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Two decades of nighttime surface
urban heat island intensity analysis
over nine major populated cities of
India and implications for heat
stress

Madhavi Jain*

School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India

Warmer global climate and urban heat islands (UHIs) interact, by exacerbating

heatwaves and increasing the extreme heat days in cities. The implications of added

heat stress in urban environments due to intensifying surface UHIs (SUHIs) is of

utmost concern. Seasonal, annual and decadal nighttime SUHI intensities (SUHIIs),

from 2001 to 2020, for nine major populated cities of India are analyzed. This includes

five megacities- Delhi, Mumbai, Kolkata, Bangalore, and Chennai, and four incipient

megacities- Hyderabad, Ahmedabad, Surat, and Pune. The key role of increasing

urbanization (pre- and post-2010) in expansion and intensification of nighttime

SUHIs in India is highlighted. For all cities either pre-monsoon (MAM) or winter

(December-February; DJF) seasons show the strongest SUHII development. During

the 2001–2010, and the 2011–2020 decade, a nighttime SUHIImaxima of respectively

(i) 2.1◦C and 2.5◦C for Delhi, (ii) 1.3◦C and 1.5◦C for Mumbai, (iii) 1.3◦C and 1.5◦C for

Kolkata, (iv) 0.6◦C and 1.0◦C Bangalore, (v) 1.7◦C and 1.9◦C for Chennai, (vi) 1.8◦C

and 2.3◦C for Hyderabad, (vii) 2.8◦C and 3.1◦C for Ahmedabad, (viii) 1.9◦C and 2.4◦C

for Surat, and (ix) 0.8◦C and 1.3◦C for Pune is noted. Further, all incipient megacities

showed a mean annual growth rate of nighttime SUHII of over 0.007◦C/year,

substantially greater than in the megacities. High SUHII magnitudes, greater growth

rates of SUHII, and huge populations, severely compounds the vulnerability of Indian

cities to excessive heat exposure risk, especially during MAM heatwaves. Lastly, the

implications of nighttime SUHII findings from the present study, on the increase in

heat stress, the loss of labor productivity and the rise in heat-related mortality rate

is emphasized. The study recommends implementation of city-specific action plans

to mitigate the heat stressed urban environment. Targeted use of cooling strategies

in localized hotspots within the urban areas where high intensity SUHIs are likely to

form is also suggested.
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1. Introduction

The global population crossed 8 billion in the end of the year 2022 and according to the latest

United Nations (UN) publication on the “World Population Prospects,” the global population is

expected to increase by another half a billion by 2030 (United Nations (UN), 2022). In 2022, just

two countries- India and China accounted for over 2.8 billion people, and in 2023, India with

a projected population of over 1.6 billion, is expected to overthrow China to become the most

populous country in the world (UnitedNations (UN), 2022). At present, India has fivemegacities
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(i.e., cities with population >10 million) viz., Delhi (28.5 million),

Mumbai (19.9 million), Kolkata (14.6 million), Bangalore (11.4

million), and Chennai (10.4 million) (United Nations (UN),

2018a). In addition to these five megacities, India also has four

rapidly growing incipient megacities viz., Hyderabad (9.4 million),

Ahmedabad (7.6 million), Surat (6.5 million), and Pune (6.2

million). Studies point that recently turned megacities- Bangalore

and Chennai, followed the urbanization patterns of older Indian

megacities, such as, Delhi andMumbai remarkably well (Taubenböck

et al., 2009, 2012; Jain et al., 2016; Ghosh and Das, 2017). Similar

trends in urban growth are also expected to be followed by the

other incipient megacities of India, throughout the next decade

(Taubenböck et al., 2010; United Nations (UN), 2018a).

The sheer enormous magnitude of population in just these

nine Indian cities- Delhi, Mumbai, Kolkata, Bangalore, Chennai,

Hyderabad, Ahmedabad, Surat, and Pune, can be judged from the

fact that they inhabited a total of 1.1 billion people in 2018. This

roughly amounted to one-seventh of the world’s entire population,

and further these nine Indian cities are projected to inhabit over

1.5 billion people by the year 2030 (United Nations (UN), 2018a).

From a climate risk and disaster mitigation point of view, cities

of such humongous populations are inherently vulnerable to huge

losses of life and property in the events of natural calamities, extreme

event occurrences, or during any climate change related disasters

(Intergovernmental Panel on Climate Change (IPCC), 2012; Tippett,

2018; United Nations (UN), 2018b; Eckstein et al., 2019; National

Institute of Disaster Management (NIDM), 2019; Jain, 2022). In the

two decades from 1999 to 2018, Eckstein et al. (2019) found records

of over 12,000 extreme event occurrences globally, which resulted in

the direct loss of lives of about 500,000 people, and financial damages

amounting to approximately USD 3.5 trillion.

Studies have found a significant increase in frequency, severity

and intensity of climate extremes e.g., droughts, heatwaves, wildfires,

hurricanes, and floods; which likely will exacerbate life and property

losses in the future, along with causing food shortages and an increase

in disease causing pathogens (Robinson, 2001; Black et al., 2004; Li

et al., 2009; Dai, 2011; Intergovernmental Panel on Climate Change

(IPCC), 2012, 2014; Mishra et al., 2017; Hawcroft et al., 2018; Bisht

et al., 2019; Hasegawa et al., 2021; Jain, 2021a, 2022; Jain et al.,

2021; Climate Transparency, 2022). Unlike the other climate extreme

events, heatwave caused fatalities are not immediately obvious, but

lead the weather-related cause of deaths globally (Hajat and Kosatky,

2010; Peterson et al., 2013; World Health Organization (WHO),

2020). Heatwave occurrences are of particular interest in cities, as

the urbanized (or built-up) areas in cities are, typically, warmer

by 1–4◦C than their nearby rural surroundings, a phenomenon

extensively documented as the urban heat island (UHI) effect

(Oke, 1973; Voogt and Oke, 2003; Parker, 2010; Peng et al., 2012;

Nuruzzaman, 2015; Shastri et al., 2017; Zhou and Chen, 2018; Anjos

et al., 2020). In 2015, an excess of 175 million people, globally,

suffered from heatwave exposure compared to the average number

of people exposed to heatwaves during previous years (World Health

Organization (WHO), 2020). Moreover, the 95th percentile global

heatwave exposure is projected (RCP8.5-SSP3 scenario) to be 18–

37 times more during 2071–2100 than it was century ago (1971–

2000) (Liu et al., 2017). Both, inland Indian cities, such as, Delhi,

Ahmedabad, and Hyderabad, and coastal Indian cities, such as,

Mumbai, Kolkata, and Chennai are severely impacted by heatwaves.

The infamous 2015 Indian subcontinent heatwave killed over 2,500

and 7,00 people in India and Pakistan, respectively (Wehner et al.,

2016). Moreover, Mishra et al. (2017) stresses that a 2◦C increase in

global temperatures will cause a tremendous increase in occurrence

of severe heatwaves, such as the 2015 Indian subcontinent heatwave,

by almost 15 times by the next 30 years and by an astounding

92 times by the end of this century. Against the backdrop of

continuously rising global temperatures and increasing extreme heat

events, the heat stress in cities is further compounded by the spatial

expansion and increasing intensity of UHIs, especially during the

night (Intergovernmental Panel on Climate Change (IPCC), 2012,

2014; Jain, 2021b, 2022; Shreevastava et al., 2021).

Traditionally, the UHI intensity (UHII) is computed as the

difference in the 2m air temperature, measured at two separate

weather stations, each located at a fair distance from each other,

such that they can distinctly be characterized as “urban” or

“rural,” and yet fall within the same geographical and climatic

set-up (Oke, 1973, 1997; Arnfield, 2003; Voogt and Oke, 2003).

However, with the availability of freely accessible remote sensing

and satellite data, it has become easier for urban meteorologists

and urban climate scientists to study both, the daytime and the

nighttime UHIs across the world (Peng et al., 2012; Zhou et al.,

2014; Shastri et al., 2017; Liu et al., 2021; Siddiqui et al., 2021).

Since satellite based UHI estimations use land surface temperature

(LST) instead of 2m air temperature, the term surface UHI (or

SUHI) is used instead of UHI. A major benefit of SUHI over

UHI is that satellite based LST data is two-dimensional (gridded

data) while weather station based 2m air temperature is one-

dimensional (point data). Thus, SUHI assessments come in handy

when questions overlooking- (1) mapping of SUHI footprint and

spatial expansion of SUHI over time in a city, (2) identification of

microclimate SUHI hotspots within the urban area, (3) seasonal,

annual, and decadal changes in the intensity of SUHI, and (4)

comparative SUHI analysis (devoid of instrument and methodology

biases) with other cities arise. In most studies, it has been found

that the SUHII is strongest during clear nights, during days of

calm or no wind, and in the summer season (Oke, 1981, 1997;

Arnfield, 2003; Voogt and Oke, 2003; Parker, 2010; Peng et al., 2012;

Nuruzzaman, 2015; Santamouris, 2016; Anjos et al., 2020). Nighttime

LST is more sensitive toward urbanization led thermal heating than

daytime LST and is preferred for SUHI estimations (Siddiqui et al.,

2021).

A fairly long-term record of over two decades of Moderate

Resolution Imaging Spectroradiometer (MODIS) nighttime LST data

has come into fruition recently. From a climate science perspective,

a long-term LST record is crucial for analyzing changing trends in

SUHII for a city, along with its larger impact on urban climate,

heat stress and heat-related mortality. At a global scale Peng et al.

(2012) used 5-year MODIS LST data to assess seasonal and diurnal

SUHII for 419 big cities, while Chakraborty and Lee (2019) used

15 years of MODIS LST to calculate diurnal, seasonal, and annual

SUHII for more than 9500 urban clusters. Through satellite LST

observations (2002–2021), Liu et al. (2022) found mean surface

warming trend per decade for over 2000 city clusters in the

world, of which the highest was noted in Asian megacities, heavily

contributed due to rapid urbanization. Variability in seasonal and

diurnal UHI, for 101 Asian and Australian cities, was explored

by Santamouris (2015), and the relationship between city size and

UHII was analyzed. Using a regional climate model and MODIS

LST data on cities in the US, Sarangi et al. (2021) noted how
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TABLE 1 Population statistics for the nine major populated Indian cities selected for the study. Past (2000), contemporary (2018), and future (2030)

population (millions) are provided in the Table, along with the average annual rate of population change (%) from 2000 to 2018, and 2018 to 2030 [Source:

United Nations (UN), 2018a].

City City population (millions) Average annual rate of population change (%)

2000 2018 2030 2000–2018 2018–2030

Delhi 15.69 28.51 38.94 3.3 2.6

Mumbai 16.15 19.98 24.57 1.2 1.7

Kolkata 13.10 14.68 17.58 0.6 1.5

Bangalore 5.58 11.44 16.23 4.0 2.9

Chennai 6.59 10.46 13.81 2.6 2.3

Hyderabad 5.65 9.48 12.71 2.9 2.4

Ahmedabad 4.81 7.68 10.15 2.6 2.3

Surat 2.71 6.56 9.71 4.9 3.3

Pune 3.67 6.28 8.44 3.0 2.5

For population statistics provided above, three cities- Delhi, Mumbai, and Kolkata are considered as metropolitan areas, while the remaining cities are considered as urban agglomerations.

the UHI effect dominates the diurnal variations in urban heat

stress intensity, is at peak during the nighttime, and that the heat

stress exposure during nighttime intensified by 3–5 hours per day.

Raj et al. (2020) found increasing nighttime SUHIIs in 44 major

cities of India using satellite temperature data from 2000 to 2017.

Kumar et al. (2017) in their study over 89 Indian cities highlight

that nighttime SUHI is strongly correlated to the percentage of

imperviousness in the urban areas. Shastri et al. (2017) calculated

daytime and nighttime SUHII during two seasons-pre-monsoon

(MAM) and winter (DJF), for 84 urban locations in India, using

MODIS LST data from 2003 to 2013. However, the study was

based on city clustering algorithm, which relies on population

estimates, rather than impervious area estimates, to delineate urban

and rural boundaries; the latter being a better criterion, especially

in a populous country like India. In this regard, the present paper

is the first to assess 20 years (2001–2020) of nighttime SUHIs,

during all four seasons- winter (December-February; DJF), pre-

monsoon (March-May; MAM), monsoon (June-August; JJA), and

post-monsoon (September-November; SON), over all the nine major

populated cities of India i.e., Delhi, Mumbai, Kolkata, Bangalore,

Chennai, Hyderabad, Ahmedabad, Surat, and Pune. Moreover, the

study provides an insight into the SUHII variability and trends at

a decadal, annual, and at a seasonal time scale for the nine Indian

cities. The paper also discusses the far-reaching implications of

nighttime SUHI expansion and the increasing severity of SUHII,

in worsening the heat stress and discomfort of city dwellers of

India. Ramifications of increasing SUHIIs during pre-monsoon

(or summer; MAM season) in synergy with increasing global

temperatures and increasing heatwaves on the human mortality rate

are also discussed. Lastly, a call to action via targeted SUHImitigation

strategies and development of city-specific action plans focused to

reduce heat stress are suggested.

2. Methods

2.1. Selection of cities

Past (2000), contemporary (2018), and future (2030) population

estimates (United Nations (UN), 2018a) were used to identify nine

major populated cities of India. In 2018, five cities, viz., Delhi (28.5

million), Mumbai (19.9 million), Kolkata (14.6 million), Bangalore

(11.4million), and Chennai (10.4million) had a population of over 10

million, while four cities, viz., Hyderabad (9.4 million), Ahmedabad

(7.6 million), Surat (6.5 million), and Pune (6.2 million) had a

population of over 5 million. The population statistics, including the

annual rate of population change between 2000–18 and 2018–2030

for these cities are provided in Table 1. It is estimated that by 2030,

Hyderabad and Ahmedabad would likely grow to becomemegacities,

while the population of two cities- Surat and Pune will likely increase

to 9.7 million and 8.4 million, respectively, almost within reach

of the megacity status (Table 1; United Nations (UN), 2018a). The

geographical locations of each of the nine Indian cities, selected for

the present study are shown in Figure 1. The figure also zooms in to

each city (Figures 1A–I) and shows the extent of urbanization in each

city. The percentage of impervious area for the year 2010 (Wang et al.,

2017) has been used to map urban extents. Details on the dataset are

elaborated in Section 2.2.

The two main reasons for choosing these particular nine Indian

cities are- (1) their massive population size (>5 million), which

inherently increases their vulnerability to loss of lives in the wake of

extreme events or climate disasters, and (2) their status as centers of

national, financial, technological, scientific, and cultural importance,

which inherently increases their vulnerability to a greater loss of gross

domestic product (GDP) in such events.

2.2. Delineation of urban-rural extents

Global Man-made Impervious Surface (GMIS) dataset available

for the year 2010, at 1 km resolution (Wang et al., 2017), was accessed

from the Socioeconomic Data and Applications Center (SEDAC)

(https://sedac.ciesin.columbia.edu/data/set/ulandsat-gmis-v1). The

GMIS 2010 dataset is derived from Global Land Survey (GLS)

Landsat image archive and maps subpixel urban imperviousness

using the “Human Built-up And Settlement Extent” (HBASE)

approach. The GMIS dataset limitations include possibility of

incorrect removal of small areas of urban pixels by HBASE, and some

pixel misclassification to “NoData” category where cloud/ shadow

areas and Landsat 7 ETM+ SLC off image data gaps exist (Brown

de Colstoun et al., 2017). Even with these limitations, the GMIS and
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FIGURE 1

Study area showing geographical location of the nine major populated cities of India within its national boundary (shaded in gray). The cities are

represented by a red dot within the 100 km surrounding boxes (shaded in yellow; box outlines in black) marking the region of interest. Impervious area (%)

based on GMIS dataset for the year 2010 (Wang et al., 2017) for cities (A) Delhi, (B) Mumbai, (C) Kolkata, (D) Bangalore, (E) Chennai, (F) Hyderabad, (G)

Ahmedabad, (H) Surat, and (I) Pune is provided alongside. The figures are generated with ArcMap ver. 10.6.
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FIGURE 2

Nighttime LST [◦C; blue to red (shaded)] computed seasonally for December-February (DJF), March-May (MAM), June-August (JJA), and

September-November (SON) for cities (A) Delhi, (B) Mumbai, and (C) Kolkata. For each city shown, the upper panels represent nighttime LST for the

2001–2010 decade, and the lower panels represent nighttime LST for the 2011–2020 decade. SUHI formation during the night in the cities is clearly

discernable in regions of greater impervious area percentage. Impervious area for the year 2010 (Source: Wang et al., 2017) is classified into four

categories- (1) 0–9 % as “rural”, (2) 10–24 % as “peri-urban,” (3) 25–49 % as “low-density urban,” and (4) 50–100 % as “high-density urban” in the present

study. The figures are generated with ArcMap ver. 10.6.

HBASE dataset for the year 2010 was found to have good (0.91)

kappa coefficient over Europe (Zhang et al., 2020), and is considered

a valuable global impervious area dataset for many urban based

research studies (Yoo et al., 2019; Cho et al., 2020; Melancon et al.,

2021; Shen and Zhao, 2021).

At the same time, Kim and Brown (2021) highlight that there still

remains a general lack of protocol for classification criteria required

when estimating SUHI. This is due to the fact that there is no clear

international definition of what is considered as “urban,” and the

administrative boundary of a city may not accurately represent the
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urban extent (especially due to creation of new satellite towns beyond

the administrative limits of the city). However, many studies suggest

that the use of impervious area percentage is a good delineator of

urban extent and can be used to efficiently quantify SUHI (Li et al.,

2018). Within the GMIS 2010 dataset, the class values range from 0

to 100, each representing the percentage of impervious area within a

1 km grid, and is used as a primary dataset in the present study for

delineating the urban and rural extents.

The GMIS 2010 dataset was qualitatively cross-referenced for

urban area extents with the Bhuvan state-wise land use land

cover dataset (2011–12; https://bhuvan-app1.nrsc.gov.in/thematic/

thematic/index.php) and with the Google Earth imageries for the

nine Indian cities for the year 2010. A review of ancillary information

such as city maps, master plans and available town planning

documents were also performed so that a good reference for urban

and rural extents could be established. Based on these careful

qualitative evaluations on the urbanization patterns in India, the

GMIS data over the entire Indian landmass was classified into

four categories- (1) all grids having impervious area < 10% as

“rural,” (2) grids having impervious area between 10 and 24% as

“peri-urban,” (3) grids having impervious area between 25 and

49% as “low-density urban,” and (4) grids having impervious area

> 50% as “high-density urban.” Furthermore, it was established

that for all the selected nine Indian cities, a 100 km bounding

box (region of interest) was sufficiently (1) large enough to

contain the entirety of the “high-density urban,” “low-density

urban,” and “peri-urban” areas, (2) large enough to sufficiently

include the surrounding “rural” areas for SUHII estimation, and

at the same time, and (3) small enough to limit the topography

related local weather changes as well as a temperature bias in

SUHII. The centroid of each of the 100 km bounding box was

superimposed over the city center points. The city center point

vector data was prepared in ArcGIS ver.10.6, from the existing

geographical coordinates (latitude and longitude) information for

each city (Figure 1). The location of the bounding box for each

city was determined by fulfilling the above conditions, whilst also

ensuring that they do not overlap with nearby cities. In case

of coastal cities, the area beyond the Indian landmass i.e., the

Arabian Sea or the Bay of Bengal, was not considered in the

SUHII estimations.

2.3. Estimation of SUHII

Quality checked monthly night-time MODIS LST product at

0.05◦ spatial resolution (MOD11C3v006; https://giovanni.gsfc.nasa.

gov/giovanni/) was downloaded for the years 2001–2020 over the

Indian landmass. For each year, the data was averaged seasonally

for DJF, MAM, JJA, and SON. Seasonal night LST for each year was

subset (clipped) for the nine city domains (100 km bounding boxes)

and further for the four urban-rural classes viz., “rural,” “peri-urban,”

“low-density urban,” and “high-density urban” within each city as

elaborated in Section 2.2.

In order to estimate SUHII, the LST of pixels assigned class

as “high-density urban” were subtracted from the mean LST in

pixels assigned class as “rural.” Classes “peri-urban” and “low-density

urban” were disregarded in their entirety for the computation of

SUHII. Both these classes have a mixed proportion of urban-rural

elements in varying degrees; an urban bias in the “low-density urban”

class and a rural bias in the “peri-urban” class, and therefore the

inclusion of these two “buffer zone” classes would have corrupted the

true SUHII estimates (Voogt and Oke, 2003).

3. Results and discussion

3.1. Spatio-temporal nighttime SUHI
footprint

Land-air interactions play a major role in urban climate,

especially in governing urban heating (Jain et al., 2017; Jain, 2021b,

2022). Further, nighttime LST is found to be a better indicator

of SUHII than daytime LST due to its higher sensitivity toward

urbanization (Siddiqui et al., 2021). Figures 2–4 shows the seasonal

nighttime LST for the 2001–2010 and 2011–2020 decades, over the

nine major populated cities of India. The formation of a distinct

nighttime SUHI in regions of greater impervious area percentage is

clearly discernable from this figure. Formation of nighttime SUHI

is found to relate remarkably well to the city size, and is primarily

evident over the “high density urban” class i.e., pixels having over 50%

of impervious area.

Of all the nine Indian cities, Delhi, which is both- the

largest populated city of India, and the largest urbanized city

(area under “high density urban” class), shows the largest

nighttime SUHI footprint (Figure 2A). Other megacities, namely,

Mumbai (Figure 2B), Kolkata (Figure 2C), Bangalore (Figure 3A),

and Chennai (Figure 3B) also show a significant year-round

nighttime SUHI, during both the 2001–2010, and 2011–2020 decades.

On the other hand, incipient megacities with a greater city size,

such as, Hyderabad (Figure 3C) and Ahmedabad (Figure 4A), show

a substantially larger nighttime SUHI footprint, than a small-sized

incipient megacity, such as, Surat (Figure 4B). SUHI is found to

weaken over the “peri-urban” and “low-density urban” classes. This

is most prominently observed in Pune (Figure 4C), an incipient

megacity with a city size large enough to be comparable to some

of the megacities, and yet most of its area falling in either the

“peri-urban” or the “low-density urban” class. The most reasonable

explanation for the observed SUHI weakening over these mixed

urban-rural classes is the greater abundance of thermal cooling

classes e.g., forests and waterbodies than in the “high density urban”

areas (Arnfield, 2003; Anjos et al., 2020; Jain, 2021b). It should be

noted that certain “rural” class land use land covers, such as, barren

lands, rocky terrain, and uncultivated agricultural lands can, at times,

emit higher a proportion of thermal radiation during the night,

and as a result show an even higher LST than the city (Jain et al.,

2017). Few isolated rural areas nearby to the cities of Delhi, Kolkata,

and Hyderabad do show higher nighttime LST in the present study

(Figures 2, 3). Such scenarios are heavily dependent on the intrinsic

thermal properties e.g., specific heat capacity, thermal conductivity,

and emissivity (Chen et al., 2006; Xian and Crane, 2006; Bowler et al.,

2010; Hua et al., 2017) of the materials found in such areas, which

lead to a higher nighttime LST.

For all the cities in the present study a seasonal variation in the

footprint of nighttime SUHI is noted. From Figures 2–4, the most

intense formation of nighttime SUHI is noted during pre-monsoon

(MAM) andwinter (DJF) season. Similar results of a seasonalmaxima

during MAM and DJF have been highlighted in a previous nighttime
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FIGURE 3

Same as Figure 2, but for cities (A) Bangalore, (B) Chennai, and (C) Hyderabad.

SUHII study over India by Shastri et al. (2017). For most cites,

nighttime SUHI during the post-monsoon (SON) season is not

observed to be as intense as either duringDJF or duringMAM season.

Further, all cities show that the nighttime SUHI formation is weakest

during themonsoon season i.e., JJA. Themonsoon season is when the

cities of India experience maximum precipitation, along with strong

convective winds and lush vegetation; all factors that mitigate SUHI

formation. Based on the mean seasonal SUHI for the two decades,

Ahmedabad is observed as the only city to show the existence of

an urban cool island, evident during the JJA season of 2001–2010

(Figure 4A). The significant impact of increasing urbanization (pre-

and post-2010 scenarios) on the nighttime SUHI is also evident from

Figures 2–4. Compared to the 2001–2010 decade, the nighttime SUHI

size during the 2011–2020 decade is found to have significantly grown

for all the nine major cities of India. This nighttime SUHI expansion

is observed during all the seasons, however, most strongly evident

during MAM. The pattern of radial outward growth of nighttime

SUHI is consistent with the patterns of urban sprawl witnessed over

these Indian cities (Taubenböck et al., 2009, 2012; Jain et al., 2016;

Ghosh and Das, 2017).

Frontiers in SustainableCities 07 frontiersin.org

https://doi.org/10.3389/frsc.2023.1084573
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Jain 10.3389/frsc.2023.1084573

FIGURE 4

Same as Figure 2, but for cities (A) Ahmedabad, (B) Surat, and (C) Pune.

3.2. Seasonal, annual, and decadal nighttime
SUHII trends

The characterization of SUHII variability and trends is of

foremost importance in order to understand the processes related

to heat stress in humans (Anjos et al., 2020). The season of the

highest intensity of nighttime SUHI, for each city, in each decade,

is highlighted in the present study. For all the nine Indian cities,

either DJF or MAM season shows the prevalence of the strongest

nighttime SUHII. During the 2001–2010 and the 2011–2020 decades,

a nighttime SUHII magnitude of respectively (i) 2.1◦C and 2.5◦C (in

MAM) for Delhi, (ii) 1.3◦C and 1.5◦C (in DJF) for Mumbai, (iii)

1.3◦C and 1.5◦C (in DJF) for Kolkata, (iv) 0.6◦C and 1.0◦C (for both

DJF and MAM) for Bangalore, (v) 1.7◦C and 1.9◦C (in DJF) for

Chennai, (vi) 1.8◦C and 2.3◦C (in DJF) for Hyderabad, (vii) 2.8◦C

and 3.1◦C (in DJF) for Ahmedabad, (viii) 1.9◦C and 2.4◦C (in DJF)

for Surat, and (ix) 0.8◦C and 1.3◦C (in MAM) for Pune (Table 2) is

found to be the strongest.

The mean annual nighttime SUHII from 2003 to 2008 over

majority (95%) of the 419 big (population > 1 million) cities of the
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TABLE 2 Mean nighttime SUHII (◦C) for seasons DJF, MAM, JJA, and SON during the decades 2001–2010, and 2011–2020 along with its decadal change for

the nine major populated cities of India. In the Table these cities are represented as- Delhi (DEL), Mumbai (MUM), Kolkata (KOL), Bangalore (BAN), Chennai

(CHE), Hyderabad (HYD), Ahmedabad (AHM), Surat (SUR), and Pune (PUN).

Season DEL MUM KOL BAN CHE HYD AHM SUR PUN

M
ea
n
n
ig
h
tt
im

e
SU

H
II
(◦
C
)

2001–2010 DJF 1.6 1.3 1.3 0.6 1.7 1.8 2.8 1.9 0.4

MAM 2.1 0.7 0.9 0.6 1.2 1.7 2.3 1.2 0.8

JJA 0.8 0.3 0.2 0.4 0.8 0.6 −0.5 0.0 0.5

SON 1.5 1.2 0.6 0.6 1.2 1.5 2.0 1.4 0.5

2011–2020 DJF 1.8 1.5 1.5 1.0 1.9 2.3 3.1 2.4 1.0

MAM 2.5 0.8 1.1 1.0 1.5 2.0 2.8 1.6 1.3

JJA 0.8 0.8 0.4 0.5 1.0 1.1 0.2 0.4 0.9

SON 1.8 1.3 0.9 0.8 1.4 1.9 2.2 1.7 0.9

Decadal change in mean nighttime SUHII (◦C) DJF 0.2 0.2 0.2 0.4 0.3 0.5 0.2 0.5 0.6

MAM 0.4 0.1 0.3 0.4 0.3 0.4 0.5 0.4 0.5

JJA 0.0 0.4 0.2 0.1 0.2 0.5 0.7 0.4 0.4

SON 0.3 0.1 0.3 0.2 0.2 0.5 0.2 0.3 0.4

world was found to range between 0 and 2◦C (Peng et al., 2012). In a

separate study over India, the MAM and DJF nighttime SUHII, from

2003 to 2013, for 84 urban locations was noted to range between 0–

1◦C and 0–1.5◦C, respectively (Shastri et al., 2017). Figure 5 depicts

the 20-year annual trend of the nighttime SUHII for all the nine

Indian cities. For each year, themean nighttime SUHII for the seasons

DJF, MAM, JJA and SON are shown. The present study finds that

the mean decadal nighttime SUHII from 2001 to 2020 in most of the

nine (population > 5 million) cities of India ranged between 0–2.5◦C

(Table 2), which is slightly higher than the global average. Moreover,

between 2001–2020, the mean decadal nighttime SUHII increased by

0.2–0.4◦C in DJF, by 0.1–0.4◦C in MAM, by 0.0–0.4◦C in JJA, and by

0.1–0.3◦C in SON, in the megacities of India (Table 2). Interestingly,

a substantially higher decadal increase of 0.2–0.6◦C in DJF, 0.4–0.5◦C

inMAM, 0.4–0.7◦C in JJA, and 0.2–0.5◦C in SON, is noted in the four

incipient megacities of India.

The mean annual growth rate of nighttime SUHII from 2001

to 2020 was found to be (i) 0.0057◦C/year and for Delhi, (ii)

0.0026◦C/year for Mumbai, (iii) 0.0042◦C/year for Kolkata, (iv)

0.0069◦C/year for Bangalore, (v) 0.0047◦C/year for Chennai, (vi)

0.0093◦C/year for Hyderabad, (vii) 0.0073◦C/year for Ahmedabad,

(viii) 0.0076◦C/year for Surat, and (ix) 0.0105◦C/year for Pune

(Figure 5). It is interesting to note that every incipient megacity had

a mean annual growth rate of nighttime SUHII of over 0.007◦C/year,

while all megacities remained below this threshold rate. One reason

for this larger SUHII growth rate in the incipient megacities could

be due to the faster urban growth rate reported in these cities

(Taubenböck et al., 2009). This could lead to a significantly higher

urban heating rate, a higher urban LST, a stronger SUHII, and

significant increase in the heat stress.

3.3. Implications for heat stress in Indian
cities

A warmer global climate, and UHIs in the cities, interact by

exacerbating heatwaves and increasing extreme heat days during

the summer season (Kim and Brown, 2021; Jain, 2022). In cities,

the extremely high day or night air temperature due to this

synergistic effect can directly cause an increase in the heat-related

morbidity and mortality rates (Santamouris, 2016; Kumar et al.,

2017; Kim and Brown, 2021). The average MAM temperature

experienced by Indians during 2017–2021 was 0.4◦C warmer than

the mean temperature averaged globally during 1986–2005 (Climate

Transparency, 2022). Moreover, 12 of the 15 warmest recorded years

in India, in the last 120 years, occurred between 2006 and 2020;

of these 2016 (+0.71◦C), 2009 (+0.55◦C), 2017 (+0.54◦C), 2010

(+0.54◦C), and 2015 (+0.42◦C) were the warmest 5 years (India

Meteorological Department (IMD), 2021a).

Indian cities in particular have been found to be more affected

by heatwaves, than the rural areas due to the UHI (or SUHI)

development, and in addition, the heatwaves during MAM have

also increased significantly in India (Shastri et al., 2017). Some of

the most notable severe heatwave events in India have occurred

in 2002 (April-May), 2015 (May-June), 2016 (April-May), 2019

(May-June), and 2022 (March-May), where the maximum recorded

temperature during each heatwave event ranged from 49 to 51◦C.

Delhi and Ahmedabad are two prominent cities in northern India

that face severely harsh MAM season, with daytime (maximum)

and nighttime (minimum) air temperatures often crossing 40◦C

and 25◦C, respectively. In such a case, a 2.1–2.8◦C and a 2.5–

3.1◦C mean nighttime SUHII during MAM, observed in the last

two decades, in Delhi and Ahmedabad, respectively (Table 2) is

extremely concerning; more so during the period of severe heat

events in summer. Similarly concerning is the nighttime SUHII

maxima of over 1.5◦C witnessed in other Indian cities, such as,

Chennai, Hyderabad, and Surat. This compounds the heat stress

faced in cities, especially during episodes of severe heatwaves during

summers, and leads to higher incidences of heat-related fatalities,

such as, deaths due to heat strokes.

As per a recent report by Climate Transparency (2022), at a

warming of 1.5◦C, about 142 million more Indians, each year, are

projected to be exposed to heatwaves than the average exposure in

1986–2006, and about 2.8 times greater exposure at a warming of
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FIGURE 5

A 20-year (2001–2020) mean annual nighttime surface urban heat island intensity (SUHII; ◦C; solid lines) trend for the nine major populated cities of India

(A) Delhi, Mumbai, and Kolkata, (B) Bangalore, Chennai, and Hyderabad, and (C) Ahmedabad, Surat, and Pune. Within each year the mean nighttime SUHI

Intensity is estimated for DJF, MAM, JJA, and SON season. From 2001 to 2020, all cities show an increasing linear trend (dashed lines) in the mean annual

nighttime SUHII.
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FIGURE 6

(A) Annual minimum and maximum air temperature anomalies (◦C; solid lines; primary y-axis) on Indian landmass (India Meteorological Department

(IMD), 2021b) and reported (annual) number of heat stroke deaths (solid bars; secondary y-axis) in India in the last 50 years (1971–2020). Base period from

1981 to 2010 is used to compute the annual air temperature anomalies. National Crime Records Bureau (National Crime Records Bureau (NCRB), 2022)

Accidental Deaths and Suicides in India (ADSI) individual reports from 1971 to 2020 were used to extract heat stroke deaths data. Black arrows mark the

occurrence of severe heatwave events (e.g., 1995, 1998, 2003, 2010, 2012, 2015, 2016, and 2019) in India in the recent years. (B) Scatter-plot showing

correlation of annual mean air temperature anomalies (◦C) over Indian landmass and the reported yearly heat stroke deaths in India in 50 years

(1971–2020). A significant sharp increase in the reported heat stroke deaths is observed with the annual mean air temperature anomaly of +0.2◦C and

higher.

3◦C. Using 1980–2010 as the base period, the annual minimum and

maximum air temperature anomalies (◦C; solid lines; primary y-axis)

in the last 50 years (1971–2020) on the Indian landmass surface (India

Meteorological Department (IMD), 2021b) are plotted (Figure 6A).

Along with the air temperature anomalies, the reported (annual)

number of heat stroke deaths (solid bars; secondary y-axis; Figure 6A)

in India in these 50 years are also shown. The earlier 25-year period

from 1971 to 1995, mostly shows the prevalence of a negative air

temperature anomaly for both, the minimum, and the maximum air

temperature. However, the latter period from 1996–2020, generally

consistent with the onset of rapid urbanization in Indian cities

(Taubenböck et al., 2009, 2012) shows notably higher minimum and

maximum air temperature anomalies (+0.5 to +1.0◦C; Figure 6A).

Moreover, in the figure, black arrows are used to mark the occurrence

of severe heatwave events (e.g., 1995, 1998, 2003, 2010, 2012, 2015,

2016, and 2019) in India in the recent years.

A congruence of increasingly positive air temperature (minimum

and maximum) anomalies, with the increasing occurrences of severe

heatwave events and increased heat stroke deaths (reported) in India

is highlighted. As a caution, is important to note, that the actual

number of heat stroke deaths, and other heat-related morbidities in

India, is difficult to estimate, even for individual cities. Moreover, is
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widely accepted that the heat stroke deaths are much (even many

times) higher than the official numbers reported in the National

Crime Records Bureau (National Crime Records Bureau (NCRB),

2022) Accidental Deaths & Suicides in India (ADSI) yearly reports,

and the official heat-related morbidities data is entirely unavailable

(Hajat and Kosatky, 2010; Tran et al., 2013; Azhar et al., 2014; The

Times of India, 2015; Swain et al., 2019). Even still, a significant

sharp increase in the heat stroke deaths (annually reported) in India

is observed, when the annual mean air temperature anomaly (with

respect to 1980–2010 baseline) of +0.2◦C and above, occurs over the

Indian landmass (Figure 6B). The impact of heat-stress, including,

excess deaths due to heat strokes, would be compounded in the

Indian megacities and incipient megacities, wherein, the present

study shows the existence of high mean nighttime SUHIIs (up to

3.1◦C), high increases in mean decadal nighttime SUHIIs (up to

0.4◦C), and high mean annual growth rates of nighttime SUHIIs (up

to 0.0105◦C/year) in the period from 2001 to 2020.

Furthermore, studies show that for every 1◦C increase in ambient

temperature, the mortality rate has been observed to increase by

1–3%, and above a critical heat threshold the mortality rates rise

exponentially (Hajat and Kosatky, 2010). The mortality rate in

the Mediterranean increased by 3.12% per 1◦C as the ambient

temperature increased above the heat threshold (Santamouris, 2016).

In case of Delhi (India), the mortality rate during a 1991–1994

study increased by 3.94% per 1◦C increase in ambient temperature

above 29◦C (Hajat and Kosatky, 2010). In 2018 and 2019, India

observed the largest increase in heat related mortalities in the

world (Romanello et al., 2021). Moreover, in 2021 an estimated

loss of 167 billion potential labor hours and USD 159 billion

in GDP due to extreme heat caused labor capacity reduction

was reported (Climate Transparency, 2022). Increasingly warmer

decades, increasing mean annual growth rate of SUHIIs, and

increasing frequency of prolonged severe heatwaves, will continue to

enlarge the gap between the ambient air temperature and the heat

threshold temperature megacities like Delhi and incipient megacities

like Ahmedabad. This puts tens of millions of city-dwellers in

megacities and incipient megacities of India at a grave risk of heat-

related morbidity and mortality in the near future.

4. Conclusion and recommendations

From a heat stress perspective, the triple whammy of unabated

globally rising temperatures, increasing UHIIs (or SUHIIs), and

increasingly frequent prolonged heatwaves of extreme severity during

pre-monsoon (MAM) season is of utmost concern in cities of India

(World Health Organization (WHO), 2020; India Meteorological

Department (IMD), 2021a; Jain, 2021b, 2022; Jain et al., 2021). A

number of factors such as urban area (e.g., impervious surface area,

built-up density, building heights, etc.), city morphology (e.g., sky

view factor, canyon width, building material properties, presence of

thermal cooling classes, etc.), meteorological conditions (e.g., wind

speed, wind direction, boundary layer height, precipitation, etc.),

anthropogenic heat fluxes (vehicular emissions, air-conditioning heat

output, industrial emissions, human metabolism, etc.) affect the

ambient temperature, SUHI formation, and ultimately heat stress

in cities. In the nine highest populated cities of India, the key role

of increasing urbanization (pre- and post-2010) in nighttime SUHI

expansion and intensification is highlighted in the present study. Two

seasons, MAM and DJF show the strongest prevalence of nighttime

SUHII in Indian cities, a period coinciding with increasing number

of severe heatwaves in India.

The study also highlights that the incipient megacities of

India showed a substantially greater mean annual growth rate of

nighttime SUHII than the megacities where this rate remained below

0.007◦C/year. In the last two decades, a mean nighttime SUHII of

2.1–2.8◦C was witnessed during MAM in Delhi, a megacity with 28.5

million people (and a projected population of 39 million in 2030) and

a mean nighttime SUHII of 2.5–3.1◦C was witnessed during MAM in

Ahmedabad, an incipient megacity showing the highest SUHII out of

all Indian cities. Such situation is extremely concerning in the context

of increasing heat stress, heat-related morbidity and mortality. An

example is the 2010 (May) Ahmedabad heatwave which led to over

1,340 excess deaths (Azhar et al., 2014). A nighttime SUHII maxima

of over 1.5◦C, witnessed in other Indian cities, such as, Chennai,

Hyderabad, and Surat, is also similarly concerning. In general, the

intensities of nighttime SUHIs witnessed around the year in all nine

cities of India are substantially high to cause significantly lowered

thermal comfort and quality of life of the people.

In order to reduce the heat-related mortality in cities of India,

key high intensity SUHI hotspots need to be identified. These hotpots

of excessive heating within the cities should be of utmost focus for

implementing targeted strategies aiming to reduce heat stress. In

a previous local-scale line transect study over Delhi, the presence

of thermal cooling classes along densely built-up urban areas was

found to significantly reduce LST (Jain et al., 2017). Studies show

that a strategic increase in inclusion of blue-green infrastructure

(i.e., “blue” infrastructure e.g., rivers, ponds, watersheds, tanks,

other waterbodies, etc. and “green” infrastructure e.g., forests, parks,

gardens, etc.) significantly reduces ambient temperature, lowers UHII

(or SUHII), and mitigates heat stress (Nuruzzaman, 2015; Hua

et al., 2017; Jain, 2021a; Sanusi and Jalil, 2021). Urban greening

strategies such as vertical gardens, rooftop and terrace gardens,

community forests, urban agriculture are aesthetically pleasant and

also provide thermal comfort in heat-stressed urban environments

(Anjos et al., 2020; Jain, 2021b). In addition, inclusion of blue-

green infrastructure also leads to greater energy savings due to

lowered electricity power (e.g., air-conditioning) demands, while

simultaneously decreasing the anthropogenic heat flux (Akbari et al.,

1997). Other strategies such as cool roofs, cool pavements, green

buildings, and water spray systems have also shown great potential

in significantly reducing heat stress during summer extreme heat

events (Fahed et al., 2020; Khare et al., 2021; Sanusi and Jalil,

2021).

It is recommended that all the major populated cities of

India should formulate city-specific action plans incorporating the

mitigation of UHIs (or SUHIs) and extreme heat events under

a warmer future climate. Currently, Ahmedabad is the only city

of India with a sophisticated and strategic action plan, called the

“Ahmedabad Heat Action Plan 2019,” formulated in response to

high mortality rates witnessed during frequently occurring extreme

heat events. Targeted city-specific mitigation and action plans have

a key role in combating the increasing heat stress faced in Indian

cities. Policy focus should be on identification of localized hotspots

of strongest UHI (or SUHI) formation within the cities and where

the high intensity UHIIs (or SUHIIs) are likely to develop (Kim and

Brown, 2021; Sanusi and Jalil, 2021). By taking urgent action through

implementation of targeted cooling strategies and heat action plans,
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the cities of India would be a step closer to achieving the sustainable

development goal (SDG 13) by the year 2030.
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