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Classical neural networks such as feedforward multi-layer perceptron models (MLPs) are

well established as universal approximators and as such, show promise in applications

such as static state estimation in power transmission systems. The dynamic nature of

distributed generation (i.e. solar and wind), vehicle to grid technology (V2G) and false

data injection attacks (FDIAs), may pose significant challenges to the application of

classical MLPs to state estimation (SE) and state forecasting (SF) in power distribution

systems. This paper investigates the application of conventional neural networks (MLPs)

and deep learning based models such as convolutional neural networks (CNNs) and

long-short term networks (LSTMs) to mitigate the aforementioned challenges in power

distribution systems. The ability of MLPs to perform regression to perform power system

state estimation will be investigated. MLPs are considered based upon their promise

to learn complex functional mapping between datasets with many features. CNNs and

LSTMs are considered based upon their promise to perform time-series forecasting by

learning the correlation of the dataset being predicted. The performance of MLPS, CNNs,

and LSTMs to perform state estimation and state forecasting will be presented in terms

of average root-mean square error (RMSE) and training execution time. An IEEE standard

34-bus test system is used to illustrate the proposed conventional neural network and

deep learning methods and their effectiveness to perform power system state estimation

and power system state forecasting.

Keywords: artificial neural networks (ANNs), multilayer perceptron networks (MLPs), convolutional neural

networks (CNNS), long short-term memory networks (LSTMs), state estimation, state forecasting, distribution

systems

INTRODUCTION

In power systems an essential requirement is that of resiliency. In general, resiliency includes the
ability of a power system to withstand and recover quickly from events that may be considered
low-frequency, yet high-impact events or adverse conditions.

Examples of such events or adverse conditions relate to but are not limited to the following:
Extreme weather, Natural disasters, Man-made outages (physical, cyber, coordinated), Lack of
Observability, Topology Errors, and False Data Injection Attacks (FDIA).

The authors in Soltan et al. (2018) discuss the importance of ensuring robust state estimation in
the presence of noisy environments and following a cyber attack to the grid.
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State estimation process provides optimal estimate of the
true values of bus voltages and angles and power flows across
the power system (Schweppe and Rom, 1970; Schweppe and
Wildes, 1970). The results provide the basis or enhancement
for other power system applications such as system planning,
optimization, fault analysis, protection, and fault location (Fan
and Liao, 2018, 2019; Fan, 2019; Fan et al., 2021).

The novelty of the research for which this paper is based
are two-fold:

• Provide for a more systematic approach to the selection
of artificial neural network model architecture and hyper-
parameters which to best of the author’s knowledge, remains
mostly ad-hoc.

• Investigation of the whether pseudo-measurements can be
more effectively generated by taking advantage of the ability
of CNNs and LSTMs to perform time-series forecasting as
opposed to regression via MLPs.

This paper focuses on application of classical artificial neural
networks and deep learning networks to distribution system
state estimation (DSSE) and distribution system state forecasting
(DSSF). There are various types of networks such as Conventional
Feed-Forward Multi-Layer Perceptron Networks (MLPs) / Deep
Neural Networks, Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs)/Long Short-Term Memory
Networks (LSTMs), and Hybrid-Neural Networks Utilizing a
Combination of Network Types. Preliminary results based on
MLPs, CNNs, and LSTMs are presented in this paper.

The research for which this paper is based upon has not
yet considered the impact of distributed energy penetration to
the power grid, however it does make use of temperature data
to predict power demand and resulting voltage profile of the
proposed test distribution system.

The novelty of the research for which this paper is based
are two-fold:

• Provide for a more systematic approach to the selection
of artificial neural network model architecture and hyper-
parameters which to best of the author’s knowledge, remains
mostly ad-hoc.

• Investigation of the whether pseudo-measurements can be
more effectively generated by taking advantage of the ability
of CNNs and LSTMs to perform time-series forecasting as
opposed to regression via MLPs.

MATERIALS AND METHODS

Review of Conventional State Estimation
State estimation research and application has historically been
largely focused on transmission systems as opposed to distribution
systems. With increasing developments of the “smart grid”,
increased utilization of phasor measurement units (PMUs) and
improvements in monitoring and communications, Distribution
System State Estimation (DSSE) and Distribution System State
Forecasting (DSSF) interest and research has greatly increased in
recent years.

The inherent challenges of application of “conventional” state
estimation techniques to power distribution systems based upon
weighted least squares is well established in the literature.

In recent years, “deep learning neural networks” have gained
increasing interest in not only being able to improve the weighted
least squares method, but also in the possibility of being able
to address what may be considered as “extreme” or “adverse”
conditions such as, but not limited to lack of observability,
topology errors, false data injection attacks, network outages due
to weather or malicious attack, and variances in weather that may
affect distributed power generation from solar and wind sources.

Conventional state estimation was introduced in 1970 via a
series of papers authored by Fred C. Shweppe and J. Wildes. The
overall problem, mathematical modeling and general algorithm
for state estimation, error detection and identification are
presented in Schweppe and Wildes (1970).

The key assumption of the classical approach presented is that
the state estimation vector consisting of the voltage magnitude
and phase angles at all generation and load buses is static or
quasi- static. Further assumptions are that the system is balanced,
linear and can be accurately approximated via an iterative
algorithm utilizing weighted least squares as the estimator. While
these assumptions are reasonable when applied to transmission
systems, they may not hold for distribution systems.

An approximate model and the resulting simplifications
in state estimation, bad data detection and identification are
presented in Schweppe and Rom (1970). This model is based on
a DC load flow yielding linear equations with the following four
basic assumptions:

• Reactance over resistance of all lines are significantly larger
than one.

• Magnitude of voltage≈1 for all buses.
• Angle differences between voltages at two ends of all lines are

close to zero.
• Existence of errors in real power measurements.

The resulting approximate model, while enabling potential
application to distribution systems is not readily applicable
to state estimation in general for practical transmission or
distribution networks. Thus, (Schweppe, 1970) addresses
implementation problems associated with dimensionality,
computational efficiency, data storage and the time-varying
nature of actual power systems.

The time-variation inherent in power systems is addressed
in Shivakumar and Jain (2008). This paper is a review of
dynamic state estimation (DSE)methods as opposed to static state
estimation (SSE). These methods are based primarily on Kalman
Filtering (KF) techniques, M-estimation, and the Square Root
Filter (SRF) technique which is an alternative implementation of
KF that is numerically more stable.

Paper Krumpholz et al. (1980) discusses the essential role
of power system observability to the state estimation problem
and presents a theoretical basis for an algorithm to determine
observability. The authors emphasize the requirement that
conventional or classical state estimation methods be applied
only to systems that are observable and thus establish that
an observability test be conducted prior to performing state
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estimation. The algorithm presented is based upon a graph
theoretical or topological approach. Specifically, the algorithm
seeks to determine if the Jacobian of the system parameter
network h(x) is full rank. If so, the power system network is
considered observable.

The challenges to state estimation due to lack of observability
are further discussed in Kuhar et al. (2020). The authors reiterate
the essential observability criteria needed in order to perform
classic state estimation and further surmise that the first step to
controllability is observability.

Again, the challenges imposed by the dynamic nature of
power systems and especially that of distribution systems with
high penetration of distributed energy resources (DERs) is noted
as a significant barrier to the application of classical state
estimation techniques.

While the authors do recognize the improvements that the
placement of smart meters and PMUs have made in enhanced
situational awareness and greater observability, they also point
out that smart meters do not offer real-time updates and that
the practical implementation of PMUs is and will continue to be
limited due to their cost.

In the paper being referenced, robustness refers to the
insensitivity of the state estimation algorithm to major deviations
in a limited number of redundant measurements. Thus, it is clear
that the challenges of applying classical state estimation methods
based upon weighted least squares and similar estimators to
distribution systems also extend to determination of system
controllability, observability and robustness.

The authors in Electric Power Research Institute (Electric
Power Research Institute, 2016) provide an in depth discussion
of the growing threats to modern power system resiliency
that applies to all aspects of the grid (i.e. generation,
transmission, distribution, distributed generation, micro-grids,
etc.). Investment in the modernization of the power grid must
be done so with a “No Regrets Strategy”. This strategy is based
upon the cornerstones of resiliency, flexibility and connectivity.

• Resiliency – Resistance to High-Impact, Low
Frequency Events.

◦ Extreme Weather.
◦ Earthquakes, Tsunamis.
◦ Man-made Outages (Physical, Cyber, Coordinated).

◦ Flexibility – Adaptability to Uncertainties.

◦ Fuel Prices.
◦ Power Market Prices/Incentives.
◦ Variable Generation.
◦ Consumer Behavior.
◦ Regulation and Policy.

• Connectivity – Enhanced Interoperability Across
Electricity Enterprise.

◦ Advanced Sensors.
◦ Mobile Devices.
◦ Grid Modernization.
◦ Two-Way Flow.

Distribution System State Estimation
(DSSE)
Power system states are defined as the vector of the voltage
magnitudes and angles at all network buses (Schweppe and
Wildes, 1970). Novel approaches on system resource scheduling
considering reserve were presented in Fan et al. (2021), Fan
and Liao (2019), and advanced methods for protection and fault
locations for distribution systems were described in Fan and Liao
(2018) and Fan (2019). These techniques can all benefit from
improved measurements and topology.

Essentially, state estimation algorithms provide for a means of
eliminating or minimizing measurement noises and errors and
possible topology errors that would otherwise prevent accurate
determination of the system state values at all buses. Power
system state estimation was initially introduced and applied to
transmission systems only and then extended to distribution
systems with relatively less accuracy, owing to the fundamental
differences between distribution and transmission systems.

Among these differences are the radial topology, low X/R
ratios, phase imbalances and relative lack ofmeasurement devices
inherent in distribution systems (Schweppe and Rom, 1970).
With the emergence of the smart grid and distributed generation
(DG), such as photovoltaic systems, wind turbines, electric
vehicle to grid (V2G) technology and other forms of power
penetration, power flow is now bi-directional as opposed to
previously being unidirectional.

Additionally, given the unpredictable nature of renewable
energy sources such as solar and wind energy as well as the
varying real-time utilization of power inherent in distributed
networks, updated state estimation (and state forecasting)
algorithms is now necessary.

As mentioned previously, challenges to the application of
“conventional” state estimation as applied to distribution systems
relate directly to the fundamental differences of the two power
system types.

Figure 1 presents an example of both types of power networks
and some of the differences that pose a challenge to the direct
application of conventional state estimation to distribution
systems.

To appreciate the challenges that the emerging smart
distribution grid pose to the direct application of conventional
state estimation, it is essential to first understand the inputs and
functional blocks that enable state estimation. Figure 2 provides
an overview of the inputs and main functional blocks.

Note that the Network Topology Processing functional block
verifies the accuracy of the network parameters included as
Inputs. The Observability Analysis functional block establishes
that there is sufficient data available for the State Estimation
Algorithm functional block, and these two blocks may be
integrated together in some methods. As discussed earlier, the
relative lack of metering in distribution networks reduces the
“observability” of the system.

The ability to meet this challenge, while being improved
through the implementation of “smart meters” such as PMUs
(phasor measurement units), will continue to be an inherent
challenge in distribution networks as opposed to transmission
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FIGURE 1 | Transmission and distribution system key characteristics.

FIGURE 2 | Functional block diagram of state estimation.

networks. The State Estimation Algorithm functional block then
seeks to determine a unique solution or system state. Also,
critical to the overall state estimation functionality and final
determination of the system state is the Bad Data Identification
and Processing functional block that uses statistical techniques
(e.g., Chi-square Test) to identify and filter out “noise” which
may be related to inaccuracies in measurement meters and/or
communication system failures.

Finally, theHuman/Machine Interface functional block relates
to the software and hardware utilized to visualize and otherwise
monitor and control the power system.

Further challenges beyond lack of metering, are those
associated with topology errors and false data injection attacks.
The terms and consequences of lack of observability, topology
errors and false data injection attacks will be explained in later
sections of this paper.

Figure 3 summarizes the key characteristics of the
“conventional” state estimator based upon weighted least
squares.

Note that the INPUT are typically measurements of P (Real
Power), Q (Reactive Power), I (Current Flows), and V (Voltage
Magnitudes), and the OUTPUT state variables are typically
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FIGURE 3 | state estimator overview.

voltage magnitudes and voltage phase angles at all buses. With
these two state variables, it is then possible to determine the
remaining parameters such as Real and Reactive Power Injections
and Current flow.

Note that one of the buses can be established as the reference
bus or slack bus. Thus, if Bus 1 is established as the reference bus,
then the phase angle for Bus 1 can be removed from the vector
representation. Therefore, if there are n buses in the network, the
total number of states is given as 2n – 1.

It is important to note that conventional state estimation
applies only to overdetermined systems. Overdetermined systems
are those in which the number of measurements exceeds the
number of states. This critical and limiting requirement for
application of conventional state estimation can be summarized
in the following criteria:

• If the number of measurements is m, and the number of states
is 2n−1, then in state estimation, m > 2n−1

• If m= 2n−1, the problem reduces to a power flow solution

Thus, as stated previously, distribution systems with limited
measurement devices are inherently not overdetermined
systems. For such underdetermined systems that may be
either transmission or distribution networks lacking sufficient
metering, observability is reduced and as indicated in Table 3, the
state estimation algorithmmust rely upon pseudo-measurements.

State Estimation Applied to Smart
Distribution Systems
The authors of Dehghanpour et al. (2019) provide a survey
on state estimation techniques and challenges in so-called
“smart distribution systems”. This survey summarizes most of
the essential concepts considered to this point regarding the
following topics: Conventional mathematical formulation based
upon an iterative algorithm utilizing weighted least squares

or similar estimator, Application of pseudo-measurements to
mitigate lack of sufficientmetering to enable system observability,
Consideration of optimal meter placement given the relatively
limited metering, Network topology issues and effects, Impacts
of renewable penetration, and Cybersecurity concerns. The paper
goes further to make a distinction between “conventional”
state estimation that is considered analytical and deterministic
and “modern” state estimation that is considered data driven
and probabilistic.

Regarding conventional state estimation, various “robust
state estimators” are presented along with their pros and cons.
For example, Generalized Maximum-likelihood (GM) has as
a “pro”, Robust against bad data and a “con”, Parameter
selection sensitivity.

Two major categories of data driven approaches are
identified as alternatives to conventional state estimation
based upon the previous list of estimators: Probabilistic and
Statistical Approaches that employ spatial/temporal correlation
and historical probability distributions, used widely for pseudo-
measurement generation and uncertainty assessment, and
Learning-Based Approaches/Machine learning algorithms that
address problem of active/reactive power pseudo-measurement
generation and uncertainty assessment.

Related to the recommendations of notable research
directions, the paper (Baran and Kelley, 1994) presents previous
work in the area of state estimation for real-time monitoring of
distribution systems. While the work presented is based upon
weighted least squares estimation, it shows the close correlation
of state estimation accuracy to the initial starting point selected
and accuracy of the forecasted loads.

Thus, an important takeaway from the work presented
in Dehghanpour et al. (2019) and Baran and Kelley (1994)
collectively is the idea of establishing a hybrid process involving
classical state estimation algorithms and data-driven forecasting.
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The data-driven portions would support the classical state
estimation algorithm by providing a better starting point than a
typical “flat start”, higher probability of convergence, and more
accurate pseudo-measurements than those queried from large
historical data repositories.

The design of an off-line planning method to enable real-time
monitoring and control in systems with limited observability is
considered in Yao et al. (2019) through consideration of robust
measurement placement for distribution system state estimation.
This paper proposes a robust measurement placement model to
maximize estimation accuracy for DSSE over a wide-range of
worst case operating conditions.

The problem is formulated as a mixed-integer semi-definite
programming problem (MISDP). The authors seek to avoid
combinatorial complexity through a convex relaxation, followed
by a local optimization method. The approach demonstrates that
accuracy of DSSE can be enhanced significantly by placing a
limited number of measurements in optimal locations. Again, the
approach taken, can be considered a hybrid approach of classical
state estimation with probabilistic and statistical components
that seek to minimize the effect of lack of observability on the
weighted least squares estimator.

The paper presented in Haughton and Heydt (2013), provides
a linear state estimation formulation for smart distribution
systems. The authors assume the availability of synchro-phasors
which yield direct voltage phasors at bus locations. Line power
flows and current magnitudes are then able to be ascertained
via the direct quantities available. The authors show that
availability of direct voltage phasors effectively linearizes the
h(x) coefficient matrix used in classical state estimation so that
the result is a linear, non-iterative state estimation solution.
Results confirm low computational burden, accommodation
of meshed networks and avoidance of convergence issues
which may occur in dealing with practical distribution systems
with high r/x ratios. It should be noted, however that to
achieve the results, the following must be maintained by the
synchro phasors:

• Resolution Requirement: +/– 1 µS which corresponds to
0.0216 degree phase error in a 60Hz system

• Maximum Allowable Total Vector Error (TVE): 1.0% when
maximum phase error is 0.57 degrees

The authors in Deng et al. (2002) present a branch-estimation-
based state estimation method for radial distribution systems.
While this approach utilizes many of the conventional or classical
state estimation techniques, it has the ability to handle most
kinds of real-time measurements by decomposing the weighted
least squares problem into a series of weighted least squares
problems such that each sub-problem deals with single-branch
estimation. The establishment of “zones” is an idea, where the
entire distribution system can be comprised of much simpler
single-branches and each zone will then correspond to a weighted
least squares sub problem. Ref Deng et al. (2002) proposes
two main parts: load allocation and state estimation. The load
allocation portion is considered to be a real-time load modeling
technique that incorporates use of customer class curves and
provides a measure of the uncertainty (statistics) in the estimates.

The purpose of this portion is to produce pseudo-measurements
with a higher level of accuracy in real-time than historical data
that must be retrieved from a large data repository. The state
estimation portion then utilizes the pseudo-measurements that
ensure observability and follows a traditional weighted least
squares technique that is applied to each “zone”.

The authors propose that a forward/backward sweep scheme
based upon this method would allow state estimation to
be performed accurately for large-scale practical distribution
systems while not requiring sparse matrix techniques.

Challenges of Applying Conventional State
Estimation Utilizing Weighted Least
Squares to Distribution Systems
The most common conventional state estimation algorithm is
based upon theWeighted Least Squares (WLS) algorithm.

The following list provides some of the characteristics of
distribution systems that pose major challenges to the direct
application of conventional state estimation based uponweighted
least squares:

• Radial Topology with bi-directional power flow
• Lack of adequate quality and quantity of measurement

devices resulting in underdetermined systems and thus
reduced observability

• Unbalanced Lines and Loads resulting in the need to consider
all phases in the state estimator algorithm

• Unpredictability of energy sources injecting power back
onto the grid (i.e. intermittent sunlight and wind, electric
vehicles, etc.).

• Variability in the timing of power utilization throughout
the day

• Low X/R ratios which do not allow for neglecting resistances
• Substantial number of nodes, combined with the need to

consider all phases, result in the need for acquisition, storage
and processing of substantial amounts of data

• Excessive noise resulting from the variety and lack of
standardization of communication schemes between metering
devices and the central control stations

It should be noted that the limitations listed above are
considered “normal conditions” inherent in all distribution
systems. The addition of “adverse conditions” noted previously
further strengthens the case for needed research of methods
such as artificial neural networks to maintain data integrity
of distribution system state estimation and thus the overall
resiliency of the modern power grid.

Lack of Observability in Distribution
Systems
In the context of this paper, lack of observability will be directly
related to the inability to accurately measure and store system
values (power, voltage magnitude, voltage phase angles and
current flow) of a distribution system due to lack of measurement
devices, failures in devices, communication failures and/or
malicious attacks that would also fall into the category of False
Date Injection Attacks.
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While there are increasing advances in and application
of Phasor Management Units (PMUs) and so-called “smart-
meters”, in this paper, there will not be an assumption that
these devices are available at every bus location of a practical
distribution system.

Thus, distribution system state estimation will be considered
to be fundamentally challenged by lack of observability.

Topology Errors in Distribution Systems
In the context of this paper, topology errorswill be directly related
to errors in determination of system state values due to inaccurate
determination of system breaker position. More generally, these
errors could relate to incorrect determination of any device that
involves switching or tap positioning.

The false status of system breakers could result from failures
in devices, communication failures and/or malicious attacks that
would also fall into the category of False Date Injection Attacks.

Thus, distribution system state estimation will also be
considered to be fundamentally challenged by topology errors.

False Data Injection Attacks in Distribution
Systems
In the context of this paper, false data injection attackswill refer to
malicious attempts to alter data within distribution systems such
that the true system state is made inaccurate. The goal of such
attacks could be financial, such as controlling aspects of the power
market or sabotage to the security of the power system resulting
in power outages.

It should be noted that with advances in smart grid metering
and reliance on digital communications, the susceptibility of the
power grid to false data injection attacks will continue to be a
growing security concern.

Thus, distribution system state estimation will also be
considered to be fundamentally challenged (even threatened), by
false data injection attacks.

Conventional Feed-Forward Multi-Layer
Perceptron Networks (MLPs)
This type of network is considered the conventional or classical
neural network model.

Figure 4 shows a “perceptron”, the fundamental building
block of neural networks.

Figure 5 depicts the functional blocks of a MLP network
model.

This type of network is considered a reasonable model for
regression and classification problems. However, it has limited
ability to predict or forecast sequence or time-series data as it
does not maintain and share features between layers.

This type of neural network is also limited to how “deep” they
can be in terms of number of layers that would otherwise enable
them to solve more complex problems with greater accuracy.

Even with the noted limitations, this network type has
promises to overcome many of the limitations of weighted least
squares based state estimation. The principal advantage of this
network type is the promise to accurately learn the mapping
of inputs to outputs for a regression problem without the
requirement of complex and large number of equations that

FIGURE 4 | Perceptron building block of MLP networks.

FIGURE 5 | Multi-layer (MLP) model functional representation.

would be necessary to perform non-linear regression on large
distribution systems.

Convolutional Neural Networks (CNNs)
This type of network is considered to be an improvement
upon the classical MLP architecture in that it learns directly
from the input data and thus does not require a target dataset
during training.

Figure 6 shows the general structure for a CNN model.

Frontiers in Sustainable Cities | www.frontiersin.org 7 January 2022 | Volume 3 | Article 814037

https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles


Carmichael and Liao ANNs in DSSE and DSSF

FIGURE 6 | Convolutional neural network (CNN) model functional

representation.

Note that this structure differs from that of the MLP structure
presented in Figure 5 in that it contains the following additional
fundamental layer types:

• Convolutional Layers

◦ Comprised of Filters and Feature Maps
◦ Filters correspond to neurons of the layer
◦ Filters have weighted inputs and produce outputs like

a neuron
◦ Filters input size is fixed and is a “window” for convolution
◦ Feature Maps contain current values within the moving

filter window

• Pooling Layers

◦ Down-sample and consolidate features learned from
previous feature maps

◦ Serve to generalize or compress features selected
◦ Reduce overfitting of model training
◦ Simple functionality – selection of either maximum or

average of input value to establish a new compressed
feature map

• Dropout Layers

◦ Used between other layers to further reduce overfitting
not completely eliminated by pooling layers by randomly
excluding neurons

◦ Specified by a Dropout Percentage

• Flatten Layers

◦ Converts multidimensional arrays to vectors that can be
sent to fully connected layers for final processing by
activation functions

• Fully Connected Layers

◦ Normal flat feedforward neural network layer
◦ Contain a ‘softmax’ or nonlinear activation function to

output probabilities of predicted classes
◦ Utilized at the end of network to create combinations of

nonlinear features used for predictions

While primarily used in image/object detection and classification,
computer vision and natural language processing, the research
surrounding this paper will investigate the feasibility of this
network type to perform regression so as to detect and
correct data errors imposed upon distribution state estimation.
Regression in this context is the determination of numerical
values such as the predicted system state values or the numerical
values indicating the error and/or variance between actual and
predicted values.

The principal advantage of this network type is its ability
to automatically learn and generalize features from the
input data.

Recurrent Neural Networks (RNNs)
This type of network is also considered to be an improvement
upon the classical MLP architecture in that it maintains an
internal state (memory). There are three primary variants
of RNNs:

• Bidirectional Recurrent Neural Networks (BRNN):

◦ RNNs that utilize future data along with data from previous
inputs to improve accuracy

• Long Short Term Memory Networks (LSTM):

◦ Discussed in more detail in the next section.

• Gated Recurrent Units (GRUs):

◦ Like LSTMs, overcome short-term memory limitations of
the basic RNN model

◦ Uses hidden states instead of “cell state” utilized by LSTMs
◦ Contains reset and update gates to control what information

is retained and how much of this information to use for
making predictions.

The principal advantage of this network type is that it maintains
and passes features between layers, and thus very deep structures
can be developed without the negative effects of exploding or
vanishing gradients.
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FIGURE 7 | IEEE 34 node test base distribution system (Schneider et al., 2017).

Long Short-Term Memory Networks
(LSTMs)
This network is a type of RNN that can learn long-term
dependencies between time steps of input sequence data by
“remembering” the state between predictions. The following
operations provide more details on the internal architecture of
the LSTM unit.

• Step 1 – “Forget Gate” – Determines and eliminates previous
information deemed as irrelevant and thus not useful

• Step 2 – “Store Gate” – Determines what new information to
maintain as new candidate values

• Step 3 – “Update Gate” – Updates old cell state to new cell state
• Step 4 – “Output Gate” – Determines what is to be output for

the next step

Hyper-Parameter Optimization
This research aims to provide an optimization method to
determine the optimal hyper-parameters for desired performance
metrics. Hyper-parameters include model parameters such as
number of hidden layers and number neurons in a layer, and
algorithm parameters such as adjustable learning rate. Hyper-
parameters may be obtained using optimization methods such
as grid search method, genetic algorithms, Bayesian optimization
method, etc.

Selection of Base Distribution for
Simulation
An IEEE 34 Bus Test Feeder radial distribution system was
selected as the base test distribution system. It is shown in Figure 7
(Schneider et al., 2017).

Establishment of Measurement Points and
Quantities
For purposes of training a supervised neural network, it was
decided that the power (real and reactive) at each bus for all 3

phases would be measured and deemed the “input” dataset. The
voltage and phase angle at each bus for all 3 phases were selected
to be measured and deemed the “target” dataset.

The selected measurement points and quantities are shown in
Figure 8. The labels corresponding to the “Key” represent either
a power or voltage monitor, which is similar to a physical meter
and will be discussed in more detail later.

Note that power monitors capture the real and reactive power
flow along the lines between specific nodes. Likewise, voltage
monitors capture the voltage magnitude and voltage phase angle
at specific nodes.

Power Flow Simulation to Establish
Baseline Datasets
For purposes of performing a power flow simulation of the
test feeder system to gather the power and voltage at each bus,
OpenDSS from Electric Power Research Institute, Inc. (EPRI) was
chosen. Note that the convention in OpenDSS is that Phase-1,
Phase-2 and Phase-3 represent phases a, b, and c, respectively.

It was decided that the loads within the test distribution feeder
would be varied over a time period of a year (8760 h) to yield
a time-series dataset corresponding to the power and voltage as
discussed previously.

To vary the base loads in a realistic manner, historical
data from the Electric Reliability Council of Texas (ERCOT) as
obtained. The load data for the entire ERCOT grid for every hour
of the entire year of 2018 was selected. The ERCOT load dataset
was then used to realistically scale the power (P and Q values) at
each node that contains a load to establish the needed variation
over a period of a year.

Note that “ERCOT” will be used as the baseline load profile,
and all references to ERCOT datasets have their origin from the
baseline power flow simulation of the test distribution system
performed with varying loads according to this load profile.
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FIGURE 8 | IEEE 34 node test base distribution system measurement points.

OpenDSS (version 9.1.0.1, 64-bit build) was then utilized to
perform a power flow simulation of the test feeder distribution
system with varying load, and the real power, reactive power,
voltage magnitudes and voltage phase angles were exported as
power and voltage datasets. This exported data would serve as
the input and target datasets from the test system under normal
conditions. Training and testing of the neural networks types
would be based upon this data.

Power Flow Simulation to Establish
Previously Unseen Datasets
The previous steps related to performing a power flow simulation
with OpenDSS were repeated with a different load profile to
establish previously unseen data for validating the various neural
network types.

Note that “COAST” will be used in descriptions of datasets
that have their origin from the power flow simulation of the test
distribution system performed with varying loads according to
this load profile.

State Estimation Based Upon Regression
Conventional MLP Models were utilized to perform regression
to map power data (real and reactive power) as inputs to voltage
(voltage magnitudes and phase angles) as outputs. Utilization of
MLPs for this purpose is reasonable given the ability of a suitable
MLP to perform as a “universal function approximator”. This
approach, however does not take into consideration time-series
features of data such as seasonality.

For purposes of training a supervised MLP neural network
to perform regression, it was decided that the power (real and
reactive) at each bus for all 3 phases would be measured and
deemed the “input” dataset. The voltage and phase angle at each
bus for all 3 phases was selected to be measured and deemed the
“target” dataset.

• Each dataset has the following characteristics:

◦ General Structure: (#samples, #features)

◦ Input Dataset Dimensions: (8760, 56)
◦ Target Dataset Dimensions: (8760, 56)

• Data would be split into 70% for Training and Testing data
would be set to 30%.

◦ General Structure: (#samples, #features)

◦ Input Power Training Dimensions: (6132, 56)
◦ Input Power Testing Dimensions: (2628, 56)
◦ Output Voltage Training Dimensions: (6132, 56)
◦ Output Voltage Testing Dimensions: (2628, 56)

• The data included in the Training and Testing datasets were
randomly selected as MLP network models were to perform
regression without consideration of the temporal nature of

the data.

• Power data (P andQ) values from a new power flow simulation
were used to validate the trained MLP networks.

• The predicted output voltage dataset from each trained MLP
network has the following characteristics:

◦ General Structure: (#samples, #features)

◦ Predicted Output Voltage Dimensions: (3760, 56)

State Estimation and Forecasting Based
Upon Time Series Physics Aware Models
To add “awareness” of temporal dynamics and physics inherent
in power systems, weather data (hourly temperatures at
Dallas/Fort Worth International Airport for the entire 2018 year)
were included in the training datasets. This data was selected to
correspond with the original ERCOT datasets discussed in partC.

Figure 9 provides an example of the hourly temperature and
real power demand for Dallas/Fort Worth for January 1, 2018.
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FIGURE 9 | Hourly temperature and real power demand.

The datasets utilized in this research were restructured such
that each “row” of data would correspond to a time element
(hour) and each “column” of data would represent a unique
time-series of measurement quantities or “features”.

In order to simplify the preliminary predictive model datasets,
it was decided that only the power and voltage data associated
with the substation bus would be considered. This corresponds
to the power data and voltage data collected at Bus 800 with
the OpenDSS monitor B1 in would be utilized for training
and testing.

Although MLPs are not generally considered the optimal
neural network type to perform time-series regression, weather
data was utilized to train this network type to predict power
demand. The power data (real and reactive powers) were then
utilized to predict the voltage data (voltage magnitudes and
phase angles).

CNNs and LSTMs are designed to perform auto-regression
and classification on time-series data.

The “input” and “output” datasets utilized for the MLP
models were combined into a single dataset with the
following characteristics:

• General Structure: (#time-steps, #features)

• Dimensions: (8760, 112)
• CNNs and LSTMs require that the temporal ordering of the

time-series dataset is maintained

◦ Splitting the dataset into 80% for Training and 20%
for Testing

◦ First 7008 h – Training Dataset Dimensions: (7008, 112)
◦ Remaining 1752 h – Testing Dataset Dimensions:

(1752, 112)

• CNNs and LSTMs require that Training and Testing datasets
are reshaped into 3D-Arrays

◦ General Structure: (#samples, #time-steps, #features)

◦ Reshaped Training Dataset Dimensions: (292, 24, 112)
◦ Reshaped Testing Dataset Dimensions: (73, 24, 112)

• CNNs and LSTMs can be utilized to enablemultivariate-multi-
step time-series forecasting. Thus, the power system state
estimation (PSSE) problem considered to this point can be
viewed as power system state forecasting (PSSF).

• Preliminary CNN and LSTMmodels without hyper-parameter
optimization were used to forecast the voltage magnitude and
phase angles for the next 24 h. All variables were used to train
the CNN model.

• Predictions of Real Power, Reactive Power, Voltage Magnitude
and Voltage Phase Angle at the substation bus were made for
the next 24, 168 and 672 h were made with MLPs, CNNs and
LSTMs.

RESULTS

Regression via MLP Model Without
Hyper-Parameter Optimization
Table 1 presents training, testing and validation root-mean
squared errors for nine MLP model architectures. As indicated
in the table, the number of hidden layers and number of hidden
layer neurons were varied. The number of input and output layer
neurons was held constant at 56 neurons to correspond to the
number of input and output features.

As indicated in this table, 70% of the ERCOT data was
used for training and 30% was held out for testing. The
“COAST Act. vs. Est” column shows results for the various
architectures of the MLP when predicting output voltages and
phase angles for COAST data that has never been seen by the
neural network.

The results presented in Table 1 show that with adjustment
of the number of hidden layers and number of hidden layer
neurons, feedforward multilayer perceptron models (MLPs)
show promise in terms of serving as a fully data-driven
distribution system state estimator.

Demand and State Forecasting Based
Upon Time-Series Data
The following tables show the results of the various model types
(MLP, CNN and LSTM) in terms of their ability to forecast Real
Power, Reactive Power, Voltage Magnitude and Phase Angles at
the substation bus for various forecasting periods.

It is notable that the preliminary LSTMmodels without hyper-
parameter optimization failed to converge during training for the
forecasting horizons greater than 24 h as noted in Tables 3, 4 for
either of the following systems:

• System I: Laptop

◦ Processor: Intel Core i7-350M CPU @ 2.90GHz
◦ Ram: 16.0GB
◦ Type: 64-bit Operating System

• System II: Google Colaboratory with GPU

DISCUSSION

State estimation applied to electric power systems has been
proposed since the early 1970s. The application of state
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TABLE 1 | Trial results for baseline MLP model without hyper-parameter optimization.

Trial Input layer Hidden layers Output layer Train RMSE (70%) Test RMSE (30%) COAST Act. vs. Est. RMSE

1 56 Neurons 1 Layer

56 Neurons

56 Neurons 0.140927 0.142162 0.323075

2 56 Neurons 1 Layer

112 Neurons

56 Neurons 0.140486 0.136711 0.323293

3 56 Neurons 1 Layer

224 Neurons

56 Neurons 0.137222 0.137328 0.322124

4 56 Neurons 10 Layers

56 Neurons

56 Neurons 0.092110 0.092036 0318610

5 56 Neurons 10 Layers

112 Neurons

56 Neurons 0.091231 0.090394 0.317231

6 56 Neurons 10 Layers

224 Neurons

56 Neurons 0.089581 0.089328 0.333226

7 56 Neurons 20 Layers

56 Neurons

56 Neurons 0.085845 0.087380 0.309943

8 56 Neurons 20 Layers

112 Neurons

56 Neurons 0.082363 0.082748 0.314640

9 56 Neurons 20 Layers

224 Neurons

56 Neurons 0.077807 0.078516 0.314956

10 56 Neurons 50 Layers

224 Neurons

56 Neurons 0.076469 0.078396 0.313638

11 56 Neurons 100 Layers

224 Neurons

56 Neurons 0.079144 0.079668 0.307243

TABLE 2 | 24 h forecast (Average RMSE) at substation bus.

Model Real power – 24h forecast

avg. RMSE (kWatts)

Reactive power – 24h

forecast avg. RMSE (kVARs)

Voltage magnitude – 24h

forecast avg. RMSE (Volts)

Phase angle – 24h forecast

avg. RMSE (Degrees)

Execution time

(Seconds)

MLP 142.165531 173.737340 0.042655 0.000119 180

CNN 51.852689 174.998276 70.833594 0.000324 60

LSTM 76.419820 172.469473 25.603404 0.000109 7,200

estimation was primarily made to transmission systems as
opposed to distribution systems. Classical or conventional state
estimation was based upon an iterative algorithm to minimize
error utilizing estimators such as weighted least squares. There
are challenges to develop state estimation algorithms for power
distribution systems due to inherent system unbalance among
phases, bi-directional power flow and more recently, and
dynamics and uncertainty associated with distributed energy
resources (i.e. photovoltaic, wind, and electric vehicles).

This research focuses on data-driven approaches to the
state estimation and state forecasting problem that employ the
application of machine learning and neural networks in general
and deep learning models in particular to mitigate the challenges
associated with the direct application of conventional analytical
approaches. Initial results based onMLPs, CNNs and LSTMs. are
presented. The state estimation problem was staged with a power
flow simulation of an IEEE 34 Node Test Feeder. This simulation
provided input data consisting of real and reactive power flows
between nodes and output or target data consisting of voltage
magnitudes and phase angles at nodes for use in training MLPs.
This same data was restructured as a multi-variate time series
dataset for state forecasting for MLPs, CNNs and with lesser
success LSTMs.

Some final take always from the current research for which
this paper is based are the following:

• MLPs are capable of performing regression as “universal
approximators” without hyper-parameter optimization
for power system state estimation. Additionally, such
neural network types enable “physics awareness” in terms
of incorporating features such as temperature, humidity,
barometric pressure etc. into the training datasets. The
research has only considered the inclusion of temperature in
the prediction of system state (real power demand, reactive
power demand, bus voltage magnitude and bus voltage
phase angle).

• For MLP models, without hyper-parameter optimization,
there appears to be at this point in the research, no significant
improvement in performing regression by utilizing more
complicated networks in terms of number of layers and
number of neurons. This is shown in Table 1.

• Table 2 shows that for MLP, CNN and LSTM models without
hyper-parameter optimization, there appears to be at this point
in the research, no significant advantage of selecting onemodel
type over another in terms of average RMSE, when the forecast
horizon is 24 h, however CNNs and LSTMs require greater
training execution time for model architectures considered.

• Tables 3, 4 show that for MLP, CNN, and LSTM models
without hyperparameter optimization, the training execution
time for both CNNs and LSTMs increase as the forecasting
horizon is extended. The additional complexity of the
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TABLE 3 | 168 h forecast (Average RMSE) at substation bus.

Model Real power – 168h forecast

avg. RMSE (kWatts)

Reactive power – 168h

forecast avg. RMSE (kVARs)

Voltage magnitude – 168h

avg. RMSE (Volts)

Phase angle – 168h forecast

avg. RMSE (Degrees)

Execution time

(Seconds)

MLP 181.882021 176.532732 0.046121 0.000144 180

CNN 92.732562 172.081075 40.681005 0.000139 120

LSTM — — — — No Convergence

TABLE 4 | 672 h forecast (Average RMSE) at substation bus.

Model Real power – 672h forecast

avg. RMSE (kWatts)

Reactive power – 672h

forecast avg. RMSE (kVARs)

Voltage magnitude – 672h

avg. RMSE (Volts)

Phase angle – 672h forecast

avg. RMSE (Degrees)

Execution time

(Seconds)

MLP 134.544553 174.901558 0.043063 0.000112 180

CNN 165.820596 172.774166 45.946654 0.000123 240

LSTM — — — — No Convergence

convolution operations required in CNNs is a reasonable
explanation for increased execution time when tasked with
making predictions over a larger time frame. The increased
memory required to maintain system state throughout LSTM
execution is a reasonable explanation at this point in the
research to account for failure to converge during training
when the training horizon is extended beyond 24 h.

• CNNs and LSTMs are capable of performing time-series
forecasting by learning from the input data itself as opposed to
requiring separate input and target datasets required by MLPs
that perform regression. Such models are therefore able to
take advantage of time-series features such as seasonality and
trends, however the research has shown greater computational
burden required of CNNs and LSTMs. This is shown in
Tables 2–4 in the column “Execution Time.”

• The research to this point has shown that once trained on time-
series data, CNNs and LSTMs show limitations on being able
perform regression on data never seen before and that this
limitation is not applicable to MLPs. Thus, once trained, MLP
models may be presented with new input data to make new
predictions via regression. The research has not shown at this
point that CNNs and LSTMs are well-suited to applications
for which learning functional mapping of inputs to targets is
required. This suggests that these two network types may be
better suited for classification and forecasting involving data
that is auto-correlated.

Initially, the models were not optimized and their configuration
followed an ad-hoc or heuristic approach. Future research will
involve the following:

• Investigation of performance of MLPs, CNNs, and LSTMs
to produce pseudo-measurements to account for reduced
observability and communications failure for specific time-
intervals. Performance will be compared on the basis of
training execution time and root mean square error (RMSE)
between the actual and predicted time series. The scenario
is shown in Figure 10 below in which there is a loss of

FIGURE 10 | Prediction of system state during periods of communication loss.

communications from meters that gather P and Q values
during the shaded time interval at the substation. For this
time interval, each network type will be applied to establish
predicted measurements. There will also be a prediction for
V_mag and V_phase during this same time interval. This
could be extended to other bus locations that experience
loss of communication and additional time periods of
communication loss.

• Comparison of the computational burden of MLPs, CNNs,
and LSTMS to perform regression in the case of MLPs
and time-series forecasting in the case of CNNs and LSTMs
to accomplish the aforementioned generation of pseudo-
measurements. Research to this point has already confirmed
that “ad-hoc” approach for networks such as LSTMs in
particular have resulted in non-convergence of training even
utilizing GPUs.

• Investigation of hyper-parameter optimization for each
network type (MLPs, CNNs, and LSTMs) based upon Grid
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Search, Bayesian Optimization, and Genetic Optimization
algorithms to reduce computational burden.
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