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ETSII-UPM (Escuela Técnica Superior de Ingenieros Industriales), Madrid, Spain

The coronavirus disease (COVID) lockdown was implemented in 2020, which included

harsh restrictions on the amount of traffic. As a consequence, a low-emission scenario

that could only be simulated before, actually occurred. This constituted a unique and

valuable opportunity to study the effect of air quality pollutant concentrations. Although

a direct comparison between the observed measured values given by reference air

quality stations (AQSs) and values from before the COVID lockdown provides an idea

of the pollution reduction, it cannot be separated from the meteorology, and hence,

those studies could be misleading. This study used the approach of modeling a normal

business day using both air quality and meteorological data from 2017 to 2019 to

train machine-learning models to be able to predict what concentration of the three

most concerning pollutants (NO2, O3, and PM10) would be given by the meteorological

conditions and the time of the year. The XGBoost and LightGBM gradient boosting

decision tree-based models were applied to the time series recorded in Madrid and used

to predict the expected concentrations in 2020 if no restrictions had been made. The

predictions could then be compared to the real observed AQS data to determine the

meteorological normalized reductions. The results showed around a 60% reduction in

the NO2 at the three types of AQSs (traffic, suburban, and background) during the most

restrictive months of the pandemic. The O3 concentration showed a different behavior

depending on the type of AQS, pointing to changes in the regime of other pollutants, such

as VOCs. The PM10 was the most difficult case to analyze because of its dependence

on external transport phenomena, which were difficult to consider in the models. A set of

CTM simulations should be done in the future to assess the O3-VOCs-NOx chemistry.

Keywords: air quality, COVID lockdown, gradient boosting trees, meteorological normalization, machine learning

(ML)

INTRODUCTION

The rapid spread of coronavirus disease 19 (COVID-19) affected the European countries from
March 2020 onward. Spain was one of the most affected countries in the first wave of COVID-
19. The viral threat forced the government to implement a state of alarm on 14 March, which
restricted the mobility of the citizenry to strictly necessary activities, such as purchasing food and
receivingmedical assistance.Where possible, non-essential activities were restricted to teleworking,
and travel by car was completely forbidden unless it was indispensable. This situation occurred
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worldwide (Anjum, 2020; Bao and Zhang, 2020). After 30 March,
the government implemented even more restrictive measures on
9 April, when only some essential services, such as pharmacies,
the food sector, and some industries, were allowed. This was
due to an increasing number of detected COVID-19 cases and
hospital admissions: Spain detected 9,222 new cases in 24 h on
31 March 2020. Once the infection curve started to stabilize, the
Government implemented a method known as “de-escalation,”
which consisted of several phases (from Phases 0 to 3) that
would be followed to achieve a “new normal” situation while
keeping the spread of COVID under control. These kinds of
measures were designed to be implemented asymmetrically and
could hence vary among autonomic communities. For instance,
the Municipality of Madrid was among the most affected regions
of Spain since it has a high population density and level of
population mobility. It was also one of the places where more
restrictive measures were taken and maintained for a longer
duration. For example, Madrid was in Phase 0 from 4 May 2020,
to 24 May 2020, in Phase 1 from 25 May 2020 to 8 June 2020, and
in Phase 2 from 9 June 2020, until 21 June 2020, when it moved
directly into the new normal stage. Until this point, only strictly
justified travel, inside or outside of the Greater Madrid Region,
was allowed.

These implemented measures caused a dramatic decrease in
the traffic intensity and, hence, in its pollutant emissions (Tobias
et al., 2020). This constituted a valuable and unprecedented
opportunity to study a low-emission scenario with low traffic that
could only be modeled previously.

Several studies have been conducted globally on the effects of
traffic reduction on atmospheric pollution due to the COVID
measures. Many of them compared the measured pollutant
concentrations with the corresponding time series that were
recorded in the previous years. However, this does not consider
the effect of the weather on the pollutant dynamics, chemistry,
and dispersion, which makes a comparison with the previous
years unsuitable.

Generally, previous studies have found an abrupt decrease in
NOx, mostly due to traffic restrictions. In contrast, there has been
a reported increase in O3 (Kondo et al., 2020; Mahato et al., 2020;
Tobias et al., 2020; Wang et al., 2020; Chu et al., 2021). This
effect is often related to a decrease in the oxidative capacity of the
atmosphere due to the NOx decrease (Baldasano, 2020; Li et al.,
2020), to a change in the VOCs-O3 regime (Ding et al., 2021;
Lin et al., 2021) or a seasonal solar irradiation increment. This
effect was especially strong in large urban areas (Adhikari and
Yin, 2020; Sicard et al., 2020). Additionally, the particulate matter
(PM) was found to decrease but still was over the threshold
recommended by the WHO (Cole et al., 2020; Kerimray et al.,
2020); it likely did not undergo a high decrease, such as NOx,
due to regional transport, meteorological constraints, and non-
linear aerosol chemistry (Le et al., 2020). Furthermore, in some
stages of the lockdown, no decrease was found at all (Dobson
and Semple, 2020; Siciliano et al., 2020) or the PM even increased
(Nadzir et al., 2020) due to external events.

Some studies have considered the effect of meteorology
to make the pollutant concentration of different years
comparable. For instance, Xiang et al. (2020) found that the

pollutant concentrations were very different when meteorology
was considered.

Different scientists have used different approaches. Ding et al.
(2021) used dispersion coefficients to remove the meteorological
effects from the measured PM2.5. Song et al. (2021) found
that meteorology was responsible for 8.8% of the observed PM
increase, using a wind decomposition technique. Moreover, Lin
et al. (2021) used CTMs to determine the effect of meteorology.

Some authors used statistical or machine-learning (ML)
algorithms. Henneman et al. (2015) applied detrending methods
to a time series, Qu et al. (2020) used ensemble algorithms
(based on a set of models), Barmpadimos et al. (2011) employed
generalized additive models, Gong et al. (2022) used multiple
linear regression (MLR), and Falocchi et al. (2021) and Liu et al.
(2022) employed random forests.

In addition, other authors used more sophisticated ML
algorithms, such as non-parametric kernel regression (Liang
et al., 2016) and gradient boosting trees (GBT) (Carslaw and
Taylor, 2009). Grange et al. (2018) applied this methodology
using the random forests (RF) algorithm to predict the Swiss
PM10 trends. In this study, we used the approach of several
authors (Grange et al., 2018; Grange and Carslaw, 2019; Cole
et al., 2020; Dobson and Semple, 2020), who applied ML
algorithms to predict the pollutant concentrations of a normal
business day (business as usual [BAU]). This kind of model, once
trained, allows for the prediction of a pollutant concentration
time series during the lockdown period that would have been
expected to occur under normal conditions (without lockdown
measures). Then, the results can be compared to the true
observed concentrations, creating an estimate of the real decrease
in atmospheric pollution (Petetin et al., 2020).

MATERIALS AND METHODS

The following methodology was used to assess the pollutant
concentration reduction caused by the COVID lockdown in the
city of Madrid in 2020. The lockdown started on 16 March
2020 and was removed after several phases were implemented,
which successively eliminated restrictions on mobility. In the
community of Madrid, the starting dates of such phases were as
follows: Phase 0: 4 May 2020; Phase 1: 25 May 2020; Phase 2: 8
June 2020; and the “new normal” on 21 June 2020.

We followed a similar methodology to the study by Grange
and Carslaw (2019). Following Petetin et al. (2020), ML
models were fitted to the previous year’s data using the
pollutant concentration as the dependent variable and a set
of meteorological variables and time variables as features. The
meteorological variables introduced the effect of dispersion,
short- or long-range transport, removal, and chemical evolution
whereas the time variables provided a time series effect like
trends or seasonality information for the models. The models
were therefore trained for a given subjacent emission forcing,
and their predictions during the lockdown did not consider the
restriction measures but considered only the meteorology and
the seasonal components of time. The predictions made with
such models were thus independent from lockdown measures
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and could be compared with the true observations by means
of air quality stations (AQSs) to estimate the real decrease in
atmospheric pollution.

In this study, we opted to apply gradient boosted trees,
specifically the state-of-the-art XGBoost (Chen and Guestrin,
2016) and LightGBM (Ke et al., 2017) algorithms. Both are
non-linear since they are based on recursive node splits until
the desired degree of node purity is achieved. They are also
non-parametric, removing the necessity for the data to be
independent, homoscedastic, and normally distributed. They
count with a set of tuning hyperparameters that are easy to adjust
and can be implemented without configuring a complex model
architecture, such as artificial neural networks. In addition, both
algorithms’ implementations allow for post-analysis of the results
using a feature importance analysis; therefore, the weight of the
impact of the different features that were used on the pollutant
concentrations could be studied.

In this study, the OpenAir (Carslaw and Ropkins, 2012) R
package timeVariation function was used to visualize the effect of
the lockdown on the pollutant concentrations, considering only
the AQS observations. Then, the meteorology-normalized time
series were obtained, and the effects of the lockdown measures
on the pollutant concentrations were assessed.

Air quality station data were downloaded from the Madrid
City Council (Madrid City Council, 2021) and consisted of NO2,
O3, and PM10 hourly observations from 22 stations in 2017.
Earlier years were not considered since the emission patterns
varied highly, making their measurements non-comparable. The
choice of PM10 instead of PM2.5 was made because PM2.5 is
only minimally monitored in Madrid, and the behaviors of both
PM2.5 and PM10 are similar since they both are greatly affected by
external factors. The stations were classified into three categories:
traffic, background, and suburban. The meteorological data
were downloaded from the AEMET Open Data API (AEMET,
2021) and included the daily average temperature (tmean),
the maximum and minimum daily temperatures (tmax and
tmin, respectively), the wind speed and direction (Ws and
Wd, respectively), the maximum and minimum daily surface
pressures (presMax and presMin, respectively), and the gust
speed. For this study, only the meteorological station of Retiro
was used, since it should be sufficiently representative of the
diurnal and seasonal variations in the whole city of Madrid,
and other studies have successfully used wide spatial resolutions
(Petetin et al., 2020). These meteorological variables were then
used to separate the effect of the meteorology from the pollutant
concentrations, as the pollutant concentrations are strongly
dependent on them.

In addition to the AQS and meteorological variables, other
time-based features were used to capture temporal trends: the
Julian day, taken as the first day of 1 January 2017; the year-day
and the month to account for seasonality; and the weekday to
include the working day or weekend effect.

Data Visualization
In this section, the data from the AQSs were simply plotted to
observe the variation in the pollutant concentrations before and
after the lockdown. First, one AQS representative of each one

of the three categories was chosen, and the concentrations were
represented by plotting the successive months of April from the
year 2017. This was conducted since April 2020 was the first full
month where the most restrictive measures were implemented.
Figures 1–3 cover the three pollutants studied: NO2, O3, and
PM10. The three representative stations were as follows: traffic,
Escuelas Aguirre; background, Farolillo; and suburban, Casa
de Campo.

As shown in Figure 1, the NO2 concentration decreased
as expected in all stations studied, with a dramatic decrease
in the traffic station. Additionally, the measured NO2

concentration was higher on Fridays and Saturdays. This
behavior was also observed in the rest of the AQSs (refer to
Supplementary Figure 1, where this figure is reproduced for all
the stations aggregated by type). This pattern was less obvious
for the suburban AQSs where the NO2 concentration was, in
absolute terms, lower. Figures 2, 3 show a comparable analysis
for O3 and PM10.

In the case of O3, the pattern was more complex, since it did
not decrease as steeply as NO2 in all locations. For example, it
even increased in some years. The only place where it decreased
was at the suburban station (Casa de Campo), pointing to
complicated changes in its regime. Previously, reductions in NOx

resulted in increases in O3 (Dávalos et al., 2017). In this case, if
the changes in emissions were a lot higher and no effect was seen,
which is because the VOCs are affecting the O3, as was found
to occur by other authors (Ding et al., 2021; Lin et al., 2021).
Changes in the VOCs-NOx regime could strongly affect O3

concentrations. Furthermore, according to Jung et al. (2022), O3

concentrations increase more in winter than in summer, showing
a strong dependence on the season. Therefore, in the future,
we plan to carry out chemical transport models to elucidate the
mechanisms between O3 and the other pollutants.

For PM10, it cannot be stated whether it decreases or increases,
and therefore, it does not have a clear pattern. This points to an
important background component that could be affecting this
pollutant and the potential effect of external transport like salt
or Saharan intrusion episodes.

Next, Figure 4 shows the violin plots for NO2, O3, and PM10

at the three locations that were studied in the successive months
from February 2020. Moreover, Supplementary Figure 2 shows
the pollutants aggregated by AQS type and NO2. A violin plot
has the advantage over the traditional box and whiskers plot of
being visual. Their shape indicates where the data were located.
A narrow part of the “violin” has less data than the wider parts of
the plot. Therefore, they offer the additional possibility that their
shape can be used to check for multimodalities.

The patterns for the consecutive months of the same year
showed that the consecutivemonths of April were very similar for
the three AQSs. In summary, NO2 decreased in all the locations,
with a minimum in April, and started to recover a little in May,
but remained very low. The O3 concentration increased month
by month as expected because of the increase in solar irradiation.
Then, the PM10 decreased until April and then increased inMay.
However, in the case of the Escuelas Aguirre station (traffic), the
results were roughly similar forMarch andApril, whereas inMay,
despite the lockdown having not ended, the PM10 measurements
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FIGURE 1 | The NO2 time series for the consecutive months of April for three air quality station (AQS) representatives of each category: (A) Escuelas Aguirre: traffic,

(B) Casa de Campo: suburban, and (C) Farolillo: background. The figure was made using the function timeVariation from the OpenAir R package (Carslaw and

Ropkins, 2012).
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FIGURE 2 | The O3 time series for the consecutive months of April for three air quality station (AQS) representatives of each category: (A) Escuelas Aguirre: traffic, (B)

Casa de Campo: suburban, and (C) Farolillo: background. The figure was made using the function timeVariation from the OpenAir R package (Carslaw and Ropkins,

2012).
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FIGURE 3 | The PM10 time series for the consecutive months of April for three air quality station (AQS) representatives of each category: (A) Escuelas Aguirre: traffic,

(B) Casa de Campo: suburban, and (C) Farolillo: background. The figure was made using the function timeVariation from the OpenAir R package (Carslaw and

Ropkins, 2012).
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FIGURE 4 | The violin plots for the three air quality stations (AQSs) and the pollutants NO2, O3, and PM10 grouped by consecutive months in (2020).

were similar to those in February when no measures were taken.
This reflects the complexities behind the factors that affect this
pollutant regime and supports that its concentration cannot only
be related to traffic emissions.

Gradient Boosting Trees
To predict the NO2, O3, and PM10 concentrations and to separate
them from the meteorological effects, tree-based gradient
boosting models were used, similar to the methodology of
the study by Grange and Carslaw (2019). The two novel and
high-performance algorithms were selected: XGBoost (Chen
and Guestrin, 2016) and LightGBM (Ke et al., 2017). The
corresponding pollutant concentration was the target variable,
whereas the meteorological and time sets were considered as
features. Instead of performing a classical random train or test
split, a time split was selected since we were working with a
time series and desired the highest accuracy. Therefore, the years
2017–2019 were used for training the models, except for the
last 2 1/2 months of 2019 that were used for testing. Then, the
predictions were made for 2020. The hyperparameters of the
models were tuned using a typical grid search process.

With this approach, the predicted NO2/O3/PM10 were only
based on the effect of the meteorology and time series and did not
consider the emission reduction due to the lockdown restrictions.

Thus, the difference between the model results and the observed
values at the AQSs provided the actual reduction in pollutants.

The models were fitted to the full three sets of data
corresponding to the type of AQS (traffic, background, and
suburban), and initially, we did not introduce the source of
variability induced from each individual station. However, high
variations among locations were detected when comparing the
predictions for different individual locations, especially in the
case of O3 and the background type of AQS. These findings
made us consider introducing the location feature among the
set of features. This was performed by creating dummy variables
(the number of AQSs measuring each pollutant of each type,
minus one to avoid the dummy-trap or multicollinearity). With
this procedure, we obtained very accurate results by training a
model for each pollutant and every type of AQS, similarly and
more efficiently than we would have trained a separate model for
each location.

Confidence Intervals
The uncertainty of the predictions was estimated from the
residuals that were calculated from the weekly averages of the
predictions and the observed values for the period 2017–2019.
Then, the 5th and 95th percentiles were used as the lower and
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upper bounds of the confidence intervals at a 90% confidence
level (Petetin et al., 2020).

The residuals were calculated, considering that the uncertainty
of the relative differences (%) propagates the individual errors
of the variables in equation 1. Therefore, they were calculated
according to the following formula:

Uncertainty (%) =

√

√

√

√

√





√

(

δa

a

)2

+

(

δb

b

)2




2

+ δc (1)

where δx is the amplitude of the individual confidence interval
for variable x∗, and

x is the average value of variable x.
∗Note that our calculated confidence intervals were not

symmetric due to the form of the calculation that was based
on the percentiles; therefore, we had to separately calculate the
upper and the lower bounds. The variables a and b stand for the
numerator and denominator calculated NO2 term, respectively,
whereas c is the AQS uncertainty, which is 15%, as this is the
maximum uncertainty allowed for AQSs (Directive 2008/50/EC
of the European Parliament of the Council of 21 May 2008 on
ambient air quality cleaner air for Europe, 2008).

Note that this equation gives the result in terms of percentages,
so we converted them back to relative difference (%) units.

Location Dummy Variables
In this study, up to 22 AQSs were used. Each location has its
own characteristics which are difficult to consider if a global
model is used. Practically, a global model is preferred, since fitting
a separate model for each AQS and pollutant would increase
the number of models substantially. However, it was needed
to make sure that the global model worked well once applied
to the individual AQS data. Consequently, a dummy variable
approach for the locations was utilized and the results were
checked. Figure 5 shows the corresponding model’s percentage
difference O3 results, fitted exclusively for the individual Barrio
del Pilar AQS data, and both global models without and with
location introduced as dummy variables. The dummy approach
plots resembled the global model results much more than the
individual models. This means that we were able to fit a global
model that introduces dummy variables for the location features,
and we were able to apply the resulting model to each AQS
data individually, without losing information and significantly
reducing the number of models needed. Therefore, we used this
form of model fitting in this study.

K-Fold Cross-Validation of the Models
Apart from the validation performed using the observed vs.
predicted r2, a k-fold cross-validation of the models was
performed using 10-folds, which is a common practice. Notably,
because the predictions obtained from the models during
2020 cannot be compared to the real values since they are
hypothetically normalized, no external validation could be
conducted. Instead, the k-fold cross-validation was used to
determine a measure of the accuracy of the models and their
variance when submitted to different sets of data. This algorithm

allowed us to obtain an average metric followed by its standard
deviation when run ten times and switching the train or test
partitioning among the folds. One fitting contained 90% of
the data for training (9-folds), and the remaining 10% was for
calculating the error metrics. In this study, for error metrics, we
used the r2, because it is widely used and its interpretation is very
straightforward: the root mean squared error (RMSE), and the
mean absolute error (MAE). When both metrics are used, they
offer information about whether there were outliers that affected
the results, because RMSE is very susceptible to the outliers since
it is squared. In contrast, the MAE is less susceptible to outliers.
Therefore, by evaluating whether the RMSE was a lot larger than
the MAE, it could be concluded that the data had outliers, which
could have been affecting the predictions. If that were the case,
the outliers should be identified and explained. But, in this study,
the RMSE was only slightly higher than the MAE, so we did not
have to consider outliers.

Feature Importance
Both the XGBoost and LightGBM packages provide graphical
representations of the feature importance of their models. This is
useful for understanding which variables are the most important
and which are less and could be removed if computational
requirements are too high. The method that the models use to
measure the feature importance varies among the models. The
XGBoost offers the gain of each feature in the model, whereas
the LightGBM measures the number of splits. Conceptually,
if a variable produces more branch splits, it governs more
of the architecture (or an ensemble) of a decision tree and
hence should be more important for determining the final
prediction. The gain represents the fractional contribution of
each feature to the model, based on the total gain of the
feature’s splits. A higher percentage indicates a more important
predictive feature. Therefore, the gain and the number of splits
are similar measurements.

Figure 6 displays both the XGboost and LightGBM feature
importance bar plots when a global model (with dummy variables
for location) is used for the three types of pollutants and the case
of traffic AQSs.

In the case of NO2, we found that the XGBoost model relied
on the gust feature, whereas the LightGBM relied more on the
seasonal features for making its predictions, although the gust
remained as one of the most important variables. This can be
explained because the gust and Ws are related to the dispersion
of NO2 and hence lead to lower concentrations. The year-day
was also important for both models since the NO2 concentration
has a marked seasonality effect. For instance, its concentration
usually decreases during July–August due to a reduction in traffic
emissions during the holidays. In comparison, it is normally
higher during winter due to meteorological thermal inversions,
which are typical during anticyclonic episodes.

In terms of the O3 panels, the temperature and seasonality
features are noteworthy: during summer, the high solar
irradiation and longer day length increased the O3 concentration.
The gust also had intermediate or high importance since it is
related to pollution dispersion.
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FIGURE 5 | (A) The model fitted exclusively for the Barrio del Pilar air quality station (AQS) data; (B) the global model without location features applied to the Barrio del

Pilar AQS data; (C) the global model with dummy variables for the location features for the Barrio del Pilar AQS data. The results are in percentage relative differences

for the year 2020 with respect to the AQS observations.

Then, the analysis for PM10 varied from model to model.
Nevertheless, the most influential features were not reflected in
the model since they are based on external transport.

Notably, even though the location dummy variables appear as
less important features, they sum up and the results that were
discussed in this section support their use.

RESULTS AND DISCUSSION

The models were validated using k-fold cross-validation.
Tables 1, 2 summarize the results when using 10-folds (which

is common practice) for every combination of pollutant and the
type of AQS for both models.

The k-fold cross-validation outputs show that the LightGBM
models are slightly more robust. Nevertheless, both models
performed well with a high r2 (>0.80 in most cases), low RMSE,
and MAE with a very low standard deviation; so, the fittings do
not depend on the data. Thismeans that our data were sufficiently
representative to be partitioned, without producing noticeable
changes in the performance of the models. The PM10 offered the
lowest accuracies. This was expected since its concentration did
not depend only on emissions within Madrid.

The models that were used (XGBoost and LightGBM) are
gradient boosting decision tree-based models and are very
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FIGURE 6 | The feature importance bar plots represent the gain for the XGboost model and the number of splits for the LightGBM model and the three pollutants.

The results are for the traffic air quality stations (AQSs) using a pool model.

complex, highly non-linear, and non-parametric. The obtained
results were in line with or better than the results reported by
other authors. For instance, Grange and Carslaw (2019) found
an r2 of 0.82, and Falocchi et al. (2021) an r2 of 0.86 for
NO2 using the RF algorithm. This is a previously developed
ML algorithm and is not GBT-based but still gives accurate
results. Note that the r2 was calculated in the training sets,
where we obtained an r2 > 0.90. However, we prefer to use
the k-fold cross-validation as it represents the robustness of the

models through different training sets. Furthermore, Gong et al.
(2022) obtained an r2 of 0.66 for O3 using MLR and a more
variable result for PM2.5. Therefore, they deduced that PM2.5 is
less affected by meteorology than O3. In terms of particulates,
Grange et al. (2018) obtained an r2 that ranged between 0.54
and 0.71 for PM10, whereas Qu et al. (2020) found an r2 of 0.69
for PM2.5 in the test set using a complex ensemble algorithm.
The abovementioned results highlight the performance of more
modern GBT algorithms.
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TABLE 1 | The results of the k-fold cross validation for the XGBoost model using

10 folds and displayed as the average value ± standard deviation.

r2 RMSE* MAE*

NO2 Traffic 0.80 ± 0.02 9.26 ± 0.38 7.24 ± 0.25

Background 0.80 ± 0.01 8.81 ± 0.25 6.86 ± 0.18

Suburban 0.77 ± 0.02 6.85 ± 0.47 5.06 ± 0.24

O3 Traffic 0.85 ± 0.02 9.00 ± 0.47 6.96 ± 0.27

Background 0.81 ± 0.05 10.86 ± 1.62 8.00 ± 0.28

Suburban 0.85 ± 0.03 10.06 ± 0.96 7.74 ± 0.58

PM10 Traffic 0.66 ± 0.04 6.83 ± 0.94 4.64 ± 0.24

Background 0.62 ± 0.04 7.71 ± 0.50 5.29 ± 0.13

Suburban 0.60 ± 0.05 7.19 ± 1.76 4.76 ± 0.39

*Where RMSE is the root mean squared error and MAE is the mean absolute error,

in µg/m3.

TABLE 2 | The results of the k-fold cross validation for the LightGBM model using

10 folds and displayed as the average value ± standard deviation.

r2 RMSE* MAE*

NO2 Traffic 0.84 ± 0.02 6.05 ± 0.12 4.57 ± 0.11

Background 0.79 ± 0.02 5.54 ± 0.17 4.18 ± 0.12

Suburban 0.79 ± 0.03 5.42 ± 0.14 4.24 ± 0.11

O3 Traffic 0.88 ± 0.03 10.38 ± 0.43 8.11 ± 0.37

Background 0.84 ± 0.04 10.02 ± 0.35 8.00 ± 0.42

Suburban 0.82 ± 0.02 9.97 ± 0.37 7.95 ± 0.38

PM10 Traffic 0.63 ± 0.04 6.54 ± 1.05 4.34 ± 0.29

Background 0.65 ± 0.02 6.65 ± 0.92 4.23 ± 0.15

Suburban 0.61 ± 0.03 6.67 ± 0.06 4.82 ± 0.33

*Where RMSE is the root mean squared error and MAE is the mean absolute error,

in µg/m3.

In summary, the validation performed increased our
confidence in the results of the models that we used for the
gaseous pollutants when applied to the 2020 data because of the
high accuracies and low standard deviations that were observed.

Figure 7 shows the normalized predicted meteorologically,
the observed NO2 true concentration time series for the year
2020, and the traffic AQSs aggregated by weekly averages.

In all panels that reflect the type of AQS, from around
mid-March, the observed NO2 decreased, more steeply in the
traffic stations and less steeply in the suburban stations. This
was reflected both in the black points, which represent the true
concentrations of the past 3 years, and in the blue points, which
represent the observed concentrations in 2020. The predictions
of the models were in the same range as the values that were
averaged from the past 3 years of concentrations, indicating
their reliability. This is consistent with Figures 1–3. In late July,
both the predictions and average concentrations remained higher
than the 2020 observations. This can be explained by the start
of the holiday summer period and the fact that teleworking
remained common.

Figure 8 shows the percentage relative difference between the
model’s estimated NO2 concentrations and the corresponding

measurements from the stations, averaged by month. The type of
station and the confidence intervals for each bar are indicated.
This difference (variable percentage relative difference) was
calculated as follows (Equation 2):

relative difference (%) =
CalculatedNO2 −MeasuredNO2

CalculatedNO2
100 (2)

The calculated confidence intervals were [−8.1, 7.2], [−5.8, 4.7],
and [−7.8, 6.7] µg/m3 for the traffic, suburban, and background
AQSs for the XGBoost model, and [−1.7, 1.5], [−3.2, 2.6], and
[−1.9, 2.0] µg/m3 for the LightGBM model. The LightGBM
algorithm offered higher confidence than the XGBoost algorithm
in its predictions but achieved a slightly lower r2 in the test set.
Looking at Figure 8, both models’ predictions were quite similar,
following the same trends and showing similar absolute values of
NO2 concentrations.

Figure 8 also shows the results of applying the global model to
the two individual AQSs of each type.

The upper three panels showed that a close to normal NO2

concentration was estimated by both models from January to
February. Those results increased sharply from March when
the lockdown was applied, and in some cases, in April,
they are above 50–60%. Notably, although the quarantine
started on 16 March 2020, this is not the month when
the maximum percentage relative difference was obtained.
Instead, in April, which was the first complete month of
confinement, there were percentage relative differences above
50% and, in some cases, close to 60% (traffic and suburban
station types).

For the April–June period, the average percentage relative
differences for the traffic, suburban, and background stations
were XGBoost model [LightGBMmodel] 41.2 [41.5], 43.1 [45.0],
and 39.0 [40.3], respectively. These results, averaged over the state
of alarm period, were similar and in the same order of magnitude
as described in the previous studies (Petetin et al., 2020).
However, we obtained a slightly higher reduction in the case
of the background stations. Additionally, in absolute terms, the
reduction was significantly stronger for the traffic stations:−12.7
[−14.1],−8.4 [−8.1], and−11.7 [−12.1] µg/m3, respectively.

July was the first month of the so-called new normal, but
the percentage difference values remained very high. The likely
explanation is that this period was the holiday period for many
citizens, there was a massive exit from Madrid after more than
3 months of confinement, and teleworking continued, where
possible, for many companies.

A comparable study was performed for O3

and PM10 pollutants. The results are shown in
Supplementary Materials 3–6. In terms of PM10, we found that
our models achieved the lowest r2 among the three pollutants
studied. This might be attributable to the meteorological
variables possessing less explanatory power for this contaminant,
which is highly influenced by medium- and long-term transport,
instead of the conditions at the time of measurement. For
instance, Saharan dust intrusion episodes are frequent in Spain.
Nevertheless, we think that the obtained results are accurate
enough to be used for evaluating the levels of this pollutant.
Supplementary Figure 3 shows the time series for PM10 during
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FIGURE 7 | The NO2 time series for the air quality stations (AQSs) in Madrid, aggregated by type, previously and during the COVID lockdown. The LightGBM and

XGBoost predictions are shown in green and red, respectively. The AQS observations are shown as the blue line and points. The concentrations over the past 3 years

are represented as gray lines, whereas the black points indicate their average. A weekly moving average was used to smooth the data.
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FIGURE 8 | The percentage relative difference between the NO2 concentration estimated by the models and the measurements from the stations, aggregated by

month and type of station. The results of applying the pool model for the two selected air quality stations (AQSs) of each type are also indicated.

January–July 2020, whereas Supplementary Figure 4 shows
the percentage difference bar plots. The differences among the
predictions from both models and the AQS observed values
were difficult to evaluate. This again points to the fact that PM10

was only minimally affected by the emission patterns inside
the city and is consistent with the literature, which shows an
indistinguishable decrease in this pollutant (Dobson and Semple,
2020; Siciliano et al., 2020).

In January–February 2020, some peaks were in the recoded
level of PM10 at the three types of AQSs, likely due to Saharan
dust intrusions.

In all cases in the bar plots, there was high variability in the
PM10 concentration. Particularly, in April, a clear reduction was
observed. However, this was the opposite case for NO2, where
all points showed the same trend, whereas, for PM10, it was
difficult to determine a trend. Moreover, no conclusions were
drawn for the traffic and suburban sites, whereas the background

type showed the highest reduction in the PM10 concentrations,
higher even than that observed at the traffic stations.

Quantitatively, the percentage relative differences for the
traffic, suburban, and background stations were 14.9 [11.1],
−12.6 [−5.3], and 19.4 [25.0]%, respectively. The January–July
2020 period for the suburban type showed an increase in PM10,
whereas the other pollutants showed a percentage decrease. In
absolute values, the results were −3.4 [−2.2], 1.1 [1.8], and
−5.2 [−6.2] µg/m3, respectively, with less variation when the
differences were assessed.

Supplementary Figure 5 shows the time series for O3 from
January to July 2020. There was a monotonically ascending trend
for all station types. This was attributed to the increase in the
solar irradiance and hence temperatures. Notably, the panel
corresponding to the background type clearly showed smaller
predictions than the average, potentially indicating a change in
the interaction with the VOCs regime.
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Supplementary Figure 6 shows a lower than usual O3

concentration during the first 2 months and varies depending
on the type of AQS. At the traffic stations, the concentration was
approximately the same as the previous 3-year average. However,
for the background type, it was clearly higher and remained lower
for the suburban type but increased with time. The results for
the background type were expected since a reduction in the NO2

would have caused the O3 concentration to increase due to a
decrease in the oxidative capacity of the atmosphere. However,
the results obtained for the other two types indicate that other
mechanisms are affecting the measured O3 concentrations.

Quantitatively, the percentage relative differences for the
traffic, suburban, and background stations were −1.5 [−2.8],
3.4 [1.2], and −13.7 [−16.3]%, respectively. In absolute
values, the results were 2.6 [4.7], −3.0 [−1.2], and 7.8 [9.5]
µg/m3, respectively, showing a considerable increase for the
background stations.

Meteorology plays a key role in determining air pollutant
concentrations. We have successfully normalized the observed
datasets to remove the effect of meteorology and thereby to
determine the effect of the decrease in emissions due to the
COVID-19 lockdown. The effect on O3 was found to be
very complex, and consequently, CTM simulations need to be
conducted in more detail to gain insight into the VOCs-O3-
NOx regimes. Our findings will support the development of new
mitigation measures that will be increasingly needed as climate
change intensifies.

CONCLUSION

The newest gradient boosting ML algorithms were applied to
different types of pollution datasets and were trained on the
previous 3 years of data, assuming a constant circulating float.
Therefore, when applied to predict the NO2 concentrations
during the COVID-19 lockdown, they were able to predict
the meteorology-normalized results that would have been
expected to have occurred if no changes in the circulating park
were produced.

These calculated values were directly compared to the real
NO2 concentrations, which were measured by the AQS, and the
percentage relative differences were assessed. The results showed
an abrupt decay in the NO2 emissions from the start of the
lockdown that continued in the following months. In some cases,
a NO2 concentration in a BAU was predicted that as double the
real measured values.

In the case of PM10, the results were difficult to assess due to
high variability in the calculated relative percentage aggregated
by month and type of station. Only a tentative discussion was
conducted in this study because the PM10 levels are probably
highly affected by external transport.

For O3, a change of regime was found that depended
on the type of AQS being considered. In the case of
traffic and suburban stations, it seemed to slightly decrease
or to remain constant; whereas for the background
stations, it clearly increased. The cause of the trends is
likely due to not only the relationship with NO2 but also
the VOCs.
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