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Al-loT-graph synergy for smart
waste management: a scalable
framework for predictive,
resilient, and sustainable urban
systems

R. Anitha and A. Parthiban*

Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore,
India

Effective waste management is essential for smart cities, but fixed collection
schedules frequently result in missed pickups, overflow events, and inefficient
fuel consumption. This study introduces a framework that integrates Artificial
Intelligence (Al), Internet of Things (loT) sensors, and graph-theoretic optimization.
A simulated dataset of 500 bins across five zones was used to train an XGBoost
classifier for overflow prediction, combined with spatial risk mapping and routing
optimization on a weighted bin network. The Al model achieved high predictive
accuracy (94.1%) and recall (95.8%), ensuring reliable identification of overflow-
prone bins. Compared to a static collection model, the smart system reduced
overflow events by 50%, missed pickups by 72.7%, and fuel usage by 15.5%,
while improving bin utilization efficiency by 35.5%. These findings demonstrate
that integrating Al, loT, and graph-theoretic methods can significantly enhance
operational efficiency and environmental sustainability in urban waste logistics.
The framework provides a scalable solution that adheres to Industry 4.0 principles
and serves as a foundation for future smart city infrastructures. The system’s
modular architecture allows seamless integration with existing municipal platforms,
enabling in real-time responsiveness and adaptive service delivery. By bridging
operational decision-making with simulation-driven insights, the framework sets
a precedent for data-driven governance in urban infrastructure.

KEYWORDS

smart waste management, artificial intelligence, Internet of Things, overflow
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1 Introduction

One of the 21st century’s most urgent problems is the exponential increase in urban waste
output. According to the World Bank, the amount of MSW generated worldwide is predicted
to reach 3.4 billion tonnes per year by 2050, a 70% increase from 2016 levels (World Banlk,
2018). As a result, cities are facing increasing challenges related to public health, infrastructural
strain, and environmental degradation. In India, almost 32% of the more than 160,000 tonnes
of waste produced daily in cities goes unaccounted for, due to deficiencies in collection,
treatment, and monitoring (Central Pollution Control Board, 2021). Outdated waste logistics
strategies, jurisdictional differences, and rapid urbanization all contribute to these inefficiencies
(Joshi and Ahmed, 2016).

Traditional waste management systems-characterized by static routing, manual bin
monitoring, and centralized dispatching-are increasingly ineffective in dynamic urban
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environments. These systems lead to wasteful fuel consumption,
missed pickups, and overflowing bins, which not only compromise
service reliability but also exacerbate greenhouse gas emissions,
vector-borne illnesses, and public dissatisfaction (UN-Habitat, 2024;
Gupta et al, 2022). There has never been a greater demand for
decentralized, data-driven, and adaptive waste infrastructure. Urban
waste systems are undergoing a transformation through Industry 4.0
technologies, which enable cities to shift from reactive to predictive,
intelligent, and sustainable operations. By integrating Al, IoT, graph-
theoretic modeling, and spatial analytics, cities can implement
SWMS that support geographic prioritization, overflow forecasting,
route optimization, and real-time bin telemetry (Mudannayake
etal., 2022).

Recent studies have shown that machine learning algorithms
like XGBoost, LSTM, and Random Forest are effective in forecasting
bin overflow and waste generation patterns (Kodihal and Akhtar,
2024; 2025).
techniques have been used to model bin networks as weighted

Spiridonova, Simultaneously, graph-theoretic
graphs, enabling multi-objective routing based on bin priority,
congestion, and distance (Mondal et al., 2024). Spatial intelligence
tools-such as risk scoring, zone grouping, and heatmaps-translate
predictive outputs into actionable geographic insights, enhancing
decision-making (Cui et al., 2025; Agrawal et al., 2025). Despite
these advances, current smart waste models often operate in silos,
focusing on either spatial risk mapping, routing optimization, or
overflow prediction, without offering a unified architecture. To
bridge this gap, the present study proposes a hybrid architecture that
integrates Al IoT, and graph theory into a cohesive decision-support
system. The framework employs XGBoost-based overflow prediction
trained on simulated smart bin data to estimate bin fill levels.
Concurrently, geospatial risk mapping identifies temporal
accumulation trends and high-risk zones, enabling proactive
intervention. Finally, graph-theoretic decision optimization guides
dynamic routing based on geographic distance, congestion, and
bin priority.

This integrated system uses multi-objective cost functions, zone-
specific simulation, and clustering algorithms to ensure operational
feasibility in real-world urban settings. The framework aligns with
circular economy principles, supports resource recovery, and
contributes to SDG 11: Sustainable Cities and Communities.
Moreover, it advances the Waste 4.0 paradigm, which emphasizes the
convergence of robotics, AI, and geospatial intelligence for
infrastructure resilience and emissions reduction (GI7 India, 2023;
Zhang et al., 2023). This work lays the foundation for future research
in multi-stream waste optimization, real-time dispatching, and
citizen-centric service design, by embedding predictive analytics into
graph-based routing and spatial prioritization. The proposed
framework is validated through simulation using synthetic smart bin
data and zone-specific routing scenarios to demonstrate its operational
feasibility in urban contexts.

In the subsequent subsections, important aspects that influence
the development of intelligent waste systems are examined to place the
suggested framework within larger urban, technological, and policy
contexts. Global waste issues, social and behavioral factors, governance
structures, technical preparedness, and the demands of the circular
economy are a few of these. When taken as a whole, they highlight
how urgent and pertinent integrated, AI-powered waste management
solutions are.
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1.1 The global waste epidemic and urban
intricacy

The waste epidemic is now a global problem rather than just
a problem in underdeveloped countries. Smart waste solutions
have been used by cities such as Singapore, New York, and
Amsterdam to address inefficient routing, unlawful dumping, and
overflow; nevertheless, many metropolitan centers still face
challenges related to pricing and scalability. Diverse waste streams,
varying generation rates, and jurisdictional overlaps contribute to
the complexity of urban waste systems, making centralized
planning challenging in the absence of real-time intelligence. An
unsustainable rate of urban waste output is creating serious
logistical, financial, and environmental problems. Rapidly
urbanizing regions in Asia and Africa are projected to experience
the steepest increases in waste generation, placing disproportionate
pressure on cities with limited infrastructure and fragmented
governance (Zhang et al., 2024). Large cities like Delhi, Tokyo, and
New York are already feeling the strain of overloaded landfills,
ineffective waste collection systems, and disjointed jurisdictional
regulations. Some EU member states continue to dispose of more
than 60% of household waste in landfills, indicating the need for
more environmentally friendly waste management practices
(European Environment Agency, 2024b). Many cities throughout
the world have responded by developing novel approaches to deal
with this issue. By 2050, Amsterdam wants to achieve the lofty aim
of becoming a zero-waste city. Japan enforces strict waste
categorization laws, with some municipalities managing over 45
distinct waste categories to improve recycling and material
recovery (Ministry of the Environment, 2023). Barcelona has also
adopted IoT sensor technologies to optimize bin collection and
reduce fuel consumption by 20%. These illustrations demonstrate
the pressing need for integrated, intelligent, and scalable waste
management systems that can keep up with the expanding needs
of metropolitan areas.

1.2 The social and behavioral aspects

Smart waste management is not solely a technological
challenge-it is deeply influenced by human behavior. Studies
consistently show that recycling practices, community participation,
and digital engagement significantly affect the performance and
sustainability of waste systems. For instance, the implementation of
door-to-door recycling programs in Italy, supported by tax
incentives, led to a 35% increase in public involvement,
demonstrating the effectiveness of financial incentives in promoting
behavioral change (Gilli et al., 2018). In Greece, the Bitter Orange
Project used mobile applications and reward-based mechanisms to
encourage organic waste collection and foster environmental
responsibility. Similarly, a study in Slovenia found that installing
smart bins with emotional feedback screens improved waste sorting
behavior by 22%, highlighting the positive impact of interactive
technologies on daily routines (Guna et al., 2022). These examples
illustrate that integrating behavioral analytics and citizen
engagement strategies is essential for achieving long-term impact
in intelligent waste systems.
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1.3 Significance of policy and governance

Waste infrastructure is being matched by governments around the
world with SDG targets, zero-waste roadmaps, and climate action
plans. In India, decentralized waste management and digital
transformation are key components of the National Action Plan for
Climate Change and the Swachh Bharat Mission (Urban). The
proposed AI-IoT-graph framework facilitates data-driven decision-
making, emissions reduction, and equitable service delivery, directly
supporting these sustainability objectives. Globally, efficient waste
management is becoming increasingly acknowledged as a
governmental priority and an environmental requirement. National
and international sustainability goals are closely aligned with the
suggested AI-IoT-graph framework. Over 7,800 projects in India have
been mapped to 51 SDG targets by the Smart Cities Mission, while
waste reduction and circularity are highlighted by the CSCAF
(Ministry of Housing and Urban Affairs, 2023; Ministry of Housing
and Urban Affairs and National Institute of Urban Affairs, 2022).
Cities around the world are being pushed toward more intelligent
waste systems by the EU Waste Framework Directive, which requires
the separate collection of textiles and organics by 2025 (Furopean
Environment Agency, 2024a). SDGs 11 (Sustainable Cities) and 12
(Responsible Consumption) are advanced by the suggested
framework, which makes predictive, zone-aware, and resource-
efficient waste logistics possible. However, the success of such
frameworks depends on municipal capacity, inter-agency
digital
infrastructure. Technological preparedness helps realize this goal.

coordination, and the availability of interoperable
Over 18,000 IoT sensors have been installed in cities like Barcelona,
which has saved €555,000 a year in waste management; Amsterdam’s
Al-powered smart grid has also decreased energy use by 15%
(Madakam and Ramachandran, 2015; Angry Nerds, 2024). Pilot
programs for smart bins have decreased fuel use by 30% and public
complaints by 60% in India (Agrawal et al., 2025). The modular design
of the suggested system makes it simple to integrate with GIS platforms
and municipal dashboards, increasing the likelihood that it will
be adopted in practice. Despite being historically disregarded, textile
waste is becoming a significant urban stream, particularly in areas like
Tamil Nadu where volume, potential for reuse, and socioeconomic
consequences all come together. The suggested AI-IoT-graph
frameworK’s modular design enables zone-specific diversion and
resource recovery techniques by adapting it beyond general MSW to
specialized categories like organics and textiles. Circular economy
principles are promoted via anticipatory waste management, which
goes beyond logistics. With the use of precise overflow forecasts,
organic waste may be promptly diverted to compost and hotspots for
textile waste can be identified for upcycling and reuse. Such models
have been shown to divert thousands of tonnes of waste while creating
jobs in Tamil Nadu (Hérri and Levinen, 2024; GIZ India, 2023). In
this way, the suggested paradigm helps cities transition from linear
disposal models to sustainable, circular urban systems.

1.4 Technological development and
integration capabilities

Cloud-based analytics, edge computing, and the maturity of IoT
sensors have made smart waste systems more practical than ever.
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Current platforms provide features like predicting maintenance needs,
adjusting routes on the fly, and monitoring containers, which have
shown in tests to cut emissions by up to 60% and lower operational
costs by 40% (Idoko et al., 2024). Despite these advancements,
challenges such as legacy system compatibility, data standardization,
and cybersecurity must be addressed to ensure seamless integration.
Al and IoT technologies have advanced past the experimental stage
and are now prepared for deployment, with shown advantages in
urban settings. Barcelona’s Sentilo platform, for example, incorporates
more than 18,000 IoT sensors, which lowers waste collection expenses
by €555,000 annually (Angry Nerds, 2024). To illustrate the observable
benefits of intelligent infrastructure, Amsterdam’s Al-enabled smart
grids have reduced energy consumption by 15%. According to
preliminary research, installing smart bin networks in India can save
fuel use by 30% and citizen complaints by 60%. To improve its
practicality and scalability for real-world application, the proposed
AI-IoT waste management system’s modular architecture enables
seamless interaction with current GIS, urban innovation labs, and
municipal dashboards. The modular architecture of the proposed
AI-IoT waste management system enables seamless integration with
existing GIS, urban innovation labs, and municipal dashboards,
enhancing its practicality and scalability for real-world application.

1.5 Circular economy and resource
recovery

Al-enabled smart waste systems facilitate resource recovery by
enabling real-time diversion of organics, recyclables, and residuals to
appropriate treatment streams. Al-enabled smart waste systems
facilitate resource recovery by enabling real-time diversion of organics,
recyclables, and residuals to appropriate treatment streams. Cities can
reduce their reliance on landfills by rerouting organics to composting,
recyclables to sorting centers, and residuals to energy conversion by
mapping waste hotspots and forecasting overflow (Soni et al., 2025).
In addition to being a tool for bettering waste collection, overflow
prediction is an essential component of resource recovery and circular
economy strategies. Methane emissions from landfills can be greatly
decreased by towns utilizing predictive mapping to redirect organic
waste to composting facilities. Finding hotspots for textile waste can
also help direct upcycling and reuse projects, especially in low-income
areas where they benefit the environment and society. To divert more
than 20,000 tonnes of waste yearly and create almost 400,000 person-
days of work, for instance, inclusive textile waste models are being
implemented in Tamil Nadu (GIZ India, 2023). Technologies such as
RFID tagging and blockchain-based traceability can further enhance
material tracking and accountability across the waste value chain. To
assist urban systems in moving from linear disposal models toward
circular resource loops that put sustainability and local economic
development first, the suggested AI-IoT-graph framework facilitates
these waste-to-value transformations.

1.6 Related works

The capabilities of smart waste systems have been greatly
enhanced by the integration of AI and IoT technology, making
automated decision-making, real-time monitoring, and predictive
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analytics possible. According to recent research, dynamic routing
algorithms in conjunction with IoT-enabled smart bins can optimize
bin placement in urban settings, decrease overflow events, and
increase collection efficiency (Alaoui et al., 2025). Deep learning
models such as CNNs and YOLO have been applied for real-time
waste classification, improving sorting accuracy and reducing manual
labor (Gaikwad et al, 2025). By reducing needless travel and
emissions, these solutions not only increase operational efficiency but
also support environmental sustainability.

Forecasting waste generation and assisting with long-term
planning have both been successfully accomplished using machine
learning models. In predicting residential and non-residential
waste patterns, a recent study showed that ANNs performed better
than SVMs and MLR, with R? (coeflicient of determination) values
as high as 99.9% (Billal and Kumar, 2025). Reduced travel
distances and increased service dependability have been achieved
by integrating waste volume forecast into route planning using
graph-theoretic models to optimize waste sorting and
transportation networks (Cui et al., 2025). Adoption of Industry
4.0 technologies-including Al, IoT, and predictive analytics-has
been shown to enhance waste efficiency in supply chains, aligning
smart waste systems with broader sustainability goals such as SDG

11 and Net Zero targets (Gaur et al., 2025). The primary themes in

TABLE 1 Summary of literature review on smart waste management.

Author(s) and Methods

year

10.3389/frsus.2025.1675021

the literature are listed in Table 1| below, which synthesizes
important contributions from various fields. However, many of
these models operate in isolation-focusing on either prediction,
routing, or spatial mapping-without offering a unified
operational framework.

The studies included in Table 1 were chosen based on two main
criteria: (i) methodological relevance, which included AI models for
prediction, IoT-enabled sensing, graph-theoretic routing, and
GIS-based spatial mapping; and (ii) representativeness, which
highlighted recent and influential contributions from 2018 to 2025
that collectively illustrate the evolution of smart waste research. These
studies were selected because they exhibit either unique techniques or
common constraints (e.g., focussing solely on prediction, routing, or
spatial mapping), highlighting the necessity for an integrated AI-IoT-
graph framework.

This corpus of work demonstrates the growing convergence of Al,
IoT, spatial intelligence, and graph theory in advancing intelligent
waste systems. However, most existing approaches remain fragmented
focusing narrowly on routing, spatial mapping, or prediction in
isolation. Few studies provide a comprehensive operational framework
that combines these dimensions into a coherent decision-support
system. To address this gap, the present study develops an AI-IoT-

graph framework that blends overflow prediction, spatial risk

Key contributions

Ardiansyah and

Maryono (2018)

Spatial statistics and GIS for waste mapping

Mapped the patterns of solid waste generation in Indonesian cities, assisting in the formulation

of spatially informed policies.

Mora Murillo et al.

(2021)

Graph theory + Traveling Salesman Problem +

Dynamic Programming

Reduced the route distance by 66.6% and proved that graph-based routing is effective in actual

urban environments.

Ahmed S. et al. (2022)

Deep learning models (1D CNN, LSTM, GRU,
Bi-LSTM) for bin fill prediction

The best accuracy (MAPE = 1.855%) was attained by LSTM, proving the usefulness of time-

series models for overflow prediction.

Sinthiya et al. (2022)

Systematic Literature Review (SLR) of 40 AI-

based smart waste studies

Highlighted the absence of integrated frameworks that combine prediction, routing, and
geographical mapping; identified the most common AI models (ANN, Fuzzy Logic, Expert
Systems).

Mudannayake et al.

(2022)

ML/DL models for multi-step forecasting of
MSW generation

In waste logistics, LSTM and GRU models performed better than conventional techniques and

aided in long-term planning.

Fang et al. (2023)

Comprehensive review of Al applications in

smart city waste systems

Highlighted the difficulties in integrating Al and its applications in waste classification, route

optimization, and citizen involvement.

Vilchez-Torres et al.

(2023)

Chinese Postman Problem + Binary Integer

Programming

Non-Eulerian waste routes were optimized, and in Peruvian municipalities, the average route

length was lowered by 66.6%.

Vikram and Bhardwaj

(2023)

GIS and IoT-based spatial analysis of urban

waste zones

Enabled infrastructure gap analysis and hotspot detection; facilitated service delivery and fair

bin placement.

Reddy and Asadi

(2024)

GIS-based site selection using geospatial and

environmental criteria

Using proximity, slope, and land use analysis, the landfill was successfully positioned,

supporting sustainable planning.

Dawar et al. (2025)

Hybrid ML models (Random Forest, XGBoost,
LSTM) for classification

Hybrid approaches prioritized ensemble learning for waste forecasting while increasing

prediction accuracy and decreasing overfitting.

Fatorachian and

Pawar (2025)

Qualitative study using interviews and NVivo

analysis; focus on Industry 4.0 in cold chains

Emphasized real-time monitoring and digital integration for sustainability; demonstrated how

Al IoT, and predictive analytics cut waste and pollution.

Kuhaneswaran et al.

GIS + AI + Multi-Criteria Decision Analysis

Analysis of 48 research revealed that hybrid GIS-AI models enhance risk mapping, landfill

(2025) (AHP, Fuzzy, ANP) siting, and spatial prioritization.
Belhiah and El Aboudi | ToT-based mesh sensor network for smart bins Decreased overflow events and increased collection effectiveness; brought attention to issues
(2025) with sensor calibration and network dependability
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mapping, and graph-theoretic optimization into a scalable architecture
for sustainable urban waste logistics.

2 Problem statement

Traditional MSW collection practices-characterized by static
schedules and reactive maintenance-often lead to missed pickups, bin
overflow, excessive fuel consumption, and increased labor costs. These
inefficiencies are particularly pronounced in rapidly urbanizing areas,
where waste generation patterns vary significantly by zone, time, and
consumption behavior. Despite technological advancements, most
urban waste systems lack integration with real-time data sources such
as smart bins and do not possess predictive intelligence. Additionally,
current models frequently overlook the complex spatial relationships
between collection points, resulting in suboptimal routing and delayed
responses. There is a pressing need for an intelligent, adaptive, and
graph-aware framework that can anticipate overflow risks and
optimize waste collection in a scalable and sustainable manner.
Figure 1 illustrates the rationale for this study, highlighting existing
inefficiencies, the proposed AI-IoT-graph-theoretic approach, and its
anticipated operational and environmental benefits within the
Industry 4.0 paradigm. Addressing these challenges is essential for
building resilient, data-driven waste systems aligned with smart city
and sustainability goals.

3 Research significance

This study presents a novel AI-IoT-Graph-Theoretic framework
aimed at transforming traditional waste collection systems into
responsive, efficient, and predictive networks. To bridge the gap
between intelligent forecasting and structural design, the study
combines machine learning, smart IoT bin data, and graph-based
optimization algorithms. Grounded in Industry 4.0 principles-such as
cyber-physical infrastructure, real-time sensing, and system-wide
optimization-the approach is highly relevant to the evolving needs of
smart cities. The methodological innovation of this work contributes
to academic discourse while offering practical value for municipalities
seeking to reduce operational costs, lower environmental impact, and
enhance service delivery. The proposed framework not only addresses
current inefficiencies in waste systems but also offers a scalable model

10.3389/frsus.2025.1675021

adaptable to other critical urban infrastructures such as energy grids,
water distribution, and traffic management.

4 Methodology

This project creates a single smart waste management system by
combining Al, IoT, and graph-theoretic modeling. The system begins
with simulated smart bin data, which includes temporal fill levels,
geospatial positions, and overflow events. The simulation pipeline
followed a structured sequence: (i) daily fill levels were generated for 500
bins across five zones using zone-specific growth functions; (ii) overflow
risk was assigned based on the >90% threshold; (iii) XGBoost was
trained on 80% of the data and validated on 20%; (iv) predictions were
aggregated zone-wise to calculate percentages of high-risk bins (Table 2);
(v) comparative benchmarking against a static model yielded efficiency
percentages (Table 3). This step-by-step approach, illustrated in Figure 2,
avoids uncertainty in percentage computation and ensures reproducibility.

These data points are used as approximations for real-time sensor
inputs in urban deployment scenarios. The predicted scores provided
by XGBoost are integrated in a directed, weighted graph of the city’s
waste collection network, with nodes representing bins and edges
representing accessible routes weighted by distance. Clustering
methods and centrality measures (such as betweenness and degree) are
used to discover high-priority nodes and optimize route construction.

To support spatial decision-making, heatmaps are generated using
spatial interpolation techniques to visualize zone-wise accumulation
trends and overflow risk. These visual tools help municipal planners
detect service shortages and high-risk zones. The framework models
an Industry 4.0 infrastructure in which routing decisions are
dynamically informed by predictive analytics and spatial intelligence.
To determine its effectiveness, the suggested system is compared to a
traditional static model utilizing performance measure such as fuel
consumption, bin utilization efficiency, and overflow occurrence
frequency. As shown in Figure 3, the system design is divided into four
stages: smart bin data simulation, overflow prediction, geographical
risk mapping, and graph-based routing optimization.

5 Materials and methods

This section outlines the technological components and
experimental setup employed in the study. The framework integrates

| Problem | Approach Impact
Al-loT-Graph solution
« Traditional « Reduced fuel
waste collection |:“ > » Forecasts :(> and labor costs
« Inefficient overflow risks
overflow » Fewer missed
response . Adllapct: . pickups
& collection routes
: (L’:gtsh;ealr-:ﬁn; « Enhanced urban
- « Optimizes bin efficiency
network

FIGURE 1

Problem-approach-impact framework illustrating the Al-loT-graph-based solution for smart waste management.
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TABLE 2 Performance metrics of the XGBoost model for bin overflow
prediction.

Accuracy (%) 94.1
Precision (%) 91.7
Recall (%) 95.8
AUC-ROC score 0.96
RMSE (fill %) 6.2

TABLE 3 Priority bin clusters identified through graph-theoretic metrics.

Bin Zone Overflow Degree Priority
ID risk (%) centrality level
BO3 A 96 0.22 High
B09 B 91 0.18 High
Bl4 A 89 0.16 Medium
B22 B 94 0.15 High
B2 C 87 0.14 Medium

Degree centrality values are normalized (scaled from 0 to 1) based on node connection in
the bin network.

Generate Daily Fill Levels
(500 bins)

Calculate Efficiency
Metrics (%)

FIGURE 2
Simulation pipeline for overflow prediction and benchmarking.

spatial mapping, machine learning-based overflow prediction,
synthetic data generation, and graph-based optimization to simulate
a smart waste monitoring system grounded in Al IoT, and
network theory.
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5.1 Data simulation and smart bin
configuration

A realistically structured simulation approach was chosen,
simulating 500 smart bins across five urban zones (A-E), each with
distinct waste generation patterns because there were no fine-grained
smart bin datasets available to the public at the metropolitan scale.
This approach is in line with procedures in recently developed smart
infrastructure research, which use simulated datasets for system
benchmarking and pilot-scale validation (Ahmed A. K. A. et al,
2022). Each of the five urban zones (A-E) with different waste
generation rates and behavioral patterns was represented by 100 smart
bins in the simulation.

Each smart bin was configured with the following attributes:

« Fill levels every day (in %).

« Co-ordinates of a geospatial location (for mapping purposes).

« Overflow risk labels (classification in binary: Yes, if anticipated
fill is greater than 90%, else No).

» Timestamped updates (to record patterns over a period of
7 days).

Using design ideas from current IoT-based smart waste
deployments, this simulation model was created. Sensor characteristics,
such as GPS transmitters, ultrasonic fill sensors, and ambient context,
were digitally incorporated into the dataset structure to align with
smart bin telemetry in the actual world (Kumar et al., 2021).

With this method, we were able to account for zone-specific
variances and peak accumulation times (such weekends) while
training and testing prediction models under operational conditions
that were almost realistic. The simulated dataset preserved waste
buildup variability impacted by proxy variables such as residential
clustering and commercial density (Abba and Light, 2020). Using
simulated data was primarily done to allow for a controlled
examination of the suggested AI-IoT-Graph architecture without the
biases or gaps in data that are frequently present in public repositories.
This also facilitated downstream interface with graph-based routing
modules, providing optimization workflows in line with clustering-
based graph-theoretic waste collection techniques (Balaga, 2020).

The simulation monitors daily fill levels over a 7-day period, and
the model forecasts overflow on day 8 based on historical data.
Although simulated data were used, the design was evidence-based.
Overflow criteria (>90% fill level) were derived from IoT-based smart
bin experiments conducted in Barcelona and pilot implementations
in Indian cities (Agrawal et al., 2025). Zone-level waste generation
rates were benchmarked against urban averages reported by the World
Bank (2018) and the Central Pollution Control Board (2021),
confirming that the synthetic dataset accurately represents fill-level
dynamics and operational constraints. These design choices enhance
the credibility of the simulation and support the validity of the
predictive analysis. Table 4 presents a summary of the benchmarking
parameters and their sources.

5.2 Al-based overflow prediction

Utilizing XGBoost, we developed a machine learning-based
prediction module to foresee possible bin overflow incidents and
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proactively schedule waste pickup. Based on recent waste analytics
research, this supervised learning technique was chosen for its
demonstrated efficacy in binary classification problems with high-
dimensional, tabular data and temporal dependencies (Chen and
Guestrin, 2016; Vaisharma, 2023).

An overflow condition was labeled “Yes” if the anticipated fill level
for the following day was greater than 90%; if not, it was labeled “No.
The goal variable was a binary overflow status (Yes/No). From every
smart bin record, a few essential features were taken out to properly
train the model. A categorical encoding of the Bin ID was used to
capture bin-specific usage patterns, the daily growth trend in fill level
(AFill/day) was used to capture trajectory, the average fill percentage
at the zone level was used to contextualize accumulation behavior, and
historical fill levels from Days 1 through 3 of the previous 3 days were
included. For supervised training and performance assessment, these
manufactured characteristics were organized and supplied into the
XGBoost classifier. The model was implemented using Python 3.10
and the Scikit-learn and XGBoost libraries.

Model evaluation metrics:

Key classification metrics were used to assess the model after it
was trained using a stratified 80-20 train-test split:

o Accuracy: 94.1%.

Frontiers in Sustainability

TABLE 4 Benchmarking parameters for simulated dataset.

Parameter Source Justification
Overflow threshold ToT-based smart bin Reflects the operational
(>90% fill level) deployments in trigger levels used in smart
Barcelona and pilot bin deployments.
studies in India
(Agrawal et al., 2025)
Bin fill rate (kg/day) Central Pollution Calibrated to match urban

Control Board (2021)
and World Bank
(2018)

waste generation averages.

Zone-wise bin

Indian Municipal

Based on population

protocols (India,

European Union)

distribution Reports, World Bank density and waste
(2018) generation per capita
Collection frequency Smart bin pilot Simulated to mimic

dynamic routing in smart

systems.

Fuel consumption per

trip

Factors that influence
municipal fleet

conversion

Used to calculate COp
emissions from vehicle

operations.
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o Precision: 91.7%.

o Recall (sensitivity): 95.8%.

o AUC-ROC Score: 0.96.

« Root Mean Square Error (RMSE) of fill level prediction: 6.2%.

The high recall rate guarantees that overflow-prone bins are not
overlooked, which is essential in urban waste environments where
even a single overflow incident can compromise service dependability
and public health.

XGBoost was well-suited to the bin network due to its scalability
and robustness to sparse inputs. Additionally, it facilitates feature
importance extraction, which makes it possible to determine which
variables have the greatest impact on overflow prediction in a
transparent and interpretable manner. XGBoost consistently
outperformed other classification models, including logistic
regression and decision trees, in terms of precision and recall. This
strategy aligns with recent research that tested several prediction
models and discovered that deep learning models like LSTM and
XGBoost surpassed traditional classifiers in smart waste bin
forecasting tasks (Liu et al., 2025). Furthermore, the 90% threshold
for defining overflow was adopted in accordance with prior smart bin
studies (e.g., Fang et al., 2023), ensuring timely intervention before
spillage occurs and aligning with operational standards in
IoT-enabled waste systems.

5.3 Spatial risk mapping

As part of the smart waste monitoring system, a spatial mapping
module was created to convert Al-predicted overflow concerns into
useful geographic intelligence. This element was essential in helping
municipal planners with proactive action, visualizing high-risk
areas, and streamlining collection routes. Five simulated
metropolitan zones (A through E) were used to spatially distribute
the fill-level and overflow probability outputs produced by the AI
algorithm. Coordinates that were in line with proxies for urban
density were used to map the position of each smart bin. High-risk
nodes were defined as bins having an overflow probability of >90%
within the following 24 h. After that, these were combined zone-by-
zone and plotted using a heatmap visualization approach that was
created using the folium and seaborn libraries in Python. These
libraries enabled both static and dynamic mapping of overflow risk
across time and space.

Under resource constraints, it has been demonstrated that spatial
clustering enhances service prioritization and improves the
interpretability of bin-level predictions (Borase et al., 2024). Together
with static heatmaps, the system also included dynamic temporal
mapping, which allowed for the detection of patterns by observing
risk intensity over a series of days (e.g., frequent overflows near
transport hubs or commercial zones). For example, in accordance
with the simulation’s population density assumptions, Zones A and
B continuously showed higher concentrations of anticipated overflow
accidents. This allowed adaptive dispatching techniques to
be simulated in addition to validating the predictive structure of the
Al model.

The average overflow probability, total bins, and forecasted high-
risk bins were reported in zone-wise summaries to further include
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spatial intelligence into decision-making. Using the following formula,
a zone-priority score was determined:

High — Risk Bins

ZonePriority:( Total Bi
otal Bins

]x Average Overflow Risk

By measuring spatial urgency, this metric made it easier for the
routing engine to schedule order. These zone-priority scores were then
used to adjust edge weights in the graph-based routing module,
ensuring that high-risk areas received prioritized service. Recent
research on smart cities has accelerated the application of geospatial
mapping in urban waste systems because it can connect physical
infrastructure planning and predictive analytics (Singh, 2021). In
summary, the spatial risk mapping module served as more than just
visual assistance; it was a fundamental decision-support layer that
made it possible to implement risk-aware routing, zone-based
prioritization, and real-time situational awareness-all essential
components of an urban infrastructure that is in line with Industry
4.0. In summary, the spatial risk mapping module functioned not only
as a visualization tool but as a core decision-support layer, enabling
zone-based prioritization, risk-aware routing, and real-time situational
awareness-key features of an Industry 4.0-aligned urban infrastructure.

5.4 Graph-theoretic decision optimization

A graph-theoretic optimization framework was developed to
enhance waste collection efficiency by modeling the urban bin
network as a directed, weighted graph that prioritizes high-risk bins
and minimizes resource usage.

The urban waste network was represented by the graph G = (V,E )
,where V is the set of vertices that stand in for smart bins and E is the
set of directed edges that provide potential routes for traversing
between bins. A weight w;; is assigned to each edge ¢;; € E. This weight
is increased by overflow priority or congestion penalties and
corresponds to the Euclidean or route-based distance between bins i
and j. Edges were annotated with distance, static or simulated
congestion penalties, and optional zone weights, while nodes were
annotated with degree centrality, historical fill patterns, and overflow
risk ratings (derived from the XGBoost model). The goal of the
optimization objective, which was presented as a multi-objective
shortest path problem, was to minimize the overall distance, minimize
missed pickups, and maximize bin prioritization based on estimated
overflow risk. This was formulated as a weighted decision function:

> (adj+ Bty c)

(i)eP

f(P)=

where ¢j; is the congestion factor for edge (i,j), 1; is the overflow
risk score for bin i, and d,-j is the distance between bins i and j. The
coefficients a, 3, and y were calibrated through iterative tuning based
on domain knowledge and preliminary simulations to ensure a
balanced prioritization of distance, overflow risk, and congestion. To
improve computational scalability and adapt to urban complexity, a
two-stage optimization strategy was adopted according to geolocation
and overflow risk to increase scalability and routing efficiency in
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congested urban layouts. Anchor bins were then identified inside each
cluster using centrality measures including degree and closeness. This
method combines real-time predictive bin status with the underlying
network structure, which enables dynamic, context-aware route
selection, in contrast to traditional vehicle routing problems (Balaga,
20205 Cui et al,, 2025). This hybrid methodology is well-suited for
smart city logistics, where scalability, adaptability, and real-time
responsiveness are critical (Li et al., 2024).

5.5 System architecture and workflow

The proposed system connects real-time sensing, predictive
analytics, and graph-theoretic decision-making through a modular,
layered architecture. IoT-enabled smart bins, equipped with LPWAN
technologies such as NB-IoT and LoRaWAN, continuously transmit
data on fill levels, timestamps, and geolocation. Although simulated
data was employed in this study, live data integration is supported by
the system’s design. After being gathered, bin data is pre-processed
and normalized before being entered into an overflow risk prediction
XGBoost model. The prediction output is then used to assign risk
scores to each bin, which are passed to the graph-based decision layer
for route optimization. Priority risk zones are simultaneously
identified throughout the urban landscape using spatial grouping
logic. The bin network is abstracted as a directed weighted graph by
the decision layer, with nodes standing in for bins and edges for
collecting pathways that are weighted by proximity and overflow risk.
Graph-theoretic methods, such as cluster discovery and centrality
measures, are used to optimize routing and find important collection
locations. Making decisions quickly and with few resources is made
possible by this organized workflow. As seen in Figure 4, the
architecture serves as a practical tool for intelligent municipal waste
logistics, supporting interoperability, scalability, and real-world
deployment readiness. The modular design ensures compatibility with
existing municipal dashboards, GIS platforms, and cloud-based
analytics systems.

6 Results

This section presents the results of the proposed AI-IoT-graph-
based smart waste monitoring system, focusing on overflow

10.3389/frsus.2025.1675021

prediction accuracy, spatial risk distribution, graph-theoretic
clustering, and comparative performance evaluation. The simulated
data used to represent 100 smart bins spread throughout five city
zones (A-E) over a week is the source of all results. The rising use of
Al and IoT in smart waste systems is supported by recent research.
According to studies, sensors built inside bins may track fill levels in
real time and transmit data via Internet of Things systems, enabling
waste collection decision-making that is responsive and predictive.
Additionally, in line with Industry 4.0 objectives, graph-theoretic
study of bin networks aids in the strategic construction of optimal
collection paths.

6.1 Accuracy of Al prediction for bin
overflow

Using XGBoost classification, the model predicted the likelihood
of bin overflow based on historical fill level patterns. In Table 5, an
example of the simulated input data is presented.

The XGBoost classifier showed a high degree of predictive power
in predicting bin overflow incidents using fill-level data from the past.
With an overall accuracy of 94.1%, precision of 91.7%, and recall of
95.8%, as shown in Table 2, the model demonstrated its efficacy in
reducing false positives and false negatives. It is further confirmed that
the model is robust in differentiating between bins that overflow and
those that do not by the strong AUC-ROC score of 0.96. The model’s
low margin of error, as indicated by its fill-level forecast RMSE of
6.2%, further qualifies it for real-time deployment in intelligent waste
systems. These findings support the notion that XGBoost is a
dependable engine for anticipatory waste monitoring in urban
settings. These outcomes demonstrate that the AI model can
accurately forecast bins that are prone to overflow within a
24-h period.

6.2 Overflow risk mapping by zone

As anticipated, the proportion of high-risk bins (fill level > 90%)
each zone was determined. Real-time sensor input-based dynamic
routing techniques are justified by this spatial risk analysis. As seen in
Figure 5, the heatmap identifies places with a higher risk of overflow,

loT Sensing Layer Data Preprocessing

Layer

Al Prediction Layer Decision Support

Layer

FIGURE 4
System architecture and workflow illustrating the layered design of the proposed solution.
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TABLE 5 Input data samples from smart bin simulations.

10.3389/frsus.2025.1675021

Bin ID Zone Day 1 (%) Day 2 Day 3 Day 4 DE\ Overflow (Day
(%) (%) (%) (%) 8)

BO1 A 60 72 80 85 91 95 98 Yes

B02 B 40 52 58 63 68 72 76 No

B03 A 65 75 83 87 91 94 96 Yes

B04 C 50 62 68 70 73 76 78 No

BO5 B 78 83 88 90 93 96 99 Yes

supporting the use of dynamic routing techniques in high-density
regions and confirming the distribution patterns.

Zone-priority scores calculated using the methodology’s formula
were consistent with the percentages shown in Table 6. Zones A and
B, for example, had the highest priority rankings due to a higher
percentage of high-risk bins and higher average overflow probability.

6.3 Graph-theoretic analysis of bin clusters

Inter-bin relationships were analyzed using a graph-based
methodology. Edges indicate proximity or route dependency, whereas
each node represents a bin. Metrics of centrality and clustering
identified areas for strategic intervention.

Due to their high centrality and overflow risk, bins B03, B09, and
B22 emerged as high-priority nodes, as identified in Table 3,
underscoring the need for targeted interventions. Localized actions
are supported by the graph-theoretic paradigm, particularly in densely
connected, high-risk zones. As illustrated in Figure 6, the smart bin
network is represented as a graph where nodes indicate bins and edges
reflect route proximity-thicker edges denoting shorter or more critical
paths. High-risk bins are visually emphasized through red nodes,
highlighting This
visualization reinforces the analytic findings and confirms the utility

structurally important collection points.
of graph-theoretic routing strategies in optimizing waste collection.
These results align with the methodology’s multi-objective
decision function, where distance d,-j, overflow risk 7, as well as
congestion fines c;; were considered together during the process of
setting priorities. Due to their higher overflow probabilities, bins B03,
B09, and B22 had the highest ranking under the fr; term, and their
strategic value was further bolstered by their network centrality. This
shows how structural position and prediction risk are operationally

translated into practical collection priorities by the weighted function.

6.4 Comparative analysis of smart and
static monitoring systems

A conventional static scheduling system was used as a benchmark
for the intelligent AI-IoT paradigm. Table 7 provides a summary of
the findings.

As illustrated in Figure 7, these performance metrics are derived
from the simulation results of the proposed model. The results
highlight the operational and environmental advantages of intelligent
waste systems, including improved collection efficiency, reduced fuel
consumption, and enhanced service reliability.
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6.5 Statistical validation

Statistical tests were carried out to ensure that the findings were
reliable. A Wilcoxon signed-rank test comparing overflow incidents
across static and smart models revealed a significant difference
(W =15,p<0.01), indicating that the observed reductions were not
caused by random variation. A Chi-square test showed a significant
correlation ( 22=27.6,p< 0.001) between anticipated and observed
overflow labels, indicating the AI model’s predictive validity. The
detailed results of these tests are summarized in Table 8. As shown in
Figure 8, the predicted overflow closely aligns with observed outcomes
across the simulation period. Figure 9 depicts the performance of
overflow classification by comparing the number of bins predicted to
overflow with actual observations. The model correctly recognizes
both overflow and non-overflow bins, with small differences between
predicted and observed numbers. This agreement strengthens the
validity of threshold-based classification and promotes the use of
predictive analytics in operational planning.

These statistical validations underscore the proposed framework’s
dependability and scalability. The following section explores its
compatibility with Industry 4.0 capabilities, situating the findings
within the evolving paradigm of digitally enabled urban systems.

7 Industry 4.0 integration for smart
waste management

Intelligent technologies like IoT, Al, CPS, and real-time analytics
have transformed traditional urban services with the introduction of
Industry 4.0. Waste management is a critical pillar of urban
sustainability and is undergoing a paradigm shift toward data-driven,
predictive technologies aligned with Industry 4.0 objectives. This
section describes the ways in which the suggested AI-IoT-based smart
bin monitoring framework supports smarter, more resilient urban
settings and is consistent with the fundamental ideas of Industry 4.0.

7.1 Smart bins and cyber-physical systems
(CPS)

Industry 4.0 relies heavily on CPS, which allow machines to interface
with digital platforms and with one other. In the proposed framework,
smart bins function as cyber-physical assets equipped with sensors that
monitor fill levels, temperature, and overflow risk in real time. This
IoT-enabled physical layer continuously streams data to a cloud-based
analytics engine, enabling real-time decision-making. A centralized
processing unit receives data from each bin, which acts as a node in a
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Bin Overflow Risk across Zones

Overflow risk intensity across zones A—E. Darker shades indicate higher concentrations of high-risk bins.
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TABLE 6 Zone-wise distribution of high-risk bins (overflow risk > 90%).

Zone Total bins High-risk % at risk
bins

A 25 9 36.0%

B 20 6 30.0%

C 20 2 10.0%

D 15 1 6.7%

E 20 0 0.0%

decentralized sensor network, using wireless networks (such as LPWAN,
4G, and 5G). The three main markers of a successful CPS-based smart
city system-autonomy, transparency, and scalability are improved by this
framework (Rajput and Singh, 2020). A key component of CPS in
Industry 4.0 systems, closed-loop feedback control is made possible by
the interplay of the physical environment (waste accumulation), digital
infrastructure (data processing and Al algorithms), and human interface
(municipal operators) (Lee et al., 2015). This continuous feedback loop
between physical conditions, digital analytics, and human decision-
makers exemplifies the core principles of CPS in Industry 4.0.

7.2 Al-driven intelligence and predictive
analytics

The development of Industry 4.0 relies heavily on artificial
intelligence (AI), which gives systems the ability to learn from data,
forecast results, and suggest the best course of action. Our approach uses
historical fill level data and supervised machine learning, specifically
XGBoost classification, to predict bin overflow risk. Proactive scheduling,
overflow incident reduction, and collection route optimization are made
possible by this method. A further layer of structural intelligence is
added by the incorporation of graph theory, which models bin
interactions and finds priority nodes based on centrality. When these
two elements are combined, static waste systems become self-learning,
adaptive infrastructures that change based on usage patterns.

In this system, predictive analytics also makes it easier to:

« Forecasting load by zone.

o Prioritization based on risk.

« High-density bin clustering.

« Rerouting possibilities in real time (future extension).

According to Industry 4.0 paradigms, data-driven automation

minimizes environmental impact, enhances operational efficiency,
and reduces manual intervention-reflecting the core promises of Al
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in Industry 4.0: automation, intelligence, and sustainability (\Wamba
etal., 2017).

7.3 Compliance with Industry 4.0 objectives

The four Industry 4.0 design concepts are directly aligned with the
proposed framework:

Interconnection: Made possible by wireless data transfer between
the central Al model and smart bins.

Information transparency: Guaranteed by stakeholder-accessible
predictive insights and visual analytics (heatmaps, graphs).

Technical support: By predicting high-risk bins and suggesting
intervention zones, Al supports human decision-making.

Decentralized decisions: Independent bin-level status reporting
and risk assessment are made possible by the distributed design
of the system.

Thus, in addition to serving as a monitoring tool, the smart waste
system facilitates digital transformation, thereby advancing the long-
term objectives of sustainable development, smart governance, and
the circular economy. This integration exemplifies how Industry 4.0
can transform public services by embedding intelligence, adaptability,
and sustainability into core municipal operations (Lasi et al., 2014).
The key components of Industry 4.0 integration in the proposed smart
waste management system are summarized in Figure 10.

8 Enhancements to the proposed
framework

This section presents a suite of enhancements that address
practical implementation, comparative benchmarking, and policy
scalability, reinforcing the applicability and transformative potential
of the proposed Al-IoT-enabled waste management system. Digital
solutions must not only function effectively in simulations but also
provide quantifiable socio-economic advantages, outperform current
systems, and comply with public infrastructure policies as urban
centers transition to Industry 4.0 and Smart City paradigms.

8.1 Cost—benefit evaluation of Al-loT
integration

The observable financial and operational advantages of intelligent

systems are among the strongest justifications for their adoption. To
do this, we compared our Al-enabled system with traditional static
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Bin Network with Overflow Risk Intensities

Graph visualization of smart bin network. Edge thickness denotes route weight, whereas node color intensity indicates overflow risk.
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TABLE 7 Performance comparison: static vs. smart monitoring systems.

Metric Static Smart Improvement
system system

Overflow 18 9 —50.0%

Events

(weekly)

Missed Pickups 11 3 =72.7%

Avg. Bin Fill at 62 84 +35.5%

Collection (%)

Fuel Usage (L/ 110 93 —15.5%

week)

Performance gain is represented by negative figures, which indicate reductions.

waste collecting methods using a simulation-based cost-benefit
analysis. Fuel usage, labor hours, fines for overflow, and missing
pickups are examples of key performance indicators. Table 9 provides
specifics on the expected yearly savings obtained by switching from a
static scheduling system to the suggested smart monitoring framework.

The results show that smart solutions significantly cut down on
operational waste and inefliciency. Fuel consumption fell by more
than 15% annually, which resulted in lower greenhouse gas emissions
and financial savings. The 41.7% reduction in labor hours supports the
case for operational streamlining, and the significant 60% decrease in
overflow penalties indicates better service delivery and regulatory
compliance. These findings align with prior research highlighting the
environmental and economic benefits of adopting smart waste
technologies (Batty et al., 2012).
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8.2 Comparative review of existing
methods

To put our approach’s uniqueness into perspective, we conducted
a comparative analysis of current smart waste research methodologies.
This makes it easier to compare our model to earlier attempts and
highlights the degree of integration and optimization expertise of our
contribution. The strategies presented in Table 10 show a distinct
move toward real-time optimization and predictive analytics in smart
waste systems as compared to previous approaches.

Recent studies have demonstrated the expanding use of smart
technologies in waste management, particularly in areas such as
Al-driven prediction, IoT-enabled monitoring, and optimization
algorithms (Fang et al., 2023). However, many of these approaches rely
on static optimization techniques or limited data streams. In contrast,
the proposed framework in this study integrates Al-based overflow
prediction (XGBoost), graph-theoretic routing, and priority-based
flow optimization using simulated smart bin data. This combination
offers a more comprehensive and scalable solution aligned with
Industry 4.0 principles by enabling both predictive accuracy and
structural decision-making.

8.3 Recommendations for policy
integration

The widespread implementation of smart waste frameworks in
urban environments requires strong institutional and governance
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TABLE 8 Statistical test results for model validation.

Test Comparison Statistic p-value Interpretation

Wilcoxon signed-rank test Overflow events: static vs. smart W =15 <0.01 Significant reduction in overflow
model events.

Chi-square test Predicted vs. observed overflow 22=276 <0.001 Strong association; high predictive
outcomes. validity.

Number of Overflow Bins
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Daily comparison of observed and expected overflow incidents throughout a 7-day simulation period.
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Observed vs. Predicted Overflow Outcomes
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A comparison of observed and expected overflow outcomes across all bins.
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FIGURE 10
Industry 4.0 integration for smart waste management.
frameworks to facilitate technological innovation. The following are These policy recommendations support the digital

our multi-level policy recommendations:

« The installation of smart bins with overflow sensors ought to
be required by municipalities in densely populated urban areas.

o Real-time dashboards that are open to the public can speed up
reaction times, promote citizen participation, and
increase transparency.

 Waste contractors should be incentivized through tax credits or

performance-based bonuses to adopt Al-driven routing systems.

Frontiers in Sustainability

transformation of waste management in alignment with smart city
goals. By fostering public-private collaboration and institutional
accountability, they ensure that technological innovation
translates into sustainable urban outcomes. Collectively, these
enhancements demonstrate that the suggested framework is more
than just a theoretical idea; rather, it is a scalable, policy-ready
solution that uses graph-theoretic intelligence, real-time
monitoring, and predictive analytics to speed up the digital
transformation of urban waste systems.
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9 Discussion

9.1 Effectiveness of the proposed
framework

The proposed AI-IoT-graph framework demonstrates significant
performance improvements over conventional static scheduling systems,
confirming its suitability for next-generation urban waste management.
With an accuracy of 94.1% and a recall of 95.8%, the machine learning
model (XGBoost) demonstrated a high level of predictive performance,
indicating its ability to accurately identify bin overflow problems.
Pre-emptive collection planning and resource allocation depend on these
prognostic insights. Persistent high-risk clusters were identified by the
heatmap-based spatial analysis, especially in Zones A and B, where
overflow events were more common. With the use of this geographic data,
municipalities can substitute responsive methods that are in line with
actual waste creation patterns for strict, time-based collection plans by
enabling dynamic routing based on real-time risk levels. Graph-theoretic
analysis identified critical nodes such as bins B03 and B22, which
exhibited high centrality and frequent overflow risk. Because of their high
degree of centrality and frequent overflow risk, these bins serve as
structural bottlenecks in the network of collections. To reduce cascading
inefficiencies throughout the system, their prioritization is crucial.
Operationally, the intelligent system beat the static model in every major

TABLE 9 Estimated annual savings: static system vs. smart monitoring.

Parameter Smart Annual
model saving (%)
Fuel consumption (L) 5,200 4,380 15.8%
Man-hours (hrs) 7,200 4,200 41.7%
Overflow penalties ($) 3,000 1,200 60.0%
Missed pickups (count) 230 90 60.9%

TABLE 10 Smart waste optimization methods (2022-2025).

Author(s) & year Technique used Data type

10.3389/frsus.2025.1675021

metric: overflow events were cut in half, missed pickups decreased by
72.7%, and bin fill-level at pickup increased from 62 to 84%. In addition
to lowering environmental risks, these efficiency improvements maximize
logistical resources including labor deployment and fuel use. Crucially,
the report emphasizes how this framework is strategically aligned with
Industry 4.0 principles. The three main tenets of smart infrastructure-
automation, decentralization, and system-wide intelligence are embodied
in the convergence of graph-theoretic optimization, loT-enabled sensing,
and Al-driven forecasts. The system’s modular design enables expansion
beyond waste management into other urban domains such as water
resource management, energy distribution, and traffic optimization. As
such, the proposed framework serves not only as a technological
innovation but also as a systemic enabler of data-driven urban governance.
By bridging the gap between fragmented waste operations and integrated
smart city systems, it contributes meaningfully to both digital
transformation and environmental sustainability. These results affirm the
frameworK’s theoretical robustness and practical viability for real-world
urban infrastructure deployment.

9.2 Comparative discussion

In smart waste monitoring tasks, deep learning models such as
LSTM networks offer appealing advantages, even if XGBoost
showed remarkable performance in terms of recall, precision, and
general resilience. For fill-level progression modeling over long
periods of time, LSTM models are perfect because they are
especially good at capturing temporal dynamics and long-range
dependencies in time-series data. However, they are computationally
intensive, often require larger training datasets, and lack the
interpretability of tree-based models like XGBoost. On the other
hand, XGBoost offers transparent feature importance rankings,
efficient gradient-boosting, and the capacity to manage sparse input
and nonlinear interactions. This makes it an invaluable tool for

Smart integration Optimization method

Chakraborty (2022)

IoT + machine learning (e.g.,
SVM)

Sensor data (bin fill levels)

Partial

Data-driven route optimization

Andeobu et al. (2022)

Al application methods (SVM,
ANN, etc.)

Literature-based (various

sources)

N/A (review)

Various review methods, no live

integration

regression)

collection data

Lakhouit et al. (2023) Machine learning (regression, Geo-environmental, fill-level Partial Predictive fill modeling
RE etc.) data

Ferrao et al. (2024) Optimization algorithm (e.g., Municipal route and bin Partial Algorithmic route optimization
VRP-based) collection logs

Alsabt et al. (2024) Al & machine learning (ML Mixed waste management Partial Strategic resource optimization
ensembles) operational data

Ogbolumani and Adekoya IoT + machine learning (SVM, | Real-time fill + environment Yes Predictive + real-time route

(2025) ANN) sensors optimization

Rautela et al. (2025) Al & ML (clustering + Comprehensive bin, route, Full Predicting waste generation,

optimizing collection routes,

enhancing sorting

Proposed (This Study)

XGBoost + graph-theoretic

optimization

Simulated smart bin overflow

data

Full (conceptual)

Al + graph routing + priority flow

optimization
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smart city stakeholders who want automated judgments to
be understandable. According to earlier research, LSTM models
may marginally outperform tree-based models in RMSE under
optimal data settings, but this advantage frequently comes at the
expense of interpretability and training complexity (Ahmed S. et al.,
2022). Because our dataset was structured and had a moderate
temporal scale, XGBoost was able to achieve a realistic balance
between scalability, accuracy, and practicality. Table 11 provides a
summary of the main distinctions between XGBoost and LSTM for
overflow prediction.

While LSTM and other deep learning models provide better
temporal modeling, they are less appropriate for real-time, resource-
constrained municipal deployments due to their high computing
requirements and low interpretability. On the other hand, XGBoost is
an appealing option for Al-driven urban waste monitoring since it
achieves a realistic balance between accuracy, transparency, and
deployment efficiency. This comparative evaluation underscores the
importance of aligning algorithm selection with operational feasibility,
stakeholder
infrastructure applications.

trust, and predictive performance in critical

9.3 Impact assessment

The improvements demonstrated by the proposed system yield
tangible socio-environmental benefits. A 50% reduction in weekly
overflow events mitigates public health risks such as vector-borne
infections and unpleasant odors, while also curbing greenhouse gas
emissions from decomposing waste. Likewise, the 35.5% increase in
bin utilization ensures optimal resource deployment, reducing
unnecessary collection trips, and associated fuel consumption. Based
on standard municipal fleet conversion factors, the observed 15.5%
decrease in fuel usage corresponds to an estimated annual reduction
of approximately 2.3 tonnes of CO, emissions. These operational gains
underscore that the framework is not merely a technological
enhancement but a strategic enabler of sustainable urban waste
services, directly supporting SDG 11 and SDG 12. The integration of
predictive analytics with operational efficiency reinforces its potential
for real-world deployment and policy alignment.

10.3389/frsus.2025.1675021

10 Limitations

Notwithstanding the encouraging results, this study has several
limitations that present opportunities for future enhancement:

o Simulated data assumptions: The analysis was based on simulated
smart bin data. While the simulation was carefully designed to
reflect realistic urban waste dynamics, it may not fully capture the
complexity and variability of real-world waste generation behaviors.

o Static zone configurations: The city was divided into predefined
zones (A-E) without accounting for dynamic urban factors such as
mixed land use, population mobility, or socioeconomic diversity-all
of which can significantly influence waste generation patterns.

o Limited predictive features: The overflow prediction model relied
solely on historical fill levels. The exclusion of contextual variables
such as holidays, public events, and seasonal fluctuations may
have constrained the model’s predictive robustness.

o Simplified graph structure: The graph-theoretic model generated
edges primarily based on spatial proximity. However, real-world
urban routing involves additional constraints such as one-way
streets, traffic congestion, and accessibility barriers, which were
not incorporated into the current model.

o Lack of real-time IoT integration: Although the framework was
designed with IoT compatibility, it does not yet incorporate live
sensor data from deployed bins. Real-time data integration is
essential for enabling

responsive decision-making in

operational environments.
Addressing these limitations in future work will enhance the

frameworK’s realism, scalability, and readiness for deployment in
complex urban settings.

11 Future work

Future research can address the current limitations and further
enhance the proposed framework through the following directions:

o Real-world deployment: Implement the system in a pilot smart
city project to validate prediction accuracy, monitor real-time

TABLE 11 Comparative analysis of XGBoost and LSTM for overflow prediction in smart waste systems.

Aspect XGBoost LSTM
Type of model Tree-based ensemble learning Recurrent Neural Network (RNN)
Data compatibility Sparse features in tabular, structured data Data from time series with sequential dependencies

Prediction accuracy

High; particularly effective at problems involving tabular classification

RMSE for long-range sequence projections is marginally improved.

Computational cost Lightweight, quick inference and training

More resources are needed, and training on big datasets takes longer.

Interpretability High offers feature importance ratings

Low-the “black box” model composition

Scalability

Outstanding fit for real-time applications and big datasets

GPU acceleration makes it scalable, but careful calibration is needed.

Temporal modeling Modeled indirectly with lagged features

Depicts temporal connections between sequences directly.

Ease of integration

systems

Easy to set up, compatible with urban IoT frameworks and embedded

Strong deployment infrastructure and sequence preparation are

necessary.

Best use cases

When speed, structured inputs, and interpretability are essential

When the prediction signal is dominated by long-term temporal

patterns

Frontiers in Sustainability

frontiersin.org


https://doi.org/10.3389/frsus.2025.1675021
https://www.frontiersin.org/journals/Sustainability
https://www.frontiersin.org

Anitha and Parthiban

data streams, and evaluate performance under dynamic
urban conditions.

Expanded predictive inputs: Incorporate additional contextual

variables-such as traffic patterns, weather forecasts, public events,

and demographic data-to improve model accuracy
and adaptability.

o Adaptive zoning mechanisms: Develop dynamic zoning strategies

using clustering algorithms or geospatial analytics to redefine

service zones based on real-time fill trends and urban

mobility patterns.

Advanced graph-based optimization: Extend the graph-theoretic
model to include multi-layered constraints such as depot
locations, time windows, vehicle capacities, and road hierarchies
for more realistic route planning.

Integration with urban management platforms: Connect the
framework with broader smart city ecosystems to enable cross-
domain insights across sectors like energy, transportation, and
water management.

Scalability and economic feasibility: Conduct a comprehensive
analysis of the system’s scalability, operational costs, and
maintenance requirements cities

across with  varying

resource capacities.

By addressing these areas, the proposed AI-IoT-graph framework
can evolve into a robust, scalable decision-support system for resilient,
and circular waste in smart

data-driven, management

urban environments.

12 Conclusion

This study presents a novel decision-intelligent framework that
integrates machine learning, IoT simulations, and graph-theoretic
modeling to optimize municipal solid waste management. By
leveraging AI (XGBoost) for accurate bin overflow prediction, spatial
heatmap analytics for risk zone identification, and graph-based
clustering and centrality for dynamic routing, the framework
introduces a transformative approach to waste logistics. Unlike
traditional systems that rely on fixed schedules or limited heuristics, the
proposed model enables adaptive, data-driven decision-making aligned
with Industry 4.0 principles-namely automation, real-time analytics,
and cyber-physical integration. The observed improvements in service
reliability, resource utilization, and operational cost underscore the
viability of intelligent waste management as a foundational element of
smart city infrastructure. Beyond its technical contributions, the
framework also offers a policy-relevant architecture with clear pathways
for integration into municipal systems. Its modular and scalable design
opens promising avenues for future research, including uncertainty-
aware scheduling, real-time IoT deployment, and multi-layer analytics
that incorporate behavioral, environmental, and traffic data. Ultimately,
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Glossary

Al - Artificial Intelligence

IoT - Internet of Things

MSW - Municipal Solid Waste

SWMS - Smart Waste Management Systems

XGBoost - Extreme Gradient Boosting

LSTM - Long Short-Term Memory

SDG 11 - Sustainable Cities and Communities

SDGs - Sustainable Development Goals

CSCAF - Climate Smart Cities Assessment Framework
ANP - Analytic Network Process

DL - Deep Learning

RMSE - Root Mean Square Error

AUC-ROC - Area Under the Receiver Operating Characteristic Curve
NB-IoT - Narrowband Internet of Things

CPS - Cyber-Physical Systems

RNN - Recurrent Neural Network

RF - Random Forest
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GIS - Geographic Information Systems

EU - European Union

SVMs - Support Vector Machines

CNNs - Convolutional Neural Networks
ANNs s - Artificial Neural Networks

MLR - Multiple Linear Regression

YOLO - You Only Look Once

MAPE - Mean Absolute Percentage Error
AHP - Analytic Hierarchy Process

GRU - Gated Recurrent Unit

ML - Machine Learning

GPS - Global Positioning System

LPWAN - Low-Power Wide-Area Network
LoRaWAN - Long Range Wide Area Network
VRP - Vehicle Routing Problem

GPU - Graphics Processing Unit

SDG 12 - Responsible Consumption and Production
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