins with overflow sensors ought to 
be required by municipalities in densely populated urban areas.

	•	 Real-time dashboards that are open to the public can speed up 
reaction times, promote citizen participation, and 
increase transparency.

	•	 Waste contractors should be incentivized through tax credits or 
performance-based bonuses to adopt AI-driven routing systems.

These policy recommendations support the digital 
transformation of waste management in alignment with smart city 
goals. By fostering public–private collaboration and institutional 
accountability, they ensure that technological innovation 
translates into sustainable urban outcomes. Collectively, these 
enhancements demonstrate that the suggested framework is more 
than just a theoretical idea; rather, it is a scalable, policy-ready 
solution that uses graph-theoretic intelligence, real-time 
monitoring, and predictive analytics to speed up the digital 
transformation of urban waste systems.

FIGURE 9

A comparison of observed and expected overflow outcomes across all bins.

FIGURE 10

Industry 4.0 integration for smart waste management.
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9 Discussion

9.1 Effectiveness of the proposed 
framework

The proposed AI-IoT-graph framework demonstrates significant 
performance improvements over conventional static scheduling systems, 
confirming its suitability for next-generation urban waste management. 
With an accuracy of 94.1% and a recall of 95.8%, the machine learning 
model (XGBoost) demonstrated a high level of predictive performance, 
indicating its ability to accurately identify bin overflow problems. 
Pre-emptive collection planning and resource allocation depend on these 
prognostic insights. Persistent high-risk clusters were identified by the 
heatmap-based spatial analysis, especially in Zones A and B, where 
overflow events were more common. With the use of this geographic data, 
municipalities can substitute responsive methods that are in line with 
actual waste creation patterns for strict, time-based collection plans by 
enabling dynamic routing based on real-time risk levels. Graph-theoretic 
analysis identified critical nodes such as bins B03 and B22, which 
exhibited high centrality and frequent overflow risk. Because of their high 
degree of centrality and frequent overflow risk, these bins serve as 
structural bottlenecks in the network of collections. To reduce cascading 
inefficiencies throughout the system, their prioritization is crucial. 
Operationally, the intelligent system beat the static model in every major 

metric: overflow events were cut in half, missed pickups decreased by 
72.7%, and bin fill-level at pickup increased from 62 to 84%. In addition 
to lowering environmental risks, these efficiency improvements maximize 
logistical resources including labor deployment and fuel use. Crucially, 
the report emphasizes how this framework is strategically aligned with 
Industry 4.0 principles. The three main tenets of smart infrastructure-
automation, decentralization, and system-wide intelligence are embodied 
in the convergence of graph-theoretic optimization, IoT-enabled sensing, 
and AI-driven forecasts. The system’s modular design enables expansion 
beyond waste management into other urban domains such as water 
resource management, energy distribution, and traffic optimization. As 
such, the proposed framework serves not only as a technological 
innovation but also as a systemic enabler of data-driven urban governance. 
By bridging the gap between fragmented waste operations and integrated 
smart city systems, it contributes meaningfully to both digital 
transformation and environmental sustainability. These results affirm the 
framework’s theoretical robustness and practical viability for real-world 
urban infrastructure deployment.

9.2 Comparative discussion

In smart waste monitoring tasks, deep learning models such as 
LSTM networks offer appealing advantages, even if XGBoost 
showed remarkable performance in terms of recall, precision, and 
general resilience. For fill-level progression modeling over long 
periods of time, LSTM models are perfect because they are 
especially good at capturing temporal dynamics and long-range 
dependencies in time-series data. However, they are computationally 
intensive, often require larger training datasets, and lack the 
interpretability of tree-based models like XGBoost. On the other 
hand, XGBoost offers transparent feature importance rankings, 
efficient gradient-boosting, and the capacity to manage sparse input 
and nonlinear interactions. This makes it an invaluable tool for 

TABLE 10  Smart waste optimization methods (2022–2025).

Author(s) & year Technique used Data type Smart integration Optimization method

Chakraborty (2022) IoT + machine learning (e.g., 

SVM)

Sensor data (bin fill levels) Partial Data-driven route optimization

Andeobu et al. (2022) AI application methods (SVM, 

ANN, etc.)

Literature-based (various 

sources)

N/A (review) Various review methods, no live 

integration

Lakhouit et al. (2023) Machine learning (regression, 

RF, etc.)

Geo-environmental, fill-level 

data

Partial Predictive fill modeling

Ferrão et al. (2024) Optimization algorithm (e.g., 

VRP-based)

Municipal route and bin 

collection logs

Partial Algorithmic route optimization

Alsabt et al. (2024) AI & machine learning (ML 

ensembles)

Mixed waste management 

operational data

Partial Strategic resource optimization

Ogbolumani and Adekoya 

(2025)

IoT + machine learning (SVM, 

ANN)

Real-time fill + environment 

sensors

Yes Predictive + real-time route 

optimization

Rautela et al. (2025) AI & ML (clustering + 

regression)

Comprehensive bin, route, 

collection data

Full Predicting waste generation, 

optimizing collection routes, 

enhancing sorting

Proposed (This Study) XGBoost + graph-theoretic 

optimization

Simulated smart bin overflow 

data

Full (conceptual) AI + graph routing + priority flow 

optimization

TABLE 9  Estimated annual savings: static system vs. smart monitoring.

Parameter Static 
model

Smart 
model

Annual 
saving (%)

Fuel consumption (L) 5,200 4,380 15.8%

Man-hours (hrs) 7,200 4,200 41.7%

Overflow penalties ($) 3,000 1,200 60.0%

Missed pickups (count) 230 90 60.9%
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smart city stakeholders who want automated judgments to 
be understandable. According to earlier research, LSTM models 
may marginally outperform tree-based models in RMSE under 
optimal data settings, but this advantage frequently comes at the 
expense of interpretability and training complexity (Ahmed S. et al., 
2022). Because our dataset was structured and had a moderate 
temporal scale, XGBoost was able to achieve a realistic balance 
between scalability, accuracy, and practicality. Table 11 provides a 
summary of the main distinctions between XGBoost and LSTM for 
overflow prediction.

While LSTM and other deep learning models provide better 
temporal modeling, they are less appropriate for real-time, resource-
constrained municipal deployments due to their high computing 
requirements and low interpretability. On the other hand, XGBoost is 
an appealing option for AI-driven urban waste monitoring since it 
achieves a realistic balance between accuracy, transparency, and 
deployment efficiency. This comparative evaluation underscores the 
importance of aligning algorithm selection with operational feasibility, 
stakeholder trust, and predictive performance in critical 
infrastructure applications.

9.3 Impact assessment

The improvements demonstrated by the proposed system yield 
tangible socio-environmental benefits. A 50% reduction in weekly 
overflow events mitigates public health risks such as vector-borne 
infections and unpleasant odors, while also curbing greenhouse gas 
emissions from decomposing waste. Likewise, the 35.5% increase in 
bin utilization ensures optimal resource deployment, reducing 
unnecessary collection trips, and associated fuel consumption. Based 
on standard municipal fleet conversion factors, the observed 15.5% 
decrease in fuel usage corresponds to an estimated annual reduction 
of approximately 2.3 tonnes of 2CO  emissions. These operational gains 
underscore that the framework is not merely a technological 
enhancement but a strategic enabler of sustainable urban waste 
services, directly supporting SDG 11 and SDG 12. The integration of 
predictive analytics with operational efficiency reinforces its potential 
for real-world deployment and policy alignment.

10 Limitations

Notwithstanding the encouraging results, this study has several 
limitations that present opportunities for future enhancement:

	•	 Simulated data assumptions: The analysis was based on simulated 
smart bin data. While the simulation was carefully designed to 
reflect realistic urban waste dynamics, it may not fully capture the 
complexity and variability of real-world waste generation behaviors.

	•	 Static zone configurations: The city was divided into predefined 
zones (A–E) without accounting for dynamic urban factors such as 
mixed land use, population mobility, or socioeconomic diversity-all 
of which can significantly influence waste generation patterns.

	•	 Limited predictive features: The overflow prediction model relied 
solely on historical fill levels. The exclusion of contextual variables 
such as holidays, public events, and seasonal fluctuations may 
have constrained the model’s predictive robustness.

	•	 Simplified graph structure: The graph-theoretic model generated 
edges primarily based on spatial proximity. However, real-world 
urban routing involves additional constraints such as one-way 
streets, traffic congestion, and accessibility barriers, which were 
not incorporated into the current model.

	•	 Lack of real-time IoT integration: Although the framework was 
designed with IoT compatibility, it does not yet incorporate live 
sensor data from deployed bins. Real-time data integration is 
essential for enabling responsive decision-making in 
operational environments.

Addressing these limitations in future work will enhance the 
framework’s realism, scalability, and readiness for deployment in 
complex urban settings.

11 Future work

Future research can address the current limitations and further 
enhance the proposed framework through the following directions:

	•	 Real-world deployment: Implement the system in a pilot smart 
city project to validate prediction accuracy, monitor real-time 

TABLE 11  Comparative analysis of XGBoost and LSTM for overflow prediction in smart waste systems.

Aspect XGBoost LSTM

Type of model Tree-based ensemble learning Recurrent Neural Network (RNN)

Data compatibility Sparse features in tabular, structured data Data from time series with sequential dependencies

Prediction accuracy High; particularly effective at problems involving tabular classification RMSE for long-range sequence projections is marginally improved.

Computational cost Lightweight, quick inference and training More resources are needed, and training on big datasets takes longer.

Interpretability High offers feature importance ratings Low-the “black box” model composition

Scalability Outstanding fit for real-time applications and big datasets GPU acceleration makes it scalable, but careful calibration is needed.

Temporal modeling Modeled indirectly with lagged features Depicts temporal connections between sequences directly.

Ease of integration Easy to set up, compatible with urban IoT frameworks and embedded 

systems

Strong deployment infrastructure and sequence preparation are 

necessary.

Best use cases When speed, structured inputs, and interpretability are essential When the prediction signal is dominated by long-term temporal 

patterns
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data streams, and evaluate performance under dynamic 
urban conditions.

	•	 Expanded predictive inputs: Incorporate additional contextual 
variables-such as traffic patterns, weather forecasts, public events, 
and demographic data-to improve model accuracy 
and adaptability.

	•	 Adaptive zoning mechanisms: Develop dynamic zoning strategies 
using clustering algorithms or geospatial analytics to redefine 
service zones based on real-time fill trends and urban 
mobility patterns.

	•	 Advanced graph-based optimization: Extend the graph-theoretic 
model to include multi-layered constraints such as depot 
locations, time windows, vehicle capacities, and road hierarchies 
for more realistic route planning.

	•	 Integration with urban management platforms: Connect the 
framework with broader smart city ecosystems to enable cross-
domain insights across sectors like energy, transportation, and 
water management.

	•	 Scalability and economic feasibility: Conduct a comprehensive 
analysis of the system’s scalability, operational costs, and 
maintenance requirements across cities with varying 
resource capacities.

By addressing these areas, the proposed AI-IoT-graph framework 
can evolve into a robust, scalable decision-support system for resilient, 
data-driven, and circular waste management in smart 
urban environments.

12 Conclusion

This study presents a novel decision-intelligent framework that 
integrates machine learning, IoT simulations, and graph-theoretic 
modeling to optimize municipal solid waste management. By 
leveraging AI (XGBoost) for accurate bin overflow prediction, spatial 
heatmap analytics for risk zone identification, and graph-based 
clustering and centrality for dynamic routing, the framework 
introduces a transformative approach to waste logistics. Unlike 
traditional systems that rely on fixed schedules or limited heuristics, the 
proposed model enables adaptive, data-driven decision-making aligned 
with Industry 4.0 principles-namely automation, real-time analytics, 
and cyber-physical integration. The observed improvements in service 
reliability, resource utilization, and operational cost underscore the 
viability of intelligent waste management as a foundational element of 
smart city infrastructure. Beyond its technical contributions, the 
framework also offers a policy-relevant architecture with clear pathways 
for integration into municipal systems. Its modular and scalable design 
opens promising avenues for future research, including uncertainty-
aware scheduling, real-time IoT deployment, and multi-layer analytics 
that incorporate behavioral, environmental, and traffic data. Ultimately, 

this study lays a robust foundation for transitioning from reactive waste 
management to intelligent, proactive systems that advance the goals of 
the circular economy and sustainable urban living.
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Glossary

AI - Artificial Intelligence

IoT - Internet of Things

MSW - Municipal Solid Waste

SWMS - Smart Waste Management Systems

XGBoost - Extreme Gradient Boosting

LSTM - Long Short-Term Memory

SDG 11 - Sustainable Cities and Communities

SDGs - Sustainable Development Goals

CSCAF - Climate Smart Cities Assessment Framework

ANP - Analytic Network Process

DL - Deep Learning

RMSE - Root Mean Square Error

AUC-ROC - Area Under the Receiver Operating Characteristic Curve

NB-IoT - Narrowband Internet of Things

CPS - Cyber-Physical Systems

RNN - Recurrent Neural Network

RF - Random Forest

GIS - Geographic Information Systems

EU - European Union

SVMs - Support Vector Machines

CNNs - Convolutional Neural Networks

ANNs - Artificial Neural Networks

MLR - Multiple Linear Regression

YOLO - You Only Look Once

MAPE - Mean Absolute Percentage Error

AHP - Analytic Hierarchy Process

GRU - Gated Recurrent Unit

ML - Machine Learning

GPS - Global Positioning System

LPWAN - Low-Power Wide-Area Network

LoRaWAN - Long Range Wide Area Network

VRP - Vehicle Routing Problem

GPU - Graphics Processing Unit

SDG 12 - Responsible Consumption and Production
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