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Obtaining accurate tree cover maps within cities is a first step toward managing for

equitable access to their ecosystem services. For example, by removing air pollutants

trees contribute to fewer health impacts, and tree cover expansion could extend these

benefits by targeting the most polluted areas and vulnerable populations. To support

strategic tree expansion, this research created urban tree cover maps using the 2017

NASA MOD44B satellite 250m pixel product for 35 megacities, areas with large levels of

pollution and vulnerable populations. Estimates of tree cover from photo-interpretation

(PI) were used to characterize map error, city-wide, and from low to high tree cover,

using 21 bins from 0 to 100% tree cover. Map accuracy was highest when MOD44B

percent tree cover was combined with its tree cover standard deviation product, with

average difference of 1.8% compared with PI estimates of 19.9% city-wide tree cover.

MOD44B estimates of tree cover spatial patterns had strong explanatory value. Themaps

explained the PI estimates of low to high tree cover at 5% tree cover intervals with an R2

= 0.97. The Getis Ord Gi∗ statistic determined a non-random spatial distribution of tree

cover within the megacities, with significant clustering into hot spots of relatively high tree

cover and cold spots of relatively low tree cover. Tree cover hot spots were most often

furthest from downtown, at the rural-urban interface or within higher elevation terrain.

Tree cover cold spots were most often in areas of concentrated development and along

traffic corridors known for high levels of particulate matter and other air pollutants that

could be reduced by trees. Given small increases in exposure to particulate matter are

associated with significant increases in death rates from viruses, and that climate change

and associated heat waves are forecast to exacerbate health risks to air pollution, we

need to improve global urban tree cover. These map products can be used to expand

tree cover that strategically contributes to pollutant abatement, human well-being, and

sustainable cities.
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INTRODUCTION

Trees in cities provide numerous benefits to society by altering
the local physical, biological and social environment, providing
billions of dollars in annual benefits mostly not considered
by traditional economic accounting (Nowak and Dwyer, 2007;
Endreny et al., 2017; Nowak and Greenfield, 2018b). These
benefits accrue from ecosystem services categorized as (1)
provisioning, e.g., food, fiber, fuel, water; (2) regulating, e.g.,
climate, flood, pollution, and disease control; (3) supporting, e.g.,
pollination, soil formation, nutrient cycling; and (4) cultural, e.g.,
spiritual and recreational (Millennium Ecosystem Assessment,
2005; Endreny, 2018). Tree benefits of reduced air pollution,
particularly particulate matter smaller than 2.5µm (PM2.5), have
been monetized using pulmonary and cardiovascular disease
healthcare data (Nowak et al., 2014). By reducing 5 air pollutants,
including <1% reductions in PM2.5, tree benefits were estimated
to average $482 million/yr across 10 megacities (Endreny et al.,
2017), which are cities with 10 million or more residents.
Preliminary data from the global 2019–20 coronavirus pandemic
shows a decrease in long-term PM2.5 exposure could have
reduced fatality by 15%, based on 1905 deaths in 685 US counties
(Wu et al., 2020). Urban trees have been estimated to return an
average of $2.25 for every $1 invested, which accounts for the cost
of disservices like injuries, allergies, and maintenance (Vibrant
Cities Lab, 2018). The return on investment is considered an
underestimate given it does not include the value trees contribute
to disease prevention and recovery, school performance, and
happiness, which are connected to society’s greatest expenses of
healthcare, education, and defense (Hodson and Sander, 2017;
Endreny, 2018).

Globally, cities have available land to nearly double their tree
cover (Endreny et al., 2017), yet the actual tree cover is declining
due to numerous natural forces, climatic disruptive forces, and
anthropogenic forces (Nowak and Greenfield, 2018a; IPCC,
2019). The limited and declining tree cover impacts biological
diversity, carbon storage, air quality, and numerous other factors
that affect human health and well-being (Costanza et al., 1997;
Seto et al., 2012; Nowak and Greenfield, 2018b). Risks to human
health and well-being are increased by climate change, which
brings unprecedented interactions of heat waves, infectious
disease, and air pollution to a growing urban population (World
Health Organization, 2010b; McDonald et al., 2011).

Urban tree cover has been shown to advance 9 of the 17

UN Sustainable Development Goals (United Nations, 2016) of

no poverty, zero hunger, good health and well-being, clean
water and sanitation, affordable and clean energy, descent work

and economic growth, climate action, life on land, and most

directly the goal #11 of sustainable cities and communities (FAO,
2016; Endreny, 2018). The accurate quantification of tree cover
within cities is a first step toward utilizing tree cover to reach
these SDG goals. Maps allow for measurement of tree cover
extent and subsequent estimation of tree cover benefits. Maps
also help identify critical needs and disparities in the spatial
distribution of urban tree cover. Urban tree cover in megacities
are of particular concern because of their rapid expansion and
concentrated pollution (Parrish and Zhu, 2009). The growth of
megacities is exceeding expectations, having increased from 3

to 47 between 1975 and 2020, and their number may reach
twice the projected total of 27 megacities by 2025 (Parrish
and Zhu, 2009). Megacities are also home to a concentrated
population with low socioeconomic status who have greater
vulnerability to the adverse health impacts of urban pollution
(World Health Organization, 2010a; Brisbois and O’Campo,
2019). Maps of social and economic data when combined with
maps of urban tree cover can assist in strategic designs addressing
the environmental, social and economic components comprising
urban sustainability.

There are two basic means to quantify tree cover: (1)
top-down aerial- or space-based approaches or (2) bottom-
up ground-based assessments (Nowak, 2018). Top down
assessments provide basic metrics on tree and other cover types
(e.g., percent tree cover) and can include specific locations of
these cover elements when maps are produced. Tree cover
can be estimated by photo-interpretation of aerial photographs,
by developing tree cover maps using moderate to very high
resolution imagery, or combining LiDAR and imagery (Nowak,
2012b; Antonarakis et al., 2014; Erker et al., 2019). If just
city-wide tree cover area is needed and its spatial location
can be neglected, photo-interpretation has proven cost-effective
and higher accuracy than LandSat remote sensing imagery
(Greenfield et al., 2009). By contrast, imagery classified into
tree cover maps provide both tree cover area as well as spatial
locations (Basu et al., 2015). Tree cover area and its spatial
distribution are important elements in characterizing overall
urban forest structure as they provide a means to convey
the magnitude and distribution of the forest resource and
benefits. Ground based assessments are often needed to get
details of urban forest structure, such as species composition,
tree condition, and leaf area. Combining top down maps with
ground-based assessments provides a more complete picture of
the urban forest structure, spanning spatial and temporal scales,
important for management.

This paper addresses the estimation of tree cover area and its
spatial distribution for urban areas globally, in order to help our
urban areas inventory and use this important renewable resource
to achieve sustainable development. The goal of this research
is to obtain accurate maps of percent tree cover for cities in
order to investigate the spatial distribution of tree cover and
support improved tree cover management. To achieve this goal,
the research will characterize the error of satellite imaged urban
tree cover maps available globally. The manuscript first provides
details of the map suitability for estimating city-wide tree cover
area and tree cover spatial distribution, and then uses the maps to
examine spatial patterns of tree cover clustering across the cities.
The clustering analysis considers areas with relatively high and
relatively low tree cover, and examines clustering trends across
the megacities. The discussion provides a critical review of the
results and then explores the potential implications of the maps
for more strategic urban tree cover management that sustains
human health and well-being.

METHODS

Tree cover maps in 35 megacities (Table 1) were obtained from
the space-basedMOD44B version 6 product for the periodMarch
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5, 2016 to March 6, 2017. The MOD44B product, also known
as MODerate Resolution Imaging Spectroradiometer (MODIS)
Terra Vegetation Continuous Fields yearly global product, has a
250m pixel spatial resolution across all land areas. The MOD44B
product contains 7 data bands or layers, including three 250m
grid layers that estimate percent tree, non-tree vegetation, and
non-vegetated cover. The remaining layers relate to quality
assurance, and are: (a) a quality control indicator, (b) standard
deviation of percent tree cover, (c) standard deviation of not
vegetated, and (d) a cloud cover indicator. The MOD44B data
were downloaded from the NASA Earth Data (https://search.
earthdata.nasa.gov/) as a geographic coordinate system with
WGS 1984 datum and projected to the UTM coordinate system
with the same datum. The downloadedMOD44B.hdf file for each
megacity was converted into 7 separate sub-datasets as.tif files,
each file holding an individual data layer.

Townshend et al. (2013) developed the algorithms used
to produce the MOD44B, explaining the percent tree cover
estimate for each 250m grid cell is an average of estimates
from 30 independent regression trees. The regression used the
explanatory variable of MODIS Terra 32-day surface reflectance
composite, and was limited to land cover areas defined by the
MODIS Global 250m Land/Water Map. The regression trees
were developed with training data provided by georeferenced
LandSat data, broken into 4 quartile classes of relative percent
tree cover, i.e., 0–25%, 26–50%, 51–80%, and 80–100%. Each
regression model was applied to 8 separate 32-day composites
to obtain the yearly estimate of percent tree cover for each
pixel. The standard deviation of percent tree cover for each pixel
was calculated from the variation in the 30 regression model
estimates, and can be added or subtracted to the percent tree
cover estimate to represent the range in actual tree cover.

The megacity metropolitan areas were delineated by the
Natural Earth polygon boundary shape file of urban areas, at a
scale of 1:10m. These megacity boundary polygons include the
functional city, which typically includes the commuting zone
beyond the political boundary, and were systematically defined
as the edge of remotely sensed intensive land use (Schneider
et al., 2010). In cases where the megacity boundary polygon
excluded an internal polygon of low density land use that was
<= 10% of the megacity area, the internal polygon area was
considered part of the megacity. In these cases, the internal
polygon was dissolved (i.e., removed) and the area was included
in the megacity polygon.

The above datasets were then used to createmaps of tree cover.
Themegacity polygons, projected to UTM, were used to clip the 7
MOD44B data layers to only include megacity pixels. The clipped
data layers were converted from.tif files to ASCII grid files with
250m pixel resolution. Each megacity ASCII grid file was used
to compute the average percent tree cover for each megacity.
Each megacity ASCII grid file of percent tree cover, standard
deviation of percent tree cover, and quality were analyzed for
quality assurance. The quality data for all tree cover pixels in the
megacity were used to create a city average, and in each megacity
the percent of tree cover pixels with at least 1 clear 32-day date
range was computed. The number of percent tree cover pixels,
standard deviation of percent tree cover pixels assigned as fill,

TABLE 1 | Summary of continent and ecoregion for the 35 analyzed megacities in

23 countries, 5 continents.

City, Country Ecoregion Area city

(km2)

Population

Bangkok, Thailand* Tropical Moist 4,493 14,998,000

Beijing, China Temperate Broadleaf 2,742 21,009,000

Buenos Aires, Argentina* Temperate Grasslands 2,941 14,122,000

Cairo, Egypt* Flooded Grasslands 1,173 15,600,000

Chengdu, China Temperate Broadleaf 657 10,376,000

Delhi, India* Tropical Moist 2,483 24,998,000

Dhaka, Bangladesh* Tropical Moist 630 15,669,000

Guangzhou, China Tropical Moist 6,270 20,597,000

Istanbul, Turkey* Mediterranean Forests 1,990 13,287,000

Jakarta, Indonesia* Tropical Moist 1,540 30,539,000

Karachi, Pakistan* Mangroves 713 22,123,000

Kinshasa, D. R. Congo* Tropical Grasslands 421 11,587,000

Kolkata, India Tropical Moist 1,009 14,667,000

Lagos, Nigeria* Tropical Moist 1,025 13,123,000

Lahore, Pakistan Deserts 1,025 10,052,000

Lima, Peru* Deserts 1,421 10,750,000

London, United Kingdom* Temperate Broadleaf 2,906 10,236,000

Los Angeles, United States Mediterranean Forests 6,612 15,058,000

Manila, Philippines* Tropical Moist 1,216 24,123,000

Mexico City, Mexico* Deserts 2,219 20,063,000

Moscow, Russia* Temperate Broadleaf 2,318 16,170,000

Mumbai, India Tropical Moist 1,358 17,712,000

Nagoya, Japan Temperate Broadleaf 8,068 10,177,000

New York City, United States* Temperate Broadleaf 7,492 20,630,000

Osaka-Kobe-Kyoto, Japan Temperate Broadleaf 6,773 17,444,000

Paris, France* Temperate Broadleaf 3,144 10,858,000

Rhine-Ruhr, Germany* Temperate Broadleaf 8,326 10,680,783

Rio de Janeiro, Brazil Tropical Moist 1,724 11,727,000

São Paulo, Brazil* Tropical Moist 2,488 20,365,000

Seoul, South Korea* Temperate Broadleaf 6,619 23,480,000

Shanghai, China* Temperate Broadleaf 3,844 23,416,000

Shenzhen, China Tropical Moist 4,298 12,084,000

Tehran, Iran* Deserts 5,024 13,532,000

Tianjin, China Temperate Broadleaf 2,489 10,920,000

Tokyo, Japan* Temperate Broadleaf 18,720 37,843,000

The terrestrial ecoregions are based on definitions from the World Wildlife Foundation

using annual average precipitation, maximum, and minimum average temperatures, and

native vegetation density and type (https://www.worldwildlife.org/biomes).

and unclassified were counted. For each megacity, the ASCII grid
file of percent tree cover was converted from grid to point data,
called an XY data file, which contained a row of data for each pixel
with tree cover. The XY data rows recorded the UTM Easting
and Northing values for the pixel center, and the percent tree
cover value as an integer. The XY data files were used for two
assessments, to compare random points of percent tree cover
with tree cover values obtained from photo-interpretation, and
to identify clusters of high and low percent tree cover.

Two separate photo-interpretation assessments were
performed to establish an reference tree cover estimate and
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compute the difference with MOD44B tree cover data. The first
photo-interpretation used 35 megacities to assess MOD44B
spatial distribution of tree cover. It used percent tree cover values
within 21 discrete bins, the first bin equal to 0% tree cover, and
the next twenty bins in 5% intervals starting at 1–5%, ending at
96–100%. The XY data files from each megacity were searched
and each point was assigned to one of the 21 bins, with the UTM
coordinates and percent tree cover value written to a new XY
data file named for the bin. To reduce the number of points
to cross-compare in photo-interpretation, a random number
generator was then used to select 200 points of data from these
binned XY data files. Each randomly selected point was then
assigned two a random adjustments between −125 and +125m,
one each to its UTM Easting and Northing values, to move the
point off the center of the 250m pixel. This process resulted
in 18 bins of XY data, with 200 points in each bin from 0 to
76–80%, and only 82 points (all points) in the bin 81–85% tree
cover. Each bin of XY data was loaded into Google Earth, and
photo-interpretation was used to record if the aerial imagery at
the point was tree cover or not tree cover, using the latest aerial
imagery from year 2019 or 2018.

The second photo-interpretation used 23 megacities to assess
MOD44B city-wide estimates of tree cover. Photo-interpretation
of 23 megacities, representing each of the 23 countries from
the list of 35 megacities, were used to compare with the city-
wide MOD44B tree cover estimates. Within each city, 1,000
random points were laid on Google Earth imagery to assess cover
types. The average tree cover was 22.9% at 200 points, 21.6% at
500 points, 21.1% at 800 points, and 19.9% at 1,000 points. A
trained photo-interpreter classified each point as to whether it
fell on either: trees, including shrubs; grass or herbaceous cover;
impervious cover such as buildings, roads, other impervious;
agricultural areas including soil or herbaceous cover in crop
areas; or other such as bare soil and water (Table S1). The most
recent image was analyzed, with the date of the image recorded
and all points analyzed as close to themost recent date as possible.
Overall 68% of images had the same year within a city and 98%
were within 3 years of that date. Occasionally points could not be
assessed due to cloud cover or poor imagery. Within each city,
the fraction of each cover class (p) was calculated as the number
of sample points (x) hitting the cover attribute divided by the
total number of interpretable sample points (n) within the area
of analysis (p = x/n). The standard error of the estimate (SE) in
cover class j was calculated as SEj = [pj(1-pj)/n]

0.5 (Box et al.,
1978); SE decreases based on sample size and is also dependent
on the tree cover estimate and decreases as one moves away from
50% tree cover. SE was 4% at 200 points, 1.8% at 500 points, 1.4%
at 800 points, and 1.2% at 1,000 points.

Percent tree cover maps in each megacity were analyzed for
spatial patterns. The XY data files of percent tree cover for
each megacity were processed with the Getis Ord Gi∗ statistic
(Getis and Ord, 1992), also called hot spot analysis, using a fixed
distance bound. The Gi∗ statistic tests the null hypothesis that
the pattern of percent tree cover is complete spatial randomness,
and uses z-scores and p-values for each point to determine if
the null hypothesis can be rejected (Getis and Ord, 1992). This
research defined statistically significant at 5% clusters of low

percent tree cover to cold spots (z-value < 0, p <5%), and
statistically significant at 5% clusters of high percent tree cover
to hot spots (z-value > 0, p < 5%). The Gi∗ is a spatial statistic
for cluster detection that has been shown to detect local clusters
of dependence that may go undetected by global statistics such
as Moran’s I (Getis and Ord, 1992). The points identified as hot
spots were converted to 250m pixel grid files, which were then
converted to un-simplified polygons with interior boundaries
dissolved. The same was done for cold spots. Maps of hot and
cold spot clusters were examined for spatial asymmetries relative
to the megacity rural to urban gradient, using references such
as surrounding waters, high elevation terrain, city centers, and
major airports, marine ports, rivers, roads, and railroads. Google
Earth was used to identify some of these features, including
elevation profiles using trace path.

RESULTS

The best tree cover maps were obtained by adding the MOD44B
percent tree cover to the MOD44B standard deviation product,
which increased the city-wide average tree cover to 18.1%,
with an average difference of 1.8% compared with the photo-
interpreted value of 19.9% ± 1.2% standard error (Table 2).
The city-wide median tree cover was 17.3% for MOD44B
with standard deviation and was 22% for photo-interpreted
products. The MOD44B tree cover standard deviation was
added into each 250m pixel of tree cover, incorporating the
uncertainty across the 30 separate MOD44B estimates of tree
cover. Without the MOD44B standard deviation product added
into the tree cover map, the average city-wide estimate of tree
cover would be 11.1%, with a difference of 8.8% (seeTable 2). The
difference between photo-interpreted and MOD44B tree cover
and standard deviation varied from smallest in Istanbul, with a
difference of 0.1%, to largest in Kinshasa, with a differences of
11.8%. Adding the tree cover standard deviation to the MOD44B
tree cover product improved accuracy of city-wide estimates for
74% of cities. Of the 6 cities where error increased when standard
deviation was added to MOD44B, Seoul and Delhi had the lowest
differences, which were<1% for theMOD44B tree cover product
without standard deviation.

The MOD44B percent tree cover had a relative uniform
underestimation of tree cover that allowed for it to capture
with an R2 of 0.97 the trend in photo-interpreted estimates
from low to high tree cover (see red dotted line Figure 1).
The regression between MOD44B tree cover (without standard
deviation) and photo-interpreted tree cover was consistently
above the 1:1 line, which is evident in the intercept value of 10.889
in the regression equation (see equation of MOD44B_TC(%) in
Figure 1). When MOD44B tree cover and standard deviation
were combined, the regression with photo-interpreted tree
cover had the desired intercept of 0, and the bins up until
30% tree cover were within 5% of the photo-interpreted value
(see blue dashed line and equation of MOD44B_TC_SD(%)
in Figure 1).

The maps of tree cover combined with its standard
deviation were used to create a statistical snapshot of tree
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TABLE 2 | Megacity metropolitan area (km2 ) and city-wide photo-interpreted (PI) tree cover (TC) percent (%), PI TC standard error, MOD44B TC_1 without its standard

deviation, MOD44B TC_2 with its standard deviation, MOD44B quality on a scale of 0 to 8, with 0 best and 8 worst, difference between PI TC and MOD44B TC_1 (%),

and difference between PI TC and MOD44B TC_2 (%).

City Area TC PI SD PI TC MOD44B TC+SD MOD44B Quality

MOD44B

TC PI vs. TC

MOD44B Diff

TC PI vs. TC+SD

MOD44B Diff

– km2 % % % % (1–8) % %

Bangkok 4,493 19.4 1.3 7.9 17.2 4.9 11.5 2.2

Buenos Aires 2,941 22.0 1.3 9.5 13.8 2.7 12.5 8.2

Cairo 1,173 5.8 0.7 3.4 9.1 1 2.4 −3.3

Delhi 2,483 5.6 0.7 5.9 14.2 3.1 −0.3 −8.6

Dhaka 630 22.9 1.3 10.5 18.2 2.7 12.5 4.7

Istanbul 1,990 17.9 1.2 11.7 17.8 2.1 6.2 0.1

Jakarta 1,540 24.3 1.4 7.1 15.4 6.3 17.2 9.0

Karachi 713 14.9 1.1 1.4 7.6 2.3 13.5 7.3

Kinshasa 421 26.4 1.4 6.6 14.6 4.7 19.8 11.8

Lagos 1,025 22.1 1.3 4.8 13.3 4.5 17.4 8.8

Lima 1,421 5.3 0.7 2.2 9.2 5.2 3.1 −3.9

London 2,906 25.9 1.4 16.9 18.8 2.9 9.1 7.1

Manila 1,216 15.0 1.1 10.0 17.7 5.5 5.0 −2.7

Mexico City 2,219 11.2 1.0 6.8 15.6 3.9 4.4 −4.4

Moscow 2,318 29.1 1.4 19.6 27.8 3.4 9.5 1.3

New York City 7,492 39.2 1.5 25.9 31.8 2.5 13.3 7.4

Paris 3,144 26.4 1.4 18.9 25.9 1.6 7.5 0.5

Rhine Ruhr 8,326 31.9 1.47 18.6 25.3 2.1 13.4 6.6

São Paulo 2,488 27.4 1.4 11.2 17.3 1.3 16.2 10.1

Seoul 6,619 24.9 1.4 25.6 34.1 2.2 −0.7 −9.2

Shanghai 3,844 5.9 0.8 9.9 16.8 5.9 −4.0 −10.9

Tehran 5,024 16.1 1.2 0.9 9.2 2.2 15.2 6.9

Tokyo 18,720 17.4 1.2 19.4 25.4 2.7 −2.0 −8.0

Average 3615 19.9 1.2 11.1 18.1 3.3 8.8 1.8

Median 2483 22.0 1.3 9.9 17.2 2.7 9.5 2.2

Average and median values are reported in the bottom rows.

cover central tendency and variation within the 35 megacities.
Box-and-whisker plots show the median value and inter-quartile
range of percent tree cover tended to associate with the megacity
ecoregion (Figure 2). The 12 Tropical Moist megacities had a
median tree cover of 7% (± 7.8%) and upper quartile (75th
percentile) tree cover of 11.7%, close to the median tree cover
of 6.1% (± 4.2%) and upper quartile tree cover of 10.2% for
the 1 Temperate Grasslands megacity of Buenos Aires. The 13
Temperate Broadleaf megacities had amedian tree cover of 13.1%
(± 7.2%) and upper quartile tree cover of 24.2%. The 1 Flooded
Grasslands megacity of Cairo had a median tree cover of 0.2% (±
5.7%) and upper quartile tree cover of 5.7%. The 2Mediterranean
Forests megacities of Istanbul and Los Angeles had a median
tree cover of 4.6% (± 6.5%) and upper quartile tree cover of
10.2%. The 1 Mangroves megacity of Karachi had a median tree
cover of 0.2% (± 6.2%) and upper quartile tree cover of 0.9%.
The 1 Tropical Grasslands megacity of Kinshasa had a median
tree cover of 7.5% (± 8.0%) and upper quartile tree cover of
11.3%. The 4 Deserts megacities had a median tree cover of 2.5%
(± 8.0%) and upper quartile tree cover of 4.8%, greater median
percent tree cover than the Flooded Grasslands and Mangroves.

The maps were then transformed into maps of tree clusters,
showing tree cover was not uniformly distributed nor random
(Table 3 and Figure 3). Tree cover exhibited significant spatial
clustering into hot spots of relatively high tree cover and cold
spots of relatively low tree cover, but not zero tree cover (see
Figure 3 where green denotes hot spots, red denotes cold spots).
The tree cover hot spots occupied on average 20% of the megacity
area, and these hot spots had an average tree cover of 25%. New
York City had 43% of its area in hot spots, and Karachi had 4%
of its area in hot spots, while 90% of the megacities were within
10% of the average hot spot area. The megacities of Lima and
Tehran had hot spots with an average tree cover of 4% (± 7.7%),
which was a statistically significant cluster due to their city-
average tree cover of 1.6%. The cold spots occupied on average
24% of the megacity area, and these cold spots had an average
tree cover of 5%. The megacities of Karachi and Tehran had 0%
of area in cold spots due to the low city-average tree cover of
1.2%; Buenos Aires had 0.1% of area in cold spots. In the tree
cover cold spots the land cover types of non-tree cover vegetation
and non-vegetation occupied the majority of the area. A
descriptive characterization of the statistically significant percent
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FIGURE 1 | Regression between photo-interpreted (PI) tree cover (%) and two forms of MOD44B tree cover, with (blue dashed line) and without (red dotted line)

standard deviation (%), across 5% intervals. Each data label indicates the number of megacities sampled in the PI analysis.

tree cover clusters is provided in the Supplemental Materials

for 23 cities.
The spatial pattern of percent tree cover hot spots across the

megacities (green color in Figure 3) was largely organized around
the rural-urban interface, abutting agriculture or wetlands,
within higher elevation terrain, in parks and other recreation
areas (e.g., zoos or golf courses), and in some low-density
residential districts. These categories were then ranked from
most to least common across the megacities, and were: (1) high
elevation terrain in 11 cities; (2) wetlands in 11 cities; (3) parks
in 10 cities; (4) agricultural areas in 8 cities; (5) low-density
residential in 6 cities; and (6) bordering facilities like airports and
military bases in 4 cities.

The spatial pattern of percent tree cover cold spots across the
megacities (red color in Figure 3) was largely organized around
areas of concentrated urban land use, including downtown,
shipping ports, and high density residential, commercial or
industrial zones; it often followed expressways or railways. The
tree cover cold spots were also analyzed for spatial congruence
with land cover categories, which ranked from most to least
common as: (1) expressways in 18 cities; (2) downtown and
concentrated development in 14 cities; (3) railways in 12 cities;
(4) waterfront development in 11 cities; and (5) airports in
4 cities.

DISCUSSION

The MOD44B tree cover maps that use standard deviation of
tree cover are a transformative product allowing global access
to estimates of tree cover area and spatial patterns, and these
maps now enable environmental modeling, monitoring, and
management. These global maps had an average difference of
1.8% in their estimate of city-wide tree cover, which ranged from
0.1 to 11.8%, compared with the photo-interpreted estimate.
While the differences for some cities can be large relative to the
city-wide tree cover provided by photo-interpretation, there is
no other global product with the ability to provide equivalent
quality, and MOD44B provides it freely with updated maps each
year to help track temporal trends. Better than the city-wide
estimates of tree cover is the maps ability to explain spatial trends
in tree cover. In bins ranging from 0 to 85% tree cover, the
agreement had an R2 = 0.97, and for bins <= 30% tree cover, the
maps provided >95% accuracy. The 35 megacity maps identified
22,837 km2 of tree cover area among the estimated 0.6 billion
residents, generating $117 billion/yr in air pollution reduction
benefits based on the urban forest ecosystem benefit analysis of
Endreny et al. (2017). The benefits analysis of Endreny et al.
(2017) was limited to city-wide tree cover values obtained from
photo-interpretation, and these maps together with their i-Tree
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FIGURE 2 | The distribution of tree cover (%) within each of the 35 megacities, represented with box plots showing the median (50th percentile, black line), lower

quartile (25th percent, bottom of box), upper quartile (75th percent, top of box), 1.5 inter-quartile range (IQR, top whisker), and maximum values greater than the IQR

(open circles). The box colors represent the ecoregions.

tools enable analysis of spatial variation in benefits. Low percent
tree cover areas of the city may be a priority use for these maps,
given such areas are prime candidates for tree cover expansion.

The cause for tree cover underestimation by the MOD44B
product, without the standard error added, is attributed to urban
pixels containing a mixed spectral signal with development
features that the regression models were not trained to classify.
The tree cover within a 250 m2 pixel may be part of any
variety of tree cover plantings, including larger urban city
parks and forests >0.5 ha, pocket parks and gardens, trees on
streets or in public squares, and other green spaces with trees,
such as riparian corridors, rooftops, and nurseries (FAO, 2016).
The issue of tree cover underestimation is not attributed to
the quality of the satellite imagery used to generate MOD44B
products; images were only used if they passed criteria for
clarity of view and lack of cloud cover. Of the 8 imagery
date ranges, which effectively span the calendar year, on
average 5.7 had no visibility concerns and >90% of pixels
provided by MOD44B had at least 1 date range with no
visibility concerns.

Alternatives to the MOD44B derived tree cover maps depend
on the need for global coverage or freely available products. The
global and publicly available LandSat satellite product, although
at 30m resolution, has also been found to underestimate
percent tree cover by 9.7% in tests of urban areas across
the United States (Greenfield et al., 2009). LandSat does not
provide a standard deviation product to correct the error; such
correction lowered theMOD44B error to 1.8%. If global coverage
is not a requirement, a growing list of individual cities are
providing tree cover maps from very high resolution multi-
spectral imagery or LiDAR. At the resolution of 1-m tree cover
maps and with advanced classification algorithms, Basu et al.
(2015) achieved 74% accuracy in California cities, and Erker
et al. (2019) achieved 79% accuracy in Wisconsin cities, both
using the publicly available US National Agriculture Imagery
Program (NAIP) multi-spectral aerial imagery. Erker et al. (2019)
also classified tree cover with segments, by combining 1-m
pixels, and achieved accuracies >90% for segments 30-m or
larger, and a city-wide accuracy of 99.7%. Accuracy is based on
classification algorithm, image resolution, and target complexity,
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FIGURE 3A | The hot spot (green) and cold spot (red) clusters, city centers (dots), waters (blue), expressways (yellow lines), railways (black hashed lines), marine ports

(anchors), airports (airplanes) within the metropolitan areas of: (a) Bangkok, (b) Buenos Aires, (c) Cairo, (d) Delhi, (e) Dhaka, (f) Istanbul, (g) Jakarta, (h) Karachi, (i)

Kinshasa, (j) Lagos, (k) Lima, (l) London.
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FIGURE 3B | The hot spot (green) and cold spot (red) clusters, city centers (dots), waters (blue), expressways (yellow lines), railways (black hashed lines), marine ports

(anchors), airports (airplanes) within the metropolitan areas of: (a) Manila, (b) Mexico City, (c) Moscow, (d) New York City, (e) Paris, (f) Rhine Ruhr, (g) Sáo Paulo, (h)

Seoul, (i) Shanghai, (j) Tehran, (k) Tokyo, (m) Manila, (n) Mexico City, (o) Moscow, (p) New York City, (q) Paris, (r) Rhine Ruhr, (s) Sáo Paulo, (t) Seoul, (u) Shanghai,

(v) Tehran, (w) Tokyo.
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TABLE 3 | Megacity area (%) in tree cover (TC) hot spots (HS) and TC cold spots (CS), identified at a 5% significance based on Getis Ord analysis of MOD44B TC data,

and the average estimated TC, non-tree cover vegetation (NTCV), and non-vegetation (NV) in those hot spot and cold spot areas.

City City Area HS Area HS TC HS NTCV HS NV CS Area CS TC CS NTCV CS NV

- km2 % % % % % % % %

Bangkok 4,493 24 16 66 18 35.7 4 58 38

Buenos Aires 2,941 11 27 68 5 0.1 2 37 61

Cairo 1,173 24 12 73 16 39.4 0 0 100

Delhi 2,483 25 11 52 36 37.9 3 43 54

Dhaka 630 17 19 62 19 19.8 5 47 48

Istanbul 1,990 18 38 48 15 10.1 2 43 55

Jakarta 1,540 21 12 57 31 26.3 4 41 55

Karachi 713 4 17 55 28 0.0 0 0 0

Kinshasa 421 9 23 62 14 19.1 3 33 64

Lagos 1,025 13 18 68 18 9 1 10 89

Lima 1,421 21 4 28 67 26.2 1 16 83

London 2,906 17 36 50 15 21.6 6 67 27

Manila 1,216 15 27 63 10 18.5 4 37 59

Mexico City 2,219 16 20 58 23 11.4 2 29 70

Moscow 2,318 23 38 46 16 37.0 10 63 27

New York City 7,492 43 38 47 15 43.6 17 50 33

Paris 3,144 20 45 42 13 27.1 6 64 30

Rhine Ruhr 8,326 27 37 49 14 37 7 71 22

São Paulo 2,488 15 38 55 7 4.8 1 36 62

Seoul 6,619 29 52 34 14 43.4 10 44 46

Shanghai 3,844 19 17 57 26 23.8 6 42 52

Tehran 5,024 12 3 56 41 0.0 0 0 0

Tokyo 18,720 30 37 49 14 52.9 11 53 36

demonstrated by accuracies ranging from 80 to 96% for 5 separate
segment based classification studies using sub meter imagery
(Erker et al., 2019). Some classification algorithms fuse multi-
spectral data with LiDAR data to classify the urban tree cover
and even tree species, with Alonzo et al. (2014) achieving species
accuracy of 83% for a city in California. Ahles et al. (2016)
also fuse LiDAR with multi-spectral aerial imagery and hand
editing to create urban tree cover maps with > 90% accuracy. As
the classification algorithms improve and more high resolution
global imagery becomes publicly available, tree cover maps for
the global megacities should improve.

The MOD44B tree cover product has previously been limited
to tree cover area estimates where development was a small
fraction of total cover. In the Brazilian Amazon, tests of the
MOD44B product showed it was 90% accurate in detection
of deforestation for areas larger than 3 hectares (Morton
et al., 2005). In inter-tropical zone forested areas of Mexico,
the MOD44B product was used successfully estimate trends
in above ground biomass (Aguirre-Salado et al., 2012). Tests
of the MOD44B product across all of China, aggregated
to 1 km spatial resolution segments, showed it captured
patterns of increasing tree cover in different forest biomes,
with its accuracy highest in alpine and evergreen forests,
and lowest in deciduous broadleaf and deciduous needle-leaf
forests (Liu et al., 2006). The main reason for the small
error of the MOD44B product in many places across the

world is its use of regional calibration to develop regression
tree models, which contrasts with global calibration for most
other satellite-derived land cover products (Schwarz et al.,
2004). If this regional regression were to extend to urban
areas with varying tree cover, it may result in a MOD44B
product that offers greater accuracy for urban forestry research
and management.

The detailed maps of tree cover hot spots, tree cover
cold spots, and areas without tree cover can assist global,
regional, and local efforts to use urban forests to address
more than half of the 17 UN Sustainable Development Goals.
Using maps for strategic tree cover management may help
with complex threats caused by climate change disruptions.
These disruptions indirectly reduce tree cover expansion due
to redirected budgets, and also directly reduce tree cover
expansion due to extreme temperatures, wildfire, sea-level rise,
flooding, drought, salinization of soils, and invasive pathogens,
pests (Endreny, 2018). In addition, there are more perceived
tree cover disservices with higher temperatures triggering
more pollen allergens and pollution pre-cursor emissions from
trees (Endreny, 2018). A self-reinforcing feedback loop is
possible for expanding urban tree cover, with benefits paying
for new discoveries and public-private partnerships that help
in specific areas such as tree species selection and broader
areas of socialecological frameworks, ecological engineering
designs, and eco-technologies that together reshape the urban
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form to sustainably meet the needs of humans and nature
(Endreny, 2018).

The best strategies for urban tree cover expansion will
anticipate the drivers of tree cover spatial variation and the
causes for expansion, protection, and removal. Locke et al. (2016)
describe 4 broad theories that explain drivers of tree cover
variation: (1) population density explanation as a zero-sum game
of urban growth displacing existing tree cover and opportunities
for future tree cover; (2) social stratification explanation as
wealthier residents having personal and political power to protect
tree cover on their own and nearby public and private lands,
with the desire for purchasing tree cover sometimes originating
from a habit of consumerism, called the luxury effect; (3) lifestyle
explanation as a desire for social acceptance and the tendency
to adopt the tree stewardship behaviors of the neighborhood,
sometimes called ecology of prestige; and (4) a landscape legacy
explanation as a tree cover outcome from historical decisions,
noting the lag time between planting, and growth. Multiple
drivers can intersect in unexpected ways, as evidenced by the
widespread tree cover regeneration and natural expansion in
neglected vacant urban lots (Nowak, 2012a). Other drivers of
tree cover include high elevation with steep slopes making
removal and planting difficult, and urban form such as buildings
and expressways, perhaps a subset of the population density
explanation (Locke et al., 2016). These drivers may explain tree
cluster patterns in the 35megacities, regardless of their ecoregion,
where hot spots were found in high elevation areas, and tree
cover cold spots were along highways and other concentrated
development comprising urban form.

Recognizing that inequalities in wealth and power help explain
the uneven distribution of tree cover, environmental justice
becomes a necessary strategy in managing for tree cover and
services. In the US megacities of Los Angeles and New York
City, tree cover was positively correlated with median household
income (Schwarz et al., 2015). Landry and Chakraborty (2009)
found the inequity hypothesis explained a significantly lower
tree cover in public spaces within low-income and minority
neighborhoods. A larger literature review found a non-uniform
but established tendency for less tree cover in areas of low-income
and minority residents, and concluded this is an environmental
injustice given those communities are likely missing out on
the associated ecosystem services (Gerrish and Watkins, 2018).
Across European countries, the World Health Organization
determined that regardless of tree cover proximity to low-
income neighborhoods, residents in those neighborhoods are
more vulnerable and suffer greater health impacts of air pollution
(World Health Organization, 2010a,b).

Globally, vulnerability to air pollution, and particularly
PM2.5, has been shown to increase with decreasing
socioeconomic status, and exposure increases with proximity
to high traffic major roadways. Hajat et al. (2015) found that
even when air pollution exposure in Europe increased for
higher income residents, across Africa, Asia, Europe and North
America the adverse cardiovascular and pulmonary impacts
from air pollution disproportionately affected those with low
socioeconomic status. A literature review by Brugge et al.
(2015) showed traffic related air pollutants extend beyond major
roadways by 200–400m, and residents within this range have

the highest rates of cardiovascular and pulmonary impacts.
Strategies for reducing health impacts of these air pollutants,
beyond the mechanical measures (which are important) and
include the use of trees as buffers, barriers and filters (Brugge
et al., 2015). The exposure and impact to traffic related air
pollutants extends beyond local residents and includes those
commuting and working near major roadways (Brantley et al.,
2014). Brantley et al. (2014) advocate for strategically using trees
and associated vegetation to achieve air quality improvements,
and obtain regulatory benefits of moderating temperature,
stormwater, and noise pollution, as well as cultural, supporting,
and provisioning services. To achieve the air quality benefits,
Brantley et al. (2014) emphasize that tree planting proceed
with expert input so as to avoid inadvertently trapping or
concentrating pollutants and other disservices. There are even
more incentives to increase tree cover and reduce air pollution
given the preliminary findings shows reduced exposure to PM2.5
results in lower death rates from the virus SARS-CoV-2 that
created the 2019–20 coronavirus pandemic (Wu et al., 2020).

Tree cover expansion should extend beyond the major
roadways to benefit all residents and capture multiple benefits.
Innovative ideas include the use of vertical forests for cities
increasing in building height, more landscaping trees for those
increasing in building coverage, and more forested parks near
high density dwellings (Moller, 2015). Tree cover expansion plans
should anticipate changes in urban form as cities respond to
disruptive technologies, climate change and natural disasters,
and increasing urban populations. Three gradual ways urban
form has accommodated population growth are: (1) increasing
building crowding, i.e., population per floor area; (2) increasing
building height, i.e., ratio of floor area to footprint of residential
building; and (3) increasing building coverage, i.e., urban sprawl
and proportion of city occupied by residential buildings (The
Economist, 2019). We should anticipate each urban area will
need and want their tree maps to craft local strategies to manage
tree cover and secure needed benefits. To this end, a global
program called Tree Cities of the World was launched by the
Food and Agriculture Organization of the UN and the Arbor
Day Foundation to help cities achieve individual targets for tree
cover expansion. Using the maps from this research, cities could
provide programming that gets the most vulnerable and those
with nature-deficit disorder into nearby tree cover hot spots and
harvest their renewable resource benefits. Connecting citizens
with the pleasures of the urban forest will result in more forest
stewards helping to expand tree cover.

CONCLUSIONS

This study prepared, tested, and characterized percent tree
cover maps using the 2017 MOD44B tree cover and standard
deviation product for 35 megacities across the world. The
study demonstrated:

1. The combined MOD44B tree cover and standard deviation
of tree cover products generated maps with average city-
wide tree cover within 1.8% of the photo-interpreted
estimate 19.9%.

Frontiers in Sustainable Cities | www.frontiersin.org 11 May 2020 | Volume 2 | Article 16

https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles


Endreny et al. Tree Cover in the World’s Megacities

2. Across 35 megacities, the tree cover maps explained tree
cover trends from low to high tree cover with a coefficient of
determination of 0.97, and was most accurate in pixels that
had 30% or less tree cover.

3. Statistical tests at p = 0.05 showed the tree cover spatial
distribution was not random within megacities, and exhibited
significant clustering into hot spots of relatively high tree
cover and cold spots of relatively low tree cover.

4. The tree cover hot spots were primarily organized at the city
edges abutting agriculture or wetlands, and in high elevation
terrain likely difficult to develop.

5. The tree cover cold spots were primarily in highly developed
areas and along expressway and other transportation
corridors, where traffic related air pollution and lower-income
residents often intersect and result in adverse health impacts.

The maps of tree cover provide needed inputs for predictive
models of ecosystem services, such as i-Tree Tools, and they
can be updated each year with new MOD44B data. The next
steps involve using these maps, or better local maps when
available, to assess the spatial distribution of ecosystem services
and associated vulnerabilities within cities. Holistic tree cover
expansion programs can diminish socioeconomic disparities and
improve human well-being and biodiversity.
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