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Effects of Smart Traffic Signal
Control on Air Quality
Paolo Fazzini*, Marco Torre, Valeria Rizza and Francesco Petracchini

Institute of Atmospheric Pollution Research (IIA), National Research Council, Rome, Italy

Adaptive traffic signal control (ATSC) in urban traffic networks poses a challenging task

due to the complicated dynamics arising in traffic systems. In recent years, several

approaches based on multi-agent deep reinforcement learning (MARL) have been

studied experimentally. These approaches propose distributed techniques in which each

signalized intersection is seen as an agent in a stochastic game whose purpose is to

optimize the flow of vehicles in its vicinity. In this setting, the systems evolves toward

an equilibrium among the agents that shows beneficial for the whole traffic network.

A recently developed multi-agent variant of the well-established advantage actor-critic

(A2C) algorithm, called MA2C (multi-agent A2C) exploits the promising idea of some

communication among the agents. In this view, the agents share their strategies with

other neighbor agents, thereby stabilizing the learning process even when the agents

grow in number and variety. We experimented MA2C in two traffic networks located

in Bologna (Italy) and found that its action translates into a significant decrease of the

amount of pollutants released into the environment.

Keywords: multi-agent systems, reinforcement learning, vehicle flow optimization, traffic emissions, machine

learning

1. INTRODUCTION

The impact of air pollution on human health, whether due to vehicular traffic or from industrial
sources, has been proven to be largely detrimental. According to WHO, the World Health
Organization, in recent times (2016) there have been worldwide 4.2 million premature deaths
due to air pollution (WHO, 2021). This mortality is due to exposure to small particulate matter
of 2.5 microns or less in diameter (PM2.5), which cause cardiovascular and respiratory disease, and
cancers. The Organization has included polluted air among the top 10 health risks of our species.
Respiratory diseases kill more than alcohol and drugs and rank fourth among the leading causes of
death (WHO, 2002). It is particularly blocked traffic that cause the greatest risks (Hermes, 2012). In
order to avoid congestion and traffic jams, various artificial-intelligence based algorithms have been
proposed. These algorithms are able to deal with the problem of managing traffic signal control to
favor a smooth vehicle flow. Established approaches include fuzzy logic (Gokulan and Srinivasan,
2010), swarm intelligence (Teodorovi, 2008), and reinforcement learning (Sutton and Barto, 1998).

In the present work, we employ MA2C (Chu et al., 2019), an instance of multi-agent
reinforcement learning as a signalized intersection controller, in an area located in the immediate
outskirts of the city of Bologna (Italy), namely the Andrea Costa area (Fazzini et al., 2021).
Our experimentation is focused on evaluating the variation of vehicle emissions when signalized
intersection are coordinated with MA2C. The traffic network setting we adopted is based on
(Fazzini et al., 2021).
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1.1. Related Work
Traffic flow is increasing constantly with economic and social
growth, and road congestion is a crucial issue in growing urban
areas (Marini et al., 2015; Rizza et al., 2017). Machine learning
methods like reinforcement learning (Kuyer et al., 2008; El-
Tantawy and Abdulhai, 2012; Bazzan and Klgl, 2014; Mannion
et al., 2016) and other artificial intelligence techniques such
as fuzzy logic algorithms (Gokulan and Srinivasan, 2010) and
swarm intelligence (Teodorovi, 2008) have been applied to
improve the management of street intersections regulated with
traffic lights (signalized intersections). Arel et al. (2010) proposed
a new approach of a multi-agent system and reinforcement
learning (RL) utilizing a q-learning algorithm with a neural
network, and demonstrated its advantages in obtaining an
efficient traffic signal control policy. Recently, a specific interest
has been shown in the applications of agent-based technologies to
traffic and transportation engineering. As an example, Liang et al.
(2019) studied traffic signal duration with a deep reinforcement
learning model. Furthermore, Nishi et al. (2018) developed an
RL-based traffic signal control method that employs a graph
convolutional neural network analysing a six-intersection area.
In addition, Rezzai et al. (2018) proposed a new architecture
based on multi-agent systems and RL algorithms to make the
signal control system more autonomous, able to learn from
its environment and make decisions to optimize road traffic.
Wei et al. (2020) gave a complete overview on RL-based traffic
signal control approaches, including the recent advances in deep
RL-based traffic signal control methods. Wang et al. (2018)
summarized in their review some technical characteristics and
the current research status of self-adaptive control methods
used so far. Yau et al. (2017) and Mannion et al. (2016),
instead, provide comprehensive surveys mainly on studies before
the more recent spread of deep reinforcement learning. The
present work is mainly based on (Fazzini et al., 2021). For our
simulations, we replicated the Andrea Costa and Pasubio areas
in pseudo-random and entirely random traffic conditions. Both
areas are located in the western outskirts of Bologna (Italy)
(Bieker et al., 2015).

2. MATERIALS AND METHODS

2.1. Overview
In this work, we experimented a multi-agent deep reinforcement
Learning (MARL) algorithm called Multi-Agent Advantage

FIGURE 1 | Agent “i” reward and observation.

Actor-Critic (MA2C) (Chu et al., 2019, 2020) in a simulated
traffic settings located in the Bologna area (Fazzini et al., 2021).
Our goal is to evaluate its performance in terms of amount of
pollutants released in the environment. More specifically, our
evaluation focus on howMA2C, by controlling the logic of traffic
lights, affects the coordination among the signalized intersections
and consequently influence the amount of vehicles queuing at
their surroundings.

The problem of coordinating signalized intersections can be
seen as a stochastic game: every agent (i.e., every signalized
intersection) aims to minimize the amount of queuing vehicles
(reward)1 by observing their behavior in its neighborhood (i.e.,
by observing its neighborhood state) and ultimately learns how
to balance its action (by controlling traffic lights switching)
with the other agents. Notably, MA2C couples the observation
of its neighbor policy to the observation of its state, and
restricts the environment reward to its neighborhood (Figure 1)
(Fazzini et al., 2021) yielding a mixed cooperative-competitive
stochastic game.

1as in Fazzini et al. (2021), to comply the literature on the subject, in this work,

we will call the environment feedback “reward” even though it is provided (and

perceived) as a penalty.

FIGURE 2 | Traffic network: the round (translucent-purple) spots reference the

signalized intersections (agents). Each signalized intersection include one or

more crossroads which are highlighted in a dark (green) color. The intersection

not controlled by any agent are highlighted in a lighter (yellow) color.
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FIGURE 3 | MA2C general scheme.

TABLE 1 | Settings.

Agents Signalized intersections

States Wave and fingerprints

Actions Traffic lights settings (e.g., switching from red to green)

FIGURE 4 | Scheme of the two ANNs (Actor and Critic). Apart from the output

layer, the two ANNs share the same architecture but are distinct entities with

different weights. The Wave and Fingerprints inputs are elaborated by two fully

connected (FC) layers made by 64 and 128 units. The outputs of the FC layers

feed the LSTM unit (64 inputs) whose output is in the first case a state value

(first ANN, Critic) and in the second case a policy (second ANN, Actor).

As shown in Figure 2, our setting is organized in a nested
structure: a traffic network represents our environment, which
in turn includes multiple traffic signalized intersections (agents).

Every intersection contains one or more crossroads, each
including a number of lanes.

We start by reviewing the equations of multi-agent
reinforcement learning. In Section 3, we detail our experiments
and show our traffic networks. Finally (Section 4), we evaluate
how the MA2C action translates in terms of pollutants released
in the environment.

2.2. Multi-Agent Reinforcement Learning
As described in Fazzini et al. (2021), we refer our formalism
to the framework of recurrent policy gradients (Wierstra et al.,
2007): each agent learns a limited memory stochastic policy
π(ut | ht), mapping sufficient statistics of a sequence of
states ht to probability distributions on action ut ; once the
optimal policy has been determined it is adopted for signalized
intersection coordination.

2.2.1. Neighbor Agents
In a network symbolized by a graph G(V , E), where V (vertices)
is the set of the agents and E (edges) is the set of their
connections, agent i and agent j are neighbors if the number of
edges connecting them is less or equal some prefixed threshold.
In the adopted formalism: (1) agents and connections refers
to signalized intersections; (2) the neighborhood of agent i is
denoted as Ni and its local region is Vi = Ni ∪ i; and (3) the
distance between any two agents is denoted as d(i, j) with d(i, i) =
0 and d(i, j) = 1 for any j ∈ Ni.

2.3. System Architecture
Figure 3 provides an overview of the system. The goal is to
minimize the vehicle queuesmeasured at signalized intersections.
To this end, an agent keeps repeating the following steps (Fazzini
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FIGURE 5 | Andrea costa, learning curves.

FIGURE 6 | Pasubio, learning curves.

et al., 2021): (1) the ANN provides a policy for the traffic
simulator given the perceived state st of the environment; (2)
given the policy, a set of consecutive actions are selected (e.g., the
simulator can be instructed to switch traffic lights at signalized
intersections); (3) the simulator performs a few time steps
following the current policy and stores the environment rewards,
corresponding to the amount of queuing vehicles in proximity of
signalized intersections; and (4) the ANN uses the stored rewards
to change its parameters in order to improve its policy.

Table 1 shows formally how states, actions, rewards and
policies have been defined in our setting.

In Table 1, with fingerprints is intended the current policy
of the neighboring agents, instantiated with the vector of
probabilities of choosing one of the available actions; wave
[veh] measures the total number of approaching vehicles along
each incoming lane, within 50 m to a signalized intersection.
The state is defined as st,i = {wavet[lji]}lji∈Li where Li is the
set of lanes j converging at a signalized intersection (agent) i;
moreover fingerprints of other agents are added to complete the
observation set.

In addition to the settings in Table 1, Ui is the set of
available actions for each agent i, defined as the set of all the
possible red-green-yellow transitions available to each traffic

TABLE 2 | Hyperparameter settings.

Par. Value Description

α 0.9 Space weighting factor

Ts 3600 [s] Period of simulated traffic

1t 5 [s] Interaction time between each agent and the traffic

environment

ty 2 [s] Yellow time

Nv 2000,3600 [veh] Total number of vehicles

γ 0.99 Discount factor, controlling how much expected future

reward is weighted

ηθ 5 exp (−4) Coefficient for ∇L (θi)used for gradient descent

optimization

ηψ 2.5 exp (−4) Coefficient for ∇L (ψi)

| B | 40 Size of the batch buffer

β 0.01 Parameter to balance the entropy loss of policy πθi to

encourage early-stage exploration

ξM 0.5 Critic loss weight

The above values follow the implementation in Chu et al. (2019).

light. The reward function at time t cumulates the queues
(number of vehicles with speed less than 0.1 m/s) at the
lanes concurring to a certain signalized intersection computed
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FIGURE 7 | Andrea costa.

FIGURE 8 | Pasubio.

at time t +1t:

rt,i =
∑

ji∈E ,l∈Lji

queuet+1t[l] (1)

2.4. ANN Detail
States, actions, next states, and rewards are collected in
minibatches called experience buffers, one for each agent i: Bi =
{(st , ut , st+1, rt)}i. They are stored while the traffic simulator
performs a sequence of actions. Each batch i reflects agent i
experience trajectory. Figure 4 shows MA2C’s architecture. The
graph reflects the A2C formalism (Barto et al., 1983; Mnih et al.,
2016), therefore, each graph represents two different networks,
one for the Actor (Policy) and one for the Critic (State-Value),
their respective parameters being further referred as θ and ψ .
As in the graph, wave states and the fingerprint unit are fed to
separated fully connected (FC) Layer with a variable number
of inputs, depending by the number of lanes converging to
the controlled signalized intersection. The output of the FC
layer (128 units) feeds the Long Short-Term Memory module
(LSTM) equipped with 64 outputs and 64 inner states (Fazzini

et al., 2021). The output of the LSTM module is linked to
the network output that in the Actor case is a policy vector
(with softmax activation function) and in the Critic case is a
State-Value (with linear activation function). All the activation
functions in the previousmodules are RectificationUnits (ReLU).
In Figure 4, the network biases are not depicted although present
in each layer. For ANN training, an orthogonal initializer [43]
and a gradient optimizer of type RMSprop have been used.
To prevent gradient explosion, all normalized states are clipped
to [0, 2] and each gradient is capped at 40. Rewards are
clipped to [-2, 2].

2.5. Multi-Agent Advantage Actor-Critic
(MA2C)
MA2C (Chu et al., 2019) is characterized by a stable learning
process due to communication among agents belonging to the
same neighborhood: a spatial discount factor weakens the reward
signals from agents other than agent i in the loss function and
agents not in Ni are not considered in the reward computation.
The relevant expressions for the Loss functions governing the
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FIGURE 9 | Running vehicles over time. (A) Andrea Costa. (B) Pasubio.

training optimization algorithm are:

L (θi) =

tB−1
∑

t=0

logπθi

(

ut,i|h̃
π
t,Vi

,πt−1,Ni

)

Ãt,i

+β
∑

ui∈Ai

πθi logπθi

(

ui|h̃
π
t,Vi

,πt−1,Ni

)

(2)

L (ψi) =
1

2

tB−1
∑

t=0

(

R̃t,i − Vψi

(

h̃Vt,Vi
,πt−1,Ni

))2
(3)

In the above equations:

• Ãt,i = R̃t,i − Vψ−
i
(h̃Vt,Vi

,πt−1,Ni )

• R̃t,i = R̂t,i + γ
tB−tVψ−

i

(

h̃VtB ,Vi
,πtB−1,Ni

)

• R̂t,i =
∑tB−1
τ=t γ

τ−t r̃τ ,i

• r̃t,i =
1

|Vi|
(rt,i +

∑

j∈Vi ,j 6=i αrt,j)

• h̃πt,Vi
= {hπt,i}

⋃

α{hπt,j, j ∈ Ni}

• h̃Vt,Vi
= {hVt,i}

⋃

α{hVt,j, j ∈ Ni}

• h̃πt,Vi
= S̃π

(

H̃t,Vi

)

• h̃Vt,Vi
= S̃V

(

H̃t,Vi

)

• H̃t,Vi =
[

{s0,i}
⋃

α{s0,j}, u0, ..., {st−1,i}
⋃

α{st−1,j}, ut−1, {st,i}
⋃

α{st,j}
]

with j ∈ Vi

Where πθi refers the policy to be learned determining the
parameters θi associated with agent i, πt,Ni are the policies of
agent i’s neighbor agents at time t, ut,i is the action taken by agent
i at time t, hπt,i is the history of the past states of agent i at time t
following the policy πθi , rt,i is an evaluation of the average queue
at signalized intersection (agent) i at time t2.

The spatial discount factor α penalizes other agent’s reward
and Di is the limit of agent i neighborhood.

Equation (3) yields a stable learning process since (a)
fingerprints πt−1,Ni are input to Vψi to bring in account πθ−−i

,

and (b) spatially discounted return R̃t,i is more correlated to local
region observations

(

s̃t,Vi ,πt−1,Ni

)

.

3. CALCULATION

We trained and evaluated MA2C in two traffic environments
replicating two districts in the Bologna area (Andrea Costa and
the Pasubio) simulated in SUMO (Lopez et al., 2018).

3.1. Training and Evaluation
A relevant finding in Fazzini et al. (2021) is that pseudo-
random training (when the same seed is applied to the random
vehicle trip generation, causing vehicles repeating the same path

among training episodes) shapes robust policies also able to cope
with completely random trips (generated with different seeds in

different episodes). In fact (Fazzini et al., 2021) reports that all
the evaluations performed with various seeds (therefore, various

random sequences of trips) show a consistent behavior when
using MA2C both with the insertion of 2,000 and 3,600 vehicles.
Moreover, such policies have proven effective even when the
total number of vehicles inserted during evaluation is different
from the total number of vehicles inserted during training,

remarking that a learned policy doesn’t show a relation with
such parameter. Consequently, in the experiments detailed in
this work, we adopted pseudo-training. Our setting involves that
every episode of the SUMO simulation consists of 3,600 time
steps; each time step a vehicle is inserted in the traffic network
with a pseudo-random Origin-Destination (OD) pair until an
amount of 2,000 vehicles is achieved. The criterion used to
measure the algorithms performance is the vehicle queues at the
intersections, which is linked to the DP reward by Equation (1).
Such queues are estimated by SUMO for each crossing (reward)
and then elaborated following the equations in Section 2.5. The

2the complete list of the symbols used in the equations is reported in Fazzini et al.

(2021).
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FIGURE 10 | NOx emissions, time interval [0, 1000]. (A) Andrea Costa, no sync. (B) Pasubio, no sync. (C) Andrea costa, sync. (D) Pasubio, sync.

algorithm is trained over 1 M training steps, each divided in
720 time steps; consequently every SUMO episode is made by 5
training steps. For the evaluation, we adopt the same settings as in
training, although the vehicle trips are generated with a different
random seed.

3.2. Initial Conditions
When training, being the vehicle trips generated in a pseudo-
random fashion, randomness comes from the choice of the initial
conditions for the ANN weights. Here, the only constraint is
that such weights are initialized as orthogonal matrix (Saxe et al.,
2014). Figures 5, 6 show the effect of different initial conditions
on the learning process in terms of number of vehicles queuing
at the controlled signalized intersection (y-axis). The opaque
(green) graph shows the best learning curve among 10 training
attempts, which are shown in translucent shades.

In the following evaluations the best learnt policies
are adopted to operate synchronization among the agents
(signalized interceptions).

3.3. Parameter Settings
The DP is finally instantiated with the settings listed in Table 2.

The size of the batch indirectly sets up the n parameter of the
n-step return appearing in Equations (2) and (3) and has been
chosen balancing the complementing characteristics of TD and
Monte-Carlo methods (Sutton and Barto, 1998).

3.4. Traffic Networks
Our experimentation have been conducted in the following traffic
networks (Fazzini et al., 2021).

3.4.1. Bologna - Andrea Costa
Figure 7 (left) shows the Bologna—Andrea Costa neighborhood
(Bieker et al., 2015).

The round (translucent purple) spots reference the signalized
intersections (agents). Each signalized intersection include one or
more crossroads which are highlighted in a dark (green) color.
The intersection not controlled by any agent are highlighted
in a lighter (yellow) color. The right side of the figure shows
the way each agent is connected to the others as required by
MA2C fingerprints communication and reward computation.
The set of all the agents connected to a single agent constitutes
its neighborhood. For this pseudo-random simulation, 2,000
vehicles where inserted in the traffic network, one each time step
in the time interval [0, 2,000] while no vehicle is inserted during
the 1,600 remaining episode time steps.

3.4.2. Bologna—Pasubio
Figure 8 (left) shows the Bologna—Pasubio neighborhood
(Bieker et al., 2015). As in the Andrea Costa case, the right hand
side of the figure shows how the agents have been connected.
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FIGURE 11 | NOx emissions, time interval [2000, 3600]. (A) Andrea Costa, no sync. (B) Pasubio, no sync. (C) Andrea Costa, sync. (D) Pasubio, sync.

TABLE 3 | Overall emissions and fuel consumption.

CO2 [kg] CO [kg] NOx [g] PMx [g] HC [g] Fuel [L]

No sync (AC) 4753 281 2162 116 1391 2043

Sync (AC) 770 22 324 15 120 331

No sync (P) 5129 306 2336 126 1514 2204

Sync (P) 921 31 392 19 165 331

4. RESULTS

In this section, we evaluate how MA2C performance translates
in terms of emissions.
As described in the above sections, our typical traffic
simulation spans over 3,600 time steps, with an
interaction time of each vehicle with its environment of
5 s (Table 2):

• In the first part of the simulation (time steps [0,
2,000]) a vehicle is pseudo-randomly inserted on
the map for each time step and follows a pseudo-
random path.

• In the second part of the simulation (time steps
[2,000, 3,600]) no vehicle is inserted. Eventually, all
the vehicles circulating on the map leave through

one of the exit lanes or end their journey by reaching
their destination.

Evaluations regarding training, convergence as well as details
on robustness toward random testing are fully detailed
in Fazzini et al. (2021). In this section, we will focus
exclusively on the effects of traffic signal control by MA2C on
vehicle circulation.

Figure 9 shows the number of running vehicles in the time
span [0, 3,600] for the cases Andrea Costa and Pasubio (Fazzini
et al., 2021).

The curve referring to the case where no coordination
is performed among the agents (No Sync case) shows that
due to heavy queuing at the traffic lights, several vehicles
stay on the road after time step 2000. In the graph, the
curve keeps rising while vehicles are injected and tends to
slowly decrease afterwards. However, when MA2C performs
coordination among the agents using the learnt policy (Sync
case), the amount of vehicles running fades quickly toward
zero after time step 2,000. This finding has an obvious
impact on the amount of emissions, as shown in the
following sections.

4.1. NOx Emissions
Emissions have been computed following the emission
model implemented within Sumo (Krajzewicz et al.,
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FIGURE 12 | Emissions and fuel consumption.

2014). The graphs and the tables reported come from
evaluating a policy converging to the ideal behavior
during training shown in the training graphs. As in
Fazzini et al. (2021), the evaluation of such policy shows
no dependence by the seed used to generate the random
vehicle trips.

Figures 10, 11 display the NOx emissions normalized in
time and street length (g/h/km) with (Sync) and without (no
Sync) synchronization3.

It appears evident that, in the No Sync case, the amount
of emissions stays almost constant over the time intervals
considered. A closer look reveals a slight increase of the emissions
with time.

In the Sync case, the pictures highlight that the emissions
are significantly lower than the previous case: they decrease
significantly in the [2,000, 3,600] interval, when no new
vehicle gets injected on the road and the traffic eventually
fades out. This fact is completely missing in the No Sync
case (Figure 11).

Finally, Table 3 and Figure 12 show the overall decrease
in pollution and fuel consumption between the cases
with No Sync and Sync for both Andrea Costa (AC) and
Pasubio (P).

3All the other pollutants, we analyzed (namely CO2, CO, PMx, and HC) exhibit a

similar behavior.

5. DISCUSSION

In this work, we have evaluated a recently developed MARL
approach, MA2C (Chu et al., 2019, 2020), in terms of emission
reduction induced in a controlled traffic network. As an ATSC
benchmark, we adopted digital representations of the Andrea
Costa and Pasubio areas (Bologna, Italy) (Bieker et al., 2015).

We showed that when signalized intersections are coordinated
using MA2C, traffic emissions into the environment and fuel
consumption decrease significantly with respect to the case
without such coordination. This result translates to a very evident
reduction of pollutants released into the environment.
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