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Introduction: A significant resource for understanding the prospects of

smart development is the smart city initiatives created by towns all around

the globe. Robots have changed from purely human-serving machines to

machines communicating with humans through displays, voice, and signals.

The humanoid robots are part of a class of sophisticated social robots.

Humanoid robots can share and coexist with people and look similar to

humans.

Methods: This paper investigates techniques to uncover proposals for

explicitly deploying Artificial Intelligence (AI) and robots in a smart city

environment. This paper emphasis on providing a humanoid robotic system for

social interaction using the Internet of Robotic Things-based Deep Imitation

Learning (IoRT-DIL) in a smart city. In the context of the IoT ecosystemof linked

intelligent devices and sensors ubiquitously embedded in everyday contexts,

the IoRT standard brings together intelligent mobile robots. IoRT-DIL has been

used to create a free mobility mode and a social interaction mode for the

robot that can detect when people approach it with inquiries. In direct contact

with the actuators and sensors, robotic interface control is responsible for

guiding the robot as it navigates its environment and answers questions from

the audience.

Results and discussion: For the robots to function safely, they must be

monitored and enforced by a central controller using Internet of Robotic

Things (IoRT) technology in an emergency. DIL aims to facilitate robot-

human interaction by integrating deep learning architectures based on Neural

Networks (NN) and reinforced learning methods. DIL focuses on mimicking

human learning or expertise presentation to govern robot behavior. The robot’s

interaction has been tracked in a smart city setting, and its real-time e�ciency

using DIL is 95%.

KEYWORDS

Human–Robot Interaction, social humanoid robots, smart city, Internet of Robotic

Things, deep imitation learning
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Introduction

Information and Communication Technologies (ICTs) and

technological progress provide new prospects for governing

cities more efficiently and comprehensively and for shifting

to “smart cities.” Cities increasingly depend on technologies

like high-speed internet, 5G networks, IoT, and big data. The

introduction of AI and robots in cities has been prompted

by the development of smart cities and industrialization.

The proliferation of AI technology that can learn through

experience- doingmore complicated tasks, automating decision-

making, and providing assistance in various areas of life—

has been made possible by big data and the constantly

declining costs of computation and connection (Allam and

Dhunny, 2019). Healthcare, transportation (traffic control,

advanced driver assistance systems), community security and

monitoring systems (image recognition), producing goods

(quality assessment), and online shopping are just a few sectors

that use AI applications frequently. Together, these factors make

AI highly significant in creating smart cities.

Humanoid robots are specialized service robots designed to

move and interact like humans. Robots add value in the same

manner that all service robots do by automating operations

to boost efficiency and reduce overhead. Humanoid robots are

an emerging category of robots designed for use in service

industries. “Robota” is a Czech word that was used to name

robots. Robota directly translates to forced labor, reflecting the

general purpose of creating robots to serve man. After all, robots

are created to support humans, help them with complex tasks,

enhance human activity, and, in some cases, replace humans

(Amudhu, 2020). Since robots can aid humans in many fields,

this leads to the creation of robots that can support various fields,

including drones, military, agricultural, etc.

Since humans constantly need communication,

conversations, and social interactions, the general purpose

was moving toward creating social robots rather than industrial

robots (Smakman et al., 2021), and Socially Assisting Robots

SARs were introduced. Social robots are special robots

with unique appearances and structures. They have built-in

features and qualities that allow them to maximize the human

experience, mainly by providing more trust. One of the most

apparent features of social robots is their shape since most of

them are built in a human-like form. In addition, social robots

are taught the social norms and have at least partial automation,

making them even closer to humans.

Human–Robot Interaction (HRI) deals with how

humankind perceives robots and handles their presence

around them (Onnasch and Roesler, 2021). Based on HRI,

several robots are employed alongside humans in industrial

environments such as car production or assembly factories.

On the other hand, a humanoid robot is an advanced

form of a social robot. Humanoid robots are unique robots

that possess human-like details not only in their physical

appearance, but humanoid robots can show human-like

interactions and perform human social skills. These robots,

in particular, have software and hardware systems that allow

a smoother interaction with humans while using stimulators

and manipulators that would enable the free movement of their

joints and the capability of understanding human speech. The

name “humanoid robot” has gained widespread recognition due

to the remarkable resemblance between a humanoid robot and

an actual human being. Numerous AI methods, such as NN,

DIL, Natural Language Processing, adaptable motor function,

and expert systems, are used. The medical, media, academic,

and AI research communities might benefit from it.

One of the most commonly used humanoid robots is the

Pepper robot. Pepper can analyze people’s voice tone and facial

expressions to recognize their respective emotions, allowing the

interaction to appear more real (Pandey and Gelin, 2018). In

addition, Pepper does not possess sharp edges, making it safe to

be around people of all ages and in all sorts of environments.

It can interact with its users through a touch screen, speech,

light-emitting diodes LED, and tactile head and hands.

The Internet of Robotic Things (IoRT) combines the IoT

and robotics to equip robots with cutting-edge capabilities that

allow them to thrive in a wide range of settings and applications

while opening up exciting new possibilities for businesses and

investors. Robots of all kinds can be found in today’s society,

from those used in industry and manufacturing to those used

in the delivery of food and medical care to those used in

law enforcement and even in the cleaning services industry.

The transition from having industrial robots working alongside

humans in their workplace to social robots interacting with

humans within the shared space requires special attention

because this interaction has various effects on humans (Lim

et al., 2021). This situation makes HRI studies significantly

important, especially when discussing how humans perceive

robots and how they interact with them. Even in the case of

humanoid robots, the machine is still susceptible to errors due

to several factors, including recoils and clashes in their joints

and having a limited battery or source of power more often than

not (Denny et al., 2016).

Since 2008, AI has been incorporated into smart cities

research (as a separate topic), according to a scientometric

analysis (Ingwersen and Serrano-López, 2018). Additionally,

it has been associated with sustainable growth worldwide,

notably by developing countries that, for instance, are

implementing AI to support the UN sustainability objectives

(Apanaviciene et al., 2020). Indeed, supporters claim that AI

may be used to address “vicious” urban issues, including

pollution, destruction of ecosystems, and quickly rising

urban inhabitants (e.g., from industrialization to global

warming). AI and robots are projected to permeate every

area of human existence and extend across dimensions.

They are anticipated, for instance, to play a vital role in

“infrastructural development,” to house public assistance, and
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to advance the social functioning and wellbeing of smart

cities (Golubchikov and Thornbush, 2020).

This research investigates such techniques to uncover

proposals for the deliberate integration of artificial intelligence

(AI) and robots in smart cities. This study aims to create a

humanoid robotic system for social interaction in a smart city

utilizing the IoRT andDIL. In themiddle of the IoT visualization

of linked smart devices and sensors ubiquitously entrenched

in everyday contexts, the IoRT standard pulls up intelligent

robotic systems.

The rest of the paper is organized as follows: Section Related

works on robotics in smart cities describes related research

on robotics for smart city environments. Section Proposed

humanoid robotic system for social interaction using the IoRT-

DIL in a smart city provides an IoRT-DIL for developing a

humanoid robotic system with deep learning in a smart city

environment. Experimental results and discussion have been

given in Section Results and discussion. Finally, the conclusion,

limitations, and scope for further research have been shown in

Section Conclusion.

Related works on robotics in smart
cities

A massive pool of studies on implementing humanoid

robots in an intelligent environment has been proposed. In

this section, it has been selected a group of similar studies

involving humanoid robots, AI, IoT, deep learning techniques,

and intelligent cities. The number of papers discussing social

robots and their interaction with humans is few, especially in

recent years. Even the areas where humanoid robots can be used

are many and varied.

In the educational domain, Tanaka et al. (2015) tried to

develop a learning application relying on interaction with

Pepper and a teacher presenting on its screen. To do that, the

developers based their work on care-receiving robot design and

total physical response methodology to ensure an interactive

experience while learning. The aim was to make it look like

Pepper was also learning with the student in the teacher’s

presence. The application was focused on Japanese children

of 5 years old to teach them English from the comfort of

their homes. Guggemos et al. (2020) discussed in their paper

the acceptance of Pepper robots in the academic field, more

specifically as an assistant in higher education classes. The

authors aimed to analyze Pepper’s adaptiveness, trustworthiness,

social appearance, and presence with the classroom students.

Lexi was the pepper model used in the study, and the lecturer

explained that it could answer the students’ questions since the

lecturer could not possibly answer 1,500 students.

Qidwai et al. (2020) investigated the benefits of using

humanoid robots in assisting teachers in teaching children with

Autism Spectral Disorder ASD some academic and social skills.

For this purpose, some children selected by the psychologist and

agreed with their parents were chosen to participate, where NAO

designed some activities to examine their attention, behavior,

and speech. The scheduled programs were also discussed

afterward with the teachers to ensure they were suitable for

these children.

The Rozanska and Podpora (2019) study discussed

the concept of IoT-based humanoid robots and their

implementation in human interaction. The authors dealt

with the WeegreeOne robot and aimed to advance it to the

point that it could be used later in hospitals or assisted living

facilities. The robot can perform non-verbal communications

with humans based on several qualities, such as speech-text

transformation and its ability to interpret human body language

and behavior.

To further understand the perception of robots and their

acceptance among the standard population, Nyholm et al.

(2021) conducted a detailed interview to view the population’s

perspective on using humanoid robots in healthcare. In

healthcare domains, humanoid robots can assist in cognitive

training, physical tasks, and monitoring of vital signs. Five

female and seven male participants were included in the study

to understand their reaction to humanoid robots, whose ages

ranged between 24 and 77. The participants were shown a video

of Pepper, the humanoid robot, helping in healthcare areas.

The video also shows the learning capabilities of Pepper and its

design to interact with people.

Arent et al. (2019) proposed an approach to use social robots

to diagnose children with autism. The authors here decided to

use social interaction between children and the robot combined

with a psychological method to assess autism in children.

The observations in these experiments must be monitored

and evaluated by specialists who are trained psychologists and

statistical evaluators upon analyzing recorded videos of the

experiments. In their study, Pino et al. (2020) created alternative

methods to help patients with mild cognitive impairment fight

against cognitive decline. Thus, the effectiveness of social robots

such as NAO for these purposes was evaluated.

Podpora et al. (2020) aimed to expand the interaction system

of a robot with humans by implementing external smart sensors.

The main objective was to gain as much information as possible

about humans in sight before an actual engagement between

them and the robot takes place, or in other words, to perform

interlocutor identification and gaining of parameters. The idea

then was to integrate intelligent sensor elements and bring them

together through the internet of thing technology to preview a

prototype of the system in a small office desk.

Cities have evolved into testing grounds for automation and

robot management of urban infrastructure and public areas.

The first smart city capabilities are greatly expanded by these

Robotic and Autonomous Systems (RAS), as they are termed in

engineering. In contrast to so-called “smart” solutions, based on

a technical domain in which computers are trained to do tasks,
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RAS methods use AI and ML to make judgments and adjust

processes to conditions without direct human intervention

(Macrorie et al., 2021). An “absence of labor” or “end of

jobs” is envisaged as a result of the automated processes in

manufacturing as part of smart capitalism, as opposed to AI and

robots simply replacing people when it comes to production and

managerial choices, as per the work in Peters and Zhao (2019).

Cloud Robotics provided the primary impetus for

developing IoRT (Chen et al., 2018). Cloud robotics combines

big data technique, computing, and various cutting-edge

technologies to build a robot. Cloud robotics facilitates the

creation of highly efficient, economic, and power-efficient

multi-robot systems that are highly efficient, economical,

and power-efficient. A networked robot that can do all tasks,

including perceiving, computing, and having a large amount of

storage capacity, was produced by Cloud Robotics. This cloud

robotics changed from conventional pre-programmed robots to

contemporary interconnected robots.

The Internet of Things (IoT), known as IoRT, uses advanced

sensors, communication networks, decentralized and localized

cognition, and many other components in its most sophisticated

form. Robots are intelligent machines in IoRT that are equipped

with sensors and can understand what is happening in the

outside world by acquiring sensing information from multiple

sources and taking the appropriate actions to solve problems.

The IoRT has interconnections between elements, abstracted

differentiation, scalability, compatibility, autonomous and

dynamic robotics, geographic location dispersion, and

ubiquitous geographical access (Liu et al., 2020). Field and

service robotics are the two primary forms of robotics with

which the IoRT apps primarily work (Ray, 2016). Field robots

operate in various dynamic and complicated contexts, including

forestry, cargo handling, mining, agricultural, and building

sites. The field includes the earth’s surface, ocean, atmosphere,

and space. The service robot helps regular people with domestic

chores, workplace tasks, and other tasks. It also helps the aged

with medical alternatives. This study claims that the field of

Human–Robot Interaction has to take a closer look at how

it portrays older people to identify and address any potential

bias. The realization that technological progress is a socially

constructed process with the potential to reaffirm harmful views

of the elderly has led to this acknowledgment and the resulting

necessity. Social robots’ portrayal of the aging body as “fixable”

contributes to a broader ageist and neoliberal narrative in which

the elderly are devalued to the role of care receivers, and the

burden of providing for their care is transferred from the state

to the individual (Burema, 2022).

This study aims to create a humanoid robotic system

for social interaction in a smart city utilizing the IoRT and

DIL. IoRT offers a platform for various humanoid machines

to observe the outside environment, collect sensor data from

multiple sources, and use AI approaches to deliver answers

by working with the natural world’s elements. Robots with

unparalleled degrees of sensing and the capacity to function

in unpredictable contexts can use the intuitive DIL method.

DIL focuses on mimicking human learning or professional

presentation to governing robot interaction.

Proposed humanoid robotic system
for social interaction using the
IoRT-DIL in a smart city

Humanoid robots are anticipated to be utilized in various

contexts, including those with a high potential for danger, such

as investigation, search and rescue security, and operations in

extreme environments. Improving a few of the robot’s most

fundamental properties, such as its energy efficiency, will be

necessary. The two main categories of robotics that the IoRT

deals with are field robots and service robots. Mining, building

sites, forestry, cargo handling, and many other fields require

field robots because of the complexity and changeability of

their environments. It’s possible to divide the earth’s surface, the

ocean, the atmosphere, and outer space into distinct subfields.

The main purpose of the service robot is to aid humans in

their daily lives by performing tasks such as completing home

chores, office work, and healthcare for the elderly. There are

four main types of robots used in IoRT applications: those

used in the home, those used in the ocean, those used in

the air, and those used in the deep sea. The various robot

varieties can be studied in depth. IoRT has been constructed

on top of the cloud architecture, which uses IoT and cloud

computing technologies to give design and implementation

freedom for unique robotic applications for interconnected

robots that provide services to distant networks. In the IoRT,

robots and intelligent environments are combined, as seen

in Figure 1.

The intelligent world and robotics components of the IoRT

technique are depicted in Figure 1. The foundation of the digital

environment is the development of intelligent applications,

including those for the smart city, smart home, and smart

industries. The primary role of the “intelligent world” is to

keep an eye on the region under control using particular

sensors created for each area. Energy efficiency is crucial in

the intelligent world. One element is lacking in the “intelligent

world” despite the reporting capabilities. In other words, it lacks

any agents who might walk around and offer services. These

agents are known as robots and can be classified as Robotic

Associates, Manipulators, Service Robots, or Field Robotic

systems, among other uses. A connected service robot with a tray

may deliver a customer’s food and drink to their table quickly

and without hassle. If there is a leak, the tray’s sensors will pick it

up immediately. The robot is designed to assist wait staff rather

than take their jobs.

Modern robotics solely focuses on boosting the robots’

awareness level to allow them to carry out their activities
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FIGURE 1

Organization of IoRT.

autonomously and comfortably. This increases the automation

potential of the robots. Adding behavior controls doesn’t usually

make the robots more interactive. By utilizing multiple sensors

(camera, sonar, and infrared beacons, among others) and

computational resources, the IoRT creates a robotic behavioral

control. The IoT resources expand the networked robotic

functions, enabling the robot to explore and carry out various

activities in challenging conditions throughout the intelligent

world. The robot’s duties change depending on the environment,

including navigation, collision avoidance (with static andmobile

objects), and encouraging productive interactions between

humans and machines. Some of the most significant knowledges

in the IoT for the smart world aren’t as sophisticated as those in

the IoRT. This means the IoRT is more advanced than the IoT.

According to Figure 2, the IoRT architecture comprises five

levels. The five stages are the application layer, the robotics

layer, the network layer, the internetworking layer, and the

physical layer that houses robotic infrastructures. The cloud

robotics paradigm is based on the robotics infrastructure layer.

In this layer, we find the IoT Cloud Robotics Infrastructure, the

Big Data, the IoT Business Cloud Services, and the Robotics

Cloud techniques.

Physical layer: The robotic layer comprises hardware

components, including robots, sensors, controllers, and smart

objects utilized for interaction. In other words, this location has

the actual items that may start a conversation. The robots in

the vicinity are given a certain amount of perception via the

sensors. With this layer, the robots can watch the movements

and movement of both things and people. The physical layer’s

actuators carry out routine chores like turning equipment based

on the outside weather and other routines.

Network layer: The layer connects the physical layer’s

components to the internet. Mobile communication networks

enabling 3G, 4G/LTE, and 5G are used to connect to the

internet. Communication channels like Wi-Fi, Bluetooth, and

many others may be used to connect the robots. One can use

WiMAX, ZigBee, Z-wave, and Low Power Wide Area Networks

(LoRA) to interconnect with robots.

Internetworking layer: The word “IoT” would not occur

without the internet. As a result, the internet layer is crucial

in developing the IoRT structure. The IoT communication

technologies MQTT, CoAP, IPV6, LLAP, and DDS are used

to interpret the information between the robots. To give

robotic devices internet connectivity, the core network offers

to distribute communications, SMS service, and numerous

other standards.

Robotic infrastructure layer: The cloud robotics concept

is above the robotic infrastructure layer. The Machine-

To-Machine-To-Actuator (M2M2A) Cloud Technology, IoT

Business, Big Data, and IoT Cloud Robotics are the five main

components that make up this layer. M2M2A is primarily

made for specialist robots to carry out essential tasks. By fusing

robotics and sensor technologies, the M2M2A offers answers

to various problems. IoT business cloud services use cloud

concepts to solve business-related issues (SaaS, PaaS, and IaaS).

Robotics on the IoT infrastructure is used to deliver services.

Application layer: The IoRT architecture’s uppermost layer

is the application layer. Here, many legitimate solutions

have been covered where robots may be used to enhance

the customer experience. The humanoid robots can offer

various services by engaging in smart city environments like

health services, shopping, domestic robotic systems, recreation,

education, machine intelligence, surveillance, assisting with

household tasks, elderly care, and emergency functions. Future

technologies greatly influence the services robots can provide in

various applications.

Humanoid robotic system for social
interaction using deep imitation learning

This section discusses the method by which the proposed

work will be performed. The proposed system is shown in

Figure 3 allows the robot to engage in two modes which are the

free movement mode and the social engagement mode. These

modes are explained in detail, as well as the robot’s interacting

ability to answer questions through the voice question/answer

model. Imitation Learning (ML) and (DIL) to determine

how robots behave. DIL combines the ideas of deep learning

architecture and NN with deep learning algorithms. DIL aims

to regulate robot behavior in ways that mimic human learning

and expert demonstration.
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FIGURE 2

IoRT architecture in smart city environments.

FIGURE 3

Visualization of the two modes of the proposed humanoid robot: free movement vs. engagement mode.

Free movement mode

The first step involves the increased engagement between

robots and humans, which can be represented in the robot’s

movement in the smart city, gestures, eye contact, and speech

capabilities. Initially, the robot will be roaming the city with its

senses activated. The robot is equipped with voice detection,

facial recognition, and touch sensors, which means that when

the robot is touched, the system will convert into engagement

mode, meaning that a human might need to interact with the

robot. Similarly, the robot would gain knowledge when a human
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FIGURE 4

Workflow diagram for the proposed interaction feature.

is moving toward it or if a human is speaking to it. Furthermore,

the robot will be able to not bump into people or obstacles

around it through instilled cameras. Additionally, the robot can

move to its charging station when it senses a low battery.

Engagement mode

The engagement mode is activated when a human presence

is detected. In this case, the robot introduces itself as an assisting

robot that can answer and interact with people in a smart city

environment. The human can interact with the robot through

voice, and it can also reply with voice.

Interaction mode

The proposed system shown in Figure 4 comprises four

main modules: the Speech recognition/generation module,

the question-answering engine, the answer module, and the

update module.

Initially, the robot receives a question through human

speech recognition. Next, the robot relies on a question analysis

technique to extract the keywords used in the question and relate

them to the answer database. To do so, the developers have

developed an answer database containing general information

about the smart city environment. After analyzing the question,

an answer is developed and chosen, which is communicated with

the Q/A engine and then with the speech module to generate a

speech representing the spoken answer. Additionally, suppose

the robot faces a new vocabulary it doesn’t understand. In that

case, it will activate the touch screen asking the human to add

this new word to the database for the update. The interaction of

the proposed humanoid robot in a smart city environment has

been shown in Algorithm 1:

Step 1: Welcome message

Step 2: Get user input

Step 3: If user asks questions,

Text processing using BNF

If available in the knowledge database,

Speak “the answer” to the user and go to step 2

End

Step 4: If the answer is not available in the knowledge database

speak “no answer found”

Get the answer and store it in the knowledge database

Else go to step 2

End

End

Algorithm 1. The interaction of the proposed humanoid robot.

It is also essential within the engagement mode to maintain

eye contact with the human and perform body gestures to

make the humanoid robot more engaging and trustworthy. To

develop the question-answering model, a group of sentences

relating to the topic (smart city environment) must be collected.

These sentences are in the form of questions and answers. Next,

sentence patterns are defined. Penalties are defined in a formal

query or punishment based on the samples above. The practice,

in this case, is similar to fill-in-the-blank. This means that the

pattern has some variable slots that can be translated into class

identifiers or interrogatives.

After that, classes are assigned, and Backus Normal Form

(BNF) grammar is built, which involves mapping the sentence

pattern into standard BNF form. Then, the BNF grammar is

translated to word strings through the BNF parser. When the

robot receives a question, part of speech tagging, answer type

tagging, and parsing occur as processing steps.
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Deep imitation learning

Deep Reinforcement Learning (DRL) is an approach the

robot uses to attain its objectives incrementally. For instance,

an automatic robot vehicle’s movements must be optimized to

reach the target sequentially. The system penalizes the robot for

poor performance and compensates it for good performance.

For some tasks, reinforcement learning requires more time to

grasp the results of each activity performed by the robot. DIL

uses a Deep Q-Learning method to circumvent the time delay

caused by DRL.

As the name suggests, imitation involves observing how

others behave and replicating them in a live setting. For example,

the humanoid robot mimics a human grabbing a milk carton

before actually doing it. Consequently, DIL may be seen as

an ability that involves learning new skills by imitating living

beings or other machines. DIL aids the humanoid robot by

incorporating human understanding into it and assisting it in

processing the data collected by the sensors to build a conceptual

model. This practice is sometimes referred to as understanding

through illustrations. The robot will receive a positive incentive

if it operates well in the outside world; otherwise, it will receive a

lousy incentive/penalty. The robot uses DIL to determine which

activity results in an insufficient incentive. By pretraining the

robot using collective knowledge input, DIL enables the robot

to function well in challenging circumstances. If the automated

robotic vehicle is not taught correctly, it would likely cause

fatal crashes.

Markov process has been used tomodel the problems inDIL,

and for any movement it takes, it has to gratify the equation

as follows:

P
{

fm+1
∣

∣f1, b1, . . . . . . . . . , fm, bm
}

= P
{

fm+1
∣

∣fm, bm
}

(1)

Equation (1) shows the f is the learning state, b is the action,

and P(f1) is the initial probability distribution function. The

incentive function for the robot using DIL can be represented

in Equation (2),

I
(

fp, bp
)

: F ∗ B−→ I (2)

The term “Action” may be characterized as a list of options

from which the robot can select, such as moving ahead, turning

around, answering, etc. The symbol “α” denotes the discount

rate and the scale of the potential benefits. The existing incentive

is represented by α = 0. The protracted incentive is represented

by α = 1. The environment (smart city) is the setting where the

robot travels, using the agent’s present behavior and the state

as input. The location where the robot is engaged during the

progressive movement may be used to illustrate the state. The

incentive comes from the environment’s input, based on the

winning and losing rates of each activity the robot performed.

The regulation, represented as β, is a probabilistic function that

aids in choosing the following course of action depending on the

present state to ensure a larger incentive.

βτ : F−→ P(B) (3)

Equation (3) displays P(B) as the likelihood of action B.

β ∈ Ip defines the regulation βτ (fp, bp). The regulation creates

a value for the robot to identify the realistic environment and

produces the path having state, incentive, and action as follows

in Equation (4):

ε1 : p = {F1, b1, I1, . . . . . . . . . , Fm, bm, Im} (4)

The performance of the robot has been evaluated using the

equation given below:

Ipα =
∑∞

l = m
αl−mI(fl, bl) (5)

Equation (5) shows that α is the incentive factor, and its

value lies between 0 and 1. Ip is the incentive at time p. I(fl, bl)

is the incentive function obtained during the state fl and action

bl. Since DIL involves Q-learning, the Q value maps the state

and action with the incentive function based on the regulation

function β. It is represented as

Qfun = Qβ (F,B) (6)

Equation (6) expresses the optimal path for the robot to

travel to produce its output chosen by the created Q value. The

state-action pairing is mapped to the incentives using a NN

technique in DIL, which then modifies the weights and variables

to provide an error-free result. The regulation of DIL is to map

the best course of action depending on the present state to ensure

a larger incentive and is represented as:

B = β(F) (7a)

Qβ (Fp,Bp) ← (1− δ) ∗ Q(Fp,Bp)

+δ ∗ [Ip + α ∗ maxQ(Fp+1,Bp+1)] (7b)

Equations (7a) and (7b) illustrations Fp is the learning state,

Bp is the action at the current state p. (Fp+1 and Bp+1 are the

state and action during the next state p+ 1. δ is the learning rate

of the proposed humanoid robot. β is the regulation for choosing

the following course of action depending on the present state to

ensure a more considerable incentive. The symbol “α” denotes

the discount rate; the potential incentives scale up.

A set of input-output functions (n, s) that illustrate the

quantitative measure of DIL show the state of the demonstration

(smart city) environment in n and the demonstrator’s response

with s. A form of tuple expresses the robotic behavior (state,

action, incentive, next state). The presentation Pres = [ni, si],

where the robot learns the regulation β, which is denoted by

Pres
(

p
)

= Pres[y
(

p
)

, q,β] (8)
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Equation (9) shows the p is the amount of time needed to

complete the next activity, y is the feature extraction method, q

is the anticipated motor activity, and β is the set of regulations

employed. DIL significantly shortens the robot’s learning curve.

The DIL enables the robot to accomplish tasks autonomously

while learning from its expertise.

Results and discussion

By observing how a service robot interacts with humans

and various barriers in a smart city setting, an experimental

arrangement is made to track the robot’s activities. The

Arduino MEGA2560 board is used to execute the robot,

and the Arduino Software is used to program it (IDE). Due

to the changing surroundings, quickly moving people and

objects, and other factors, the robot finds navigating to be a

little bit challenging. Using a motion controller and optical

navigation, the robot can understand its surroundings without

colliding with people, moving items, or stationary things.

The goal of the smart city is to install robots in public

spaces like dining establishments, healthcare, and shopping

centers to interact with the general population and provide

services. The intelligent robots communicate with the city’s

residents, promising them a good life. The robots’ IoRT

technology employs a microcontroller to supervise them in case

of emergencies and to carry out any enforcement necessary

to prevent mishaps. An experimental setup is developed to

track the robot’s actions as it interacts with clients and other

impediments in a normal restaurant.

The robot displays these activities in the smart city

environment, recognizing its states and responding to input

by firing an action. The robot’s behavior alters as each state

does. If someone gestures at the robot, it should adjust its

actions to approach them and follow its instructions. The robot

should approach people when it sees them and provides services.

People in smart city environments can engage with the robot

by scanning a QR code or using speed. Comparison has been

made with the human-human interaction and the proposed

robotic system interaction using IoRT-DIL in terms of the reply

time (during interaction), speed of movement (mobility), and

performance efficiency (based on algorithms used).

Figure 5 shows the comparison of reply time among humans

and the proposed robot using IoRT-DIL during interaction for

various experiments. In trial 1, the proposed robot had a poor

or increased reply time than the human reply time for all the

experiments. However, during trial 2, the reply time of the

proposed robot improved and was close to the human response

time. Also, initially for a few experiments, humans and robots

have reduced reply time, after which the reply time increases

with the number of experiments done. In general, the reply time

of the robot in trial 2 is better than the human reply time.

FIGURE 5

Comparison of reply time among humans and the proposed

robot using IoRT-DIL during interaction for various experiments.

FIGURE 6

Comparison of speed or mobility among humans and the

proposed robot using IoRT-DIL during interaction for varying

experiments.

Figure 6 depicts the comparison of speed or mobility

among humans and the proposed robot using IoRT-DIL during

interaction for the varying number of experiments. The mobility

of the proposed robotic system using IoRT-DIL is limited due

to the delay in acquiring the signals from various sensors or

devices and processing them during the movement mode of the

robot. Also, the robot’s mobility remains almost the same for all

the experiments. However, mobility is high for humans and has

increased with the number of experiments.
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FIGURE 7

Recall rate of the proposed robot using various learning

algorithms during interaction for various experiments.

FIGURE 8

Precision of the proposed robot using various learning

algorithms during interaction for various experiments.

Figure 7 shows the recall rate of the proposed robot using

various learning algorithms during interaction for various

experiments. The recall rate has been used to analyze the

performance of the various learning algorithms in the proposed

robotic system. The recall rate has been computed as follows:

Recall =

∑

CI
∑

AT
(9)

Where CI refers to the correct interaction of the proposed

robot by answering the queries effectively in a smart city

FIGURE 9

Performance e�ciency (%) of the proposed robot using various

learning algorithms during interaction for various experiments.

environment. AT refers to the actual truth that exists in a smart

city environment. It has been observed that as the number of

experiments increases, the recall rate improves as the knowledge

base improves. The neural network has a reduced recall rate

among the different learning algorithms, whereas the proposed

DIL has the highest recall value of 0.97 for experiment 7.

Figure 8 shows the precision of the proposed robot

using various learning algorithms during interaction for

various experiments. Precision has been used to analyze the

performance of the various learning algorithms in the proposed

robotic system and has been computed as follows:

Precision =

∑

CI
∑

TNI
(10)

Where CI refers to the correct interaction of the proposed

robot by answering the queries effectively in a smart city

environment. TNI refers to the total number of interactions

done in a smart city environment. It has been observed that as

the number of experiments increases, the precision improves as

the robot gets better training and learning experience. Among

the different learning algorithms, the neural network has low

precision, and DRL has moderate performance in terms of

precision. However, the proposed DIL achieved the highest

precision value of 0.99 during experiment 7.

Figure 9 depicts the proposed robot’s performance efficiency

(%) using various learning algorithms during interaction for

varying experiments. The deep learning algorithm using a neural

network gave poor efficiency for all the experiments. The DRL

algorithm gave improved performance than deep learning with

a peak efficiency of 91% for experiment 7. This enhanced

performance of DRL has been attributed to its optimization

to reach the target sequentially. The proposed DIL has the
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highest efficiency (with a value of 95%) than DRL. The reason

is attributed to using a Deep Q-Learning method in DIL to

circumvent the time delay caused by DRL.

Conclusion

The IoRT is a relatively new concept in information and

communication technology that aims to improve people’s daily

lives by applying cutting-edge technological advancements in

robotics and IoT. As a robust method for handling robot control,

robotic behavioral control for IoRT is a game-changer. Robotic

behavior is programmed with deep learning as the guiding

principle. For robots to achieve previously unimaginable levels

of observation and adaptability in challenging settings, deep

learning is a natural method of instruction. A humanoid robotic

system for social interaction by means of the IoRT-DIL in a

smart city has been developed. IoRT-DIL has been used to

create a free mobility mode and a social interaction mode

for the robot that can detect when people approach it with

inquiries. The tasks required to move around the surroundings

and respond to queries from the audience are controlled by

robotic interaction control; this links the sensing and acting

components directly. To facilitate robot-human interaction, DIL

combines the concepts of deep learning architecture, wherein

NN are used, and reinforcement learning methods. DIL focuses

on mimicking human learning or expertise presentation to

govern robot behavior. It will take a long time to teach the

robot if the compensation signal it receives is incorrect. Using

the lens of behavior and cognitive sciences, IL teaches robots

to adapt their actions in response to their surroundings. The

robot is placed in a simulated restaurant setting where its

various behaviors are observed through customer interactions.

Comparison has been made with the human-human interaction

and the proposed robotic system interaction using IoRT-DIL in

terms of the reply time (during interaction), speed of movement

(mobility), and performance efficiency (based on algorithms

used). The proposed robot’s interaction using DIL has been

tracked in a smart city setting, and its real-time efficiency is 95%.
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