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The reliable and affordable supply of energy through interconnected systems
represent a critical infrastructure challenge. Seasonal and interannual variability in
climate variables —primarily precipitation and temperature —can increase the vulnerability
of such systems during climate extremes. The objective of this study is to understand and
quantify the role of temperature variability on electricity consumption over representative
areas of the Southern United States. We consider two states, Tennessee and Texas,
which represent different climate regimes and have limited electricity trade with adjacent
regions. Results from regression tests indicate that regional population growth explains
most of the variability in electricity demand at decadal time scales, whereas temperature
explains 44-67% of the electricity demand variability at seasonal time scales. Seasonal
temperature forecasts from general circulation models are also used to develop
season-ahead power demand forecasts. Results suggest that the use of climate
forecasts can potentially help to project future residential electricity demand at the
monthly time scale.

Capsule Summary: Seasonal temperature forecasts from GCMs can potentially
help in predicting season-ahead residential power demand forecasts for states in the
Southern US.

Keywords: climate forecasts, residential electricity demand, climatology, seasonal variability, regression analysis

INTRODUCTION

The climate and weather influence in energy systems could be significantly noticed over the years
affecting predictability and decision-making. Extreme weather and climate conditions are expected
to increasingly and critically influence the efficiency and economics of all energy systems (Ronalds
et al., 2010). Such conditions have strong influence on energy consumption, which directly affects
planning and operations of these systems. The critical interplay between energy consumption and
climate is present at various spatio-temporal scales. The impact of fossil-based energy consumption
on climate change has been well-documented (e.g., National Research Council, 2010; IPCC Climate
Change, 2013). In turn, climate change can lead to increased energy demands. For example, several
studies quantify the increase in residential heating and cooling demands and electric power supply
under climate change scenarios (Sailor and Pavlova, 2003; Isaac and Vuuren, 2009; Bartos and
Chester, 2015). While the interplay between climate change and energy focus on planning and
potential feedbacks at decadal and longer time scales, seasonal to interannual variations in climate
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also impact the water and energy sectors (De Queiroz et al., 2016;
Chilkoti et al., 2017). The role of climate variability—particularly
precipitation and temperature—on prolonged droughts and its
impact on hydropower production as well as on limited water
availability for cooling of thermal power plants has been well-
documented (e.g., Maurer and Lettenmaier, 2003).

Seasonal power demand primarily depends on temperature
and is lowest if the mean daily temperature in a given season
hovers between 15.6°C (60°F) to 21.1°C (70°F) (Changnon et al.,
1995; Changnon and Kunkel, 1999). Residential and commercial
demands are quite temperature sensitive: significant deviations
in mean daily temperatures can result in fluctuations of 5-10%
in total power demand, which can severely stress the power
grid (Changnon, 2003). Electric utilities employ hourly and daily
temperature forecasts to estimate peak load demands (Pardo
et al., 2002; Mirasgedis et al., 2006). The estimation of peak
load (e.g., Auffhammer et al., 2017; Burillo et al., 2017; Reyna
and Chester, 2017) is key when conducting planning analysis to
support decision-making in power systems, however, it differs
from the research scope of the present manuscript. Most utilities
also consider derived variables—heating degree days (HDD)
and cooling degree days (CDD)—that quantify the amount of
energy it takes to heat or cool a building to a base/reference
temperature, e.g., 21.1°C (70°F) (Franco and Sanstad, 2008).
These studies posit that HDD and CDD are indicative of the
energy-temperature relationship for residential heating/cooling
at daily to weekly time scales (Sailor and Munoz, 1997; Hor et al.,
2005).

The majority of studies estimating electricity demand,
particularly residential cooling and heating loads, have focused
over the long-term changes considering climate change
projections (Frank, 2005; Gaterell and McEvoy, 2005; Holmes
and Hacker, 2007). The findings emphasize that climate change
increases cooling loads and reduces heating loads, which can
possibly lead to a net reduction in electricity demand conditioned
on geographical locations. A recent study focusing on California
concluded that under high temperature (climate change scenario
of Representative Concentration Pathway (RCP) 8.5), residential
electricity demand can increase between 47 and 87% (depending
on the electrification levels) during 2020 and 2060 (Reyna and
Chester, 2017).

The focus of this work is to provide an understanding about
the effects of seasonal climate variability in power demand
that will be useful for generating future forecasts and support
operational planning in power systems. Improved monthly to
seasonal power demand forecasts could aid in the development
of system maintenance plans, forward fuel purchases, and
scheduling of hydro and thermal-based power plants. However,
the impact of climate variability at seasonal to interannual time
scales on electricity demand in power systems has been less
studied. The work of Wang et al. (2017) presents a modeling and
forecasting framework using a Bayesian regression approach for
predicting the summer per-capita residential electricity demand
covering the contiguous U.S., where States GDP, electricity
prices, cooling degree days, and previous month as well as
previous year demand are used as predictors. An analysis of the
residential and commercial electricity consumption sensitivity to

climate variables (temperature, precipitation and wind speed)
and economic factors (electricity prices, gross state product
and unemployment rate) using different predictive models was
performed for Florida state in Mukhopadhyay and Nateghi
(2017). The work of De Felice et al. (2015) provides an assessment
of the use of seasonal climate predictions for power systems
management, focusing in monthly demand forecasting during
the summer for the Italian system. All these previous studies
focused on developing predictive models for power demand,
but this study focuses on understanding the role of interannual
temperature variability in observed and forecasted temperature
on modulating the residential electricity demand. Moreover, we
investigate the utility of temperature forecasts developed from
climate models in predicting the power demand during winter
and summer for Southern U.S. areas.

More specifically, the goal of this study is 2-fold. First, we
quantify the role of year-to-year seasonal temperature variability
in explaining the observed variability in electricity demand.
Second, we evaluate the potential utility of seasonal temperature
forecasts obtained from general circulation models (GCMs) in
explaining the observed variability in electricity demand. We
hypothesize that variation in year-to-year seasonal temperature
drive changes in electricity demand, while temperature variations
at a sub-daily time scale modulate the peak and shoulder loads,
which we do not consider in this study. To our knowledge, this
is the first study that exclusively focuses on quantifying the role
of temperature variability on seasonal electricity demand. For
this purpose, we analyze electricity demand from two states,
Tennessee (TN) and Texas (TX), in winter and summer over
a period of 26 years. The primary challenge in relating climate
variability to electricity demand is that at interannual time
scales, electricity demand is typically driven by population and
economic growth. Our analysis systematically approaches this
first by explaining the role of population growth on electricity
demand and then relates the unexplained variability in seasonal
power demand with the interannual variability in temperature
over the two selected states.

DATA METHODS AND SOURCES
Electricity Data

We quantify the role of temperature in influencing the monthly
to seasonal electricity demand in two seasons (winter and
summer) over two states (TN and TX) for the period 1990-
2015. These southern areas were chosen because of their relatively
steady population growth over the study time period and their
relatively high seasonal variation in electricity consumption.
The latter is particularly important, as a high temperature
variation can potentially better explain the seasonal variations
in electricity demand. Further, TX experiences a more arid
climate, where TN experiences more humid conditions. Thus,
these two states provide a good setting for evaluating the
role of temperature forecasts in explaining the monthly-to-
seasonal residential electricity demand. We considered the winter
months—January, February, and March (JFM)—and the summer
months—July, August, and September (JAS)—since those are the
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two seasons with increased electricity demand due to increased
heating and cooling needs, respectively.

We obtained monthly residential electricity demand data
from the two states, TN and TX, from the U.S. Energy
Information Administration (2015), which provides monthly
electricity sales and revenues by sector and state. We took
these demand spreadsheets for the period 1990-2015,
filtered them by state, and then summed every electricity
consumption category to get an estimate of total monthly
electricity demand. We also tabulated residential electricity
demand separately to test whether temperature could explain
more of the observed variability. With respect to the 78
data points for each season, TN has a sample mean of
3.503 TWh of monthly residential electricity consumption
in the winter and 3.658 TWh in the summer (variances are
0.436 and 0.341, respectively). TX has a sample mean of
8.520 TWh of monthly residential electricity consumption
in the winter and 13.258 TWh in the summer (variances
are 4.280 and 5.316, respectively). Details of the statistical
analysis for the variation of the residential -electricity
demand for both states and seasons is provided in the
Supplementary Material.

Population Data

Accurate estimates of monthly population data are difficult to
obtain. As the census is only taken every 10 years, we obtained
annual population estimates for the years in between from the US
Census Bureau (2015), which releases annual estimates for July
of every year and linearly interpolated the annual values to get
monthly estimates of population.

Temperature Data

To understand the role of temperature variability in explaining
the variability in state-level electricity demand, sub-state-level
temperature is needed. Historical monthly average temperature
data is available from NOAA (2016) for each climate division
in the US from 1895 through. A climate division means 1
of the 344 divisions in the continental U.S. that represents
regions located within a state that are climatically homogeneous
(NOAA, 2016). Tennessee and Texas have four and 10 climate
divisions, respectively, as shown in Figure 1. Given the role
of population in electricity demand, the climate in more
highly populated areas is expected to have a larger impact
on electricity demand than in less populated areas. Using
the monthly county population data described in section
Population Data, population data within a climate division
was calculated by summing the county population data for
all counties located within a climate division. Figure 1 shows
the average climate division population for 1990-2015 as a
percentage of the total state population. In Tennessee, 93% of
the population is located in three of the four climate divisions,
and in Texas, the western half of the state only contains 15%
of the state population while 71% resides in three of the
10 climate divisions. Given the spatially varying population
densities in both states, we use the population weighted average
temperature as shown in Equation (1) for a state with n.y

climate divisions:

Ned
1 ‘ .
T;,m = Psi Z P;,m . T;,m’ (1)

Lm =1

where i is the climate division, m is the month, ¢ is the
year and Tj, denotes the state population weighted average
temperature, Pj, denotes the population in the state, P;',m
denotes the population in each climate division, and T;',m
denotes the temperature in each climate division. Using
Equation 1, we obtained monthly state population weighted
average temperature for 1990-2015. This state temperature
will be more representative of the temperature in areas
of higher population than the spatial- or area-weighted
average temperature.

The meteorological conditions at both states differ
significantly during the year. While TN has a mean of 5.8°C
(42.5°F) during the winter season and 23.4°C (74.05°F) during
the summer season, TX has 12.1°C (53.84°F) in the winter and
27.5°C (81.46°F) in the summer, respectively. The temperature
variability is more pronounced in TN that has a coefficient
of variation of 0.146 during the winter and 0.053 during the
summer, while TX presents a coefficient of variation of 0.10
during the winter and 0.04 during the summer.

Temperature Forecasts Database

To investigate the potential in forecasting monthly power
demands during winter and summer over the two states, we
utilize the retrospective monthly temperature forecasts from
ECHAM4.5 (Li and Goddard, 2005) and NOAAs Climate
Forecast System (CFS) (Saha et al., 2006) obtained from the
International Research Institute of Climate and Society (IRI)
data library, which have good skills in forecasting surface
temperature in the U.S. and have long retrospective forecasts
available from 1960. Temperature forecasts from ECHAMA4.5,
an atmospheric general circulation model (GCM), was obtained
by forcing it with 3-month ahead sea-surface temperature
(SST) forecasts obtained using the constructed analog method
from Van Den Dool (1994). CFS is a coupled GCM between
ocean and atmosphere and it provides both retrospective and
real-time temperature forecasts starting in 1957. For 3-month
ahead forecasts, we averaged the gridded temperature forecasts
over each state to obtain JEM (JAS) monthly time series of
temperature forecasts issued at the beginning of January (July)
for the period 1990-2015. Temperature forecasts from both
models are available at 2.5° grid points, and to obtain the state
temperature forecast for each state, we will spatially average
the forecasts for grid points within each state. For forecasts,
we did not consider population-weighted temperature since
they are available at large-spatial scale. Given the population-
weighted temperature and the forecast temperature exhibit
strong correlation (Table 1), its ability in explaining the power
demand variability remained good. For Texas, we used the
coordinates (34.307144, —103.011246) for the northwest corner
and (29.764377, —94.397964) for the southeast corner. For
Tennessee, we used (36.465472, —89.529305) for the northwest
corner and (35.003003, —84.364872) for the southeast corner.
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FIGURE 1 | Map of the climate divisions in Tennessee and Texas. The color of the climate division indicates the average percentage of the state population in each
climate division for the timeframe of this study. Darker colors represent a higher percentage.

TABLE 1 | Correlation between observed population weighted average
temperature and forecasted average temperature from two atmospheric GCM
forecasts, CFS and ECHAM 4.5, for the winter and summer seasons.

Season Tennessee Texas
CFS forecast ECHAM4.5 CFS forecast ECHAM4.5
forecast forecast
JFM 0.771 0.734 0.858 0.816
JAS 0.860 0.825 0.834 0.833

In this study, we utilize the forecasted ensemble mean from
each GCM, which is obtained by computing the average
over their respective ensembles to obtain 3-month ahead
temperature forecasts for the winter and summer seasons over

the period 1990-2015.

Natural Gas Consumption

We also considered natural gas consumption as a potential
variable for residential heating loads that could replace electricity
for heating. Monthly consumption of natural gas consumption
was obtained from the EIA for the period 1990-2015 (Energy

Information Administration, 2019).

RESULTS AND DISCUSSION

Relationship Between Population and
Electricity Demand
Since we are explaining the variability in power demand
over a 26 year period, we expect population to be the
primary driver of electricity demand. This is indicated by the
linear trend (Figure 2) between the population and electricity
demand during the winter and summer seasons by the two
systems. For TN, the coefficient of determination between
the population and the electricity demand during the winter
(summer) was 0.40 (0.68), whereas for the TX system, the
population explained 0.66 (0.74) of the variability in electricity
demand during the winter (summer) season. Even though the
variability explained by population is statistically significant at
a 95% confidence level, unexplained variance in the electricity
demand could be due to other factors, such as industrial
growth and other development. We also considered each
State’s Gross Domestic Product (GDP) as another explanatory
variable for electricity demand variability over the study period
(Supplementary Figure 1). However, we found the explained
variability by both population growth and GDP were almost the
same, since correlation between GDP and population growth
was very high. Results for the regression of electricity demand
and GDP are presented in the Supplementary Material, and
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as can be noticed the variability explained by GDP is lesser ~The Role of Temperature to Explain the
than population. Hence, we decided to consider population |nterannual Variability in Electricity
growth as the primary variable for obtaining the residuals, since  Demand

monthly population values could be better interpolated based on

We hypothesize that the unexplained variance in electricity
annual population.

demand could be partially explained by the interannual
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variation in seasonal temperature. To evaluate this hypothesis,
we obtained the monthly residuals between the electricity
demand and population from Figure2 during the winter
and summer seasons for the TX and TN systems. Figure 3
shows the scatterplot of monthly residuals with observed
monthly population-weighted average temperature for the
winter (summer) season for both systems. For TN, the
monthly population weighted average temperature explained
63% (44%) of the monthly residual variance remaining
from the regression of electricity demand and population
growth for the winter (summer) season. We multiplied
the unexplained variance from the population-electricity
demand regression (Figure2) by the explained variance
from the residual-population weighted average temperature

regression (Figure 3) to estimate the total variance explained
by temperature on seasonal electricity demand. For the TN
system, the population weighted temperature explained an
additional 38% (i.e., [1-0.40] (Figure2A)* 0.63 (Figure 3A))
of the interannual variability in the winter electricity demand.
Similarly, considering population weighted temperature
explained an additional 14% of the variability in the TN
summer electricity demand. From Figures 3C,D for the TX
system, the R? between residuals was 67% (46%) for the winter
(summer) season. Thus, considering the population weighted
average temperature explained an additional 23% (12%) of
the interannual variability in TX electricity demand. We also
performed a similar analysis to identify the role of population
and weighted average temperature in residential electricity
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demand for both states. The results were very similar to those
above, and thus omitted.

In the case of the TX system, we observe that temperature
explains more variability in both the winter and summer
electricity demand. This is partly due to increased interannual
variability in the seasonal temperature for the TX system.
From the perspective of developing electricity demand forecasts
for the upcoming season, any variability around the projected
demand will be predominantly due to potential changes in
seasonal average daily minimum/maximum temperature, which
in turn affect heating/cooling loads. Thus, from Figure 3,
considering population weighted average temperature could
provide information that helps explain the variability in

electricity demand. From a seasonal planning and management
perspective, the potential information on changes in electricity
demand due to the variability in temperature could help utilities
to properly stockpile fuel and schedule maintenance of existing
power generation plants.

Potential to Forecast Seasonal Electricity
Demand Using GCM Temperature

Forecasts

We also evaluated the potential in developing season-ahead
power demand forecasts using the forecasted temperature from
two GCMs, ECHAM4.5 and CFS, for the TX and TN systems.
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Several studies have evaluated the skill in predicting seasonal
temperature forecasts and found that the skill in predicting
the interannual variation in temperature is in general higher
than the one obtained when predicting the precipitation over
many parts of the continental US (e.g., Goddard et al., 2003;
Devineni and Sankarasubramanian, 2010a,b). Table 1 shows the
correlation between the observed average temperature and the
forecasted average temperature for the two systems during the
winter and summer seasons. The computed correlations are
statistically significant at a 95% confidence level (£1.96/,/n—3,
where “n” denotes the number of data points used to calculate
the correlation). Table 1 indicates that the skill of temperature
forecasts from both GCMs in predicting the population weighted
temperature is statistically significant at a 95% confidence

interval even though the forecasts are spatially averaged rather
than population weighted. Figures4, 5 show the skill of
temperature forecasts in explaining the residuals obtained
between electricity demand and population growth. From both
figures, we can infer that the skill of forecasted temperature in
predicting interannual electricity demand variations is similar
to that when observed temperature is used instead (Figure 3).
Further, the skill exhibited by the CFS model is in general
higher than the skill exhibited by the ECHAM4.5 in predicting
the interannual variations in the residuals between electricity
demand and population growth. The skill associated with
temperature forecasts presented in Figures 4, 5 are higher in
general for the winter than in the summer. This is consistent
with the better ability to predict/forecast winter precipitation
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TABLE 2 | Root mean square error in the predicted power demand from the
regression against population and GCM forecasted temperature.

Season Tennessee Texas
CFS forecast ECHAM4.5 CFS forecast ECHAMA4.5
forecast forecast
JFM 0.760 0.712 0.884 0.855
JAS 0.752 0.763 0.800 0.804

and temperature than in the summer, since the seasonal climate
is more influenced by the ENSO-related variability (Goddard
et al,, 2003). Also, summer climate is more influenced by local
disturbances, whereas winter climate is influenced by structured
low-frequency oscillations (Goddard et al., 2003; Devineni and
Sankarasubramanian, 2010a,b). Table 2 presents the root mean
square error of the regression between electricity demand vs.
population and temperature forecasts from GCMs, where results
are between 71.2-76.3% for Tennessee and 80.4-88.4% for Texas.
This analysis shows the ability of GCM forecasts in predicting the
power demand for the two seasons in both states.

DISCUSSION AND REMARKS

Findings from Figures2-5 show that both observed and
forecasted temperature significantly explain the interannual
variability in electricity demand residuals, which were obtained
by regressing the electricity demand against the population
served. This indicates that population growth in a region plays
an important role in explaining the variability in electricity
demand at decadal time scales, whereas temperature has a
significant effect on electricity demand variability at seasonal
time scales. Numerous studies have developed seasonal
streamflow forecasts using seasonal precipitation forecasts
from GCMs (Maurer and Lettenmaier, 2003; Oludhe et al,
2013; Sinha and Sankarasubramanian, 2013). Studies have
also shown that the skill in predicting seasonal temperature
is much higher than that of precipitation (Goddard et al.,
2003; and Sankarasubramanian, 2010a). Given
the similar level of variability in explaining the power
demand by both observed and forecasted temperature, this
study underscores the potential for developing seasonal
electricity demand forecasts contingent on temperature
forecasts from GCMs. To begin with, simple low-dimensional
empirical models that utilize the principal components of
temperature forecasts could be used to develop electricity
demand forecasts. Multi-model temperature forecasts can
also be used to develop electricity demand forecasts since it
reduces the uncertainty associated with a particular GCM
and can lead to a better calibrated forecast (Goddard et al.,
2003; Devineni and Sankarasubramanian, 2010a), and future
studies could explore that in the context of seasonal power
demand forecasting.

Studies utilizing streamflow forecasts derived from seasonal
climate forecasts have clearly improved reservoir management,

Devineni

particularly hydropower generation, over the status quo use
of climatology (i.e., no forecasts) (Sankarasubramanian et al.,
2009a; Oludhe et al., 2013). Thus, developing electricity demand
forecasts along with streamflow forecasts at seasonal time scales
could potentially lower the cost of electric dispatch in at least five
ways: (1) operational planning for generation and transmission
systems, (2) projecting the need for emissions allowances in
coming months, (3) forward purchases of fuel reserves (e.g.,
coal stock piles), (4) demand response planning, and (5)
hydroelectric release planning. Thus, the information available
from electricity demand forecasts and streamflow forecasts
could be used within power system and reservoir management
models to minimize the cost of power generation. Studies have
shown that the utility of forecasts increases as the demand
increases under a given reservoir system capacity (Maurer
and Lettenmaier, 2003; Sankarasubramanian et al., 2009b). In
a similar context, as the electricity demand increases, the
availability of demand forecasts is expected to facilitate improved
power system operation (Sankarasubramanian et al., 2014). In
addition, as the U.S. power system continues to decarbonize,
an increasing share of electricity demand will likely be met by
variable renewables. Under such conditions, electricity supply—
in addition to demand—will become increasing dependent on
the prevailing meteorological and climatic conditions. As such
it will become increasing important to improve the linkage
between forecasted seasonal climate and electricity supply
and demand.

This work did not explicitly attribute the role of efficiency
in power demand consumption in explaining the interannual
variability in the winter and summer demand for the two states
since we did not find any temporal trend in the power demand
residual obtained after regressing with the population. With
increased data availability, if the efficiency in the power demand
is significant as in Greening et al. (2000), then it could be
explicitly incorporated by considering the previous year demand
as a predictor as in Wang et al. (2017). Hence, for our analysis
with the two states, efficiency in power consumption did not
play any substantial role. Nonetheless, we attempted to use the
previous month demand as a predictor of the residual of the
analysis after the regression with respect to the temperature. This
additional predictor in TN had a coeflicient of determination of
1% (13%) in the winter (summer), and in TX the same predictor
had a coeflicient of determination of 1% (5%) in the winter
(summer) (Supplementary Figure 2).

In the winter season, we found that residential natural
gas (NG) consumption plays a role in explaining the
variability and it was included as a predictor for both TN
and TX. For both states, the natural gas consumption
explained 8% (TN) and 10% (TX) variability as a
substitution effect in accounting winter heating loads
(Supplementary Figure 3). During the summer, NG was
not significant because it is not used as a source for cooling,
hence the explained variability was very low (not reported
for brevity). The final resulting residual diagnostic plots
(Supplementary Figure 4) for winter and summer show the
residuals are normally distributed based on the reported
skewness of the residuals.
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CONCLUSION

This work presented a framework to assess the role of
temperature variability on explaining seasonal residential
electricity demand and it was applied to analyze two Southern
states in the US. The methodology is based on regression
analysis and employs population, temperature forecasts from
general circulation models, natural gas consumption, and
previous month electricity demand as predictors of the monthly
residential electricity demand. Results from the analysis carried
out indicate that regional population growth explains most of
the residential electricity demand variability at longer time scales
(i.e., 10-20 years), whereas temperature explains 44-67% of
the electricity demand variability at seasonal time scales. We
have also assessed the use of seasonal temperature forecasts
from general circulation models to develop season-ahead power
demand forecasts. Results suggest that the root mean square
error in the predicted power demand from the regression against
population and GCM forecasted temperature are between
71.2-76.3% (Tennessee) and 80.4-88.4% (Texas). Therefore, the
approach combined with the analysis presented here suggest that
the use of climate forecasts can potentially help to project future
residential electricity demand at monthly to seasonal time scale.
Findings from this study also provide a basis for setting up
adaptive management of power systems contingent on seasonal
climate information by continuously developing monthly
electricity demand forecasts based on the monthly updated
climate forecasts. While this study considered two largely self-
contained systems, the approach presented here could be used
to analyze electricity demand in other states and countries.
This paper has also focused on providing an understanding
about the effects of seasonal climate variability in power
demand using other predictor variables, such as population
and natural gas consumption. Future works could explore
additional predictors, such as electricity prices and energy
efficiency for estimating future power demand. We also note
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