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In this paper, an innovative approach to detecting anomalous occurrences in

video data without supervision is introduced, leveraging contextual data derived

from visual characteristics and e�ectively addressing the semantic discrepancy

that exists between visual information and the interpretation of atypical incidents.

Our work incorporates Unmanned Aerial Vehicles (UAVs) to capture video data

from a di�erent perspective and to provide a unique set of visual features.

Specifically, we put forward a technique for discerning context through scene

comprehension, which entails the construction of a spatio-temporal contextual

graph to represent various aspects of visual information. These aspects encompass

the manifestation of objects, their interrelations within the spatio-temporal

domain, and the categorization of the scenes captured by UAVs. To encode

context information, we utilize Transformer with message passing for updating

the graph’s nodes and edges. Furthermore, we have designed a graph-oriented

deep Variational Autoencoder (VAE) approach for unsupervised categorization

of scenes, enabling the extraction of the spatio-temporal context graph across

diverse settings. In conclusion, by utilizing contextual data, we ascertain anomaly

scores at the frame-level to identify atypical occurrences.We assessed the e�cacy

of the suggested approach by employing it on a trio of intricate data collections,

specifically, the UCF-Crime, Avenue, and ShanghaiTech datasets, which provided

substantial evidence of the method’s successful performance.

KEYWORDS

drone video anomaly detection, spatio-temporal graph, unsupervised learning,

Unmanned Aerial Vehicles, Variational Autoencoder

1. Introduction

The detection of abnormal events in videos, including those captured by Unmanned

Aerial Vehicles (UAVs), poses a formidable obstacle as a result of the extensive spectrum

of occurrences, coupled with the restricted accessibility of learning resources, and the

contextualized definition of abnormal events (Li et al., 2013; Ionescu et al., 2019; Song

et al., 2019). UAVs, also known as drones, have seen a significant rise in popularity

and usage in recent years due to their cost-effectiveness, versatility, and ability to access

hard-to-reach areas. These advanced aerial systems have been increasingly utilized for

various applications, such as surveillance in military and civilian contexts, search and

rescue operations in disaster-stricken areas, environmental monitoring to track changes

in ecosystems, infrastructure inspection, and even in the entertainment industry for aerial

photography and filming.
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As a result, detecting abnormal events in UAV-captured

videos has become increasingly important for ensuring safety and

security. Abnormal events in this context can refer to a wide

range of occurrences, from intrusions and suspicious activities

in surveillance scenarios to detecting signs of natural disasters

or accidents in search and rescue operations. The challenge

lies in the fact that these events are often context-dependent

and can vary greatly in appearance, making it difficult for

traditional computer vision algorithms to detect and classify

them effectively.

In order to confront this particular issue related to Unmanned

Aerial Vehicles (UAVs) or drones, a multitude of pre-existing

approaches have been put forth to address challenges such as object

detection, tracking, and anomaly recognition. These techniques

endeavor to acquire customary spatial and temporal configurations

pertaining to appearance and movement of UAVs in various

environments. Consequently, they facilitate the identification

of irregular occurrences, such as unauthorized UAVs entering

restricted areas or deviating from their designated flight paths, by

differentiating them from the established normative patterns (Feng

et al., 2016; Xu et al., 2017a).

Typically, visual features are extracted from either an entire

image (Hasan et al., 2016; Chong and Tay, 2017) or a specific zone

of focal concern (Ionescu et al., 2019) to acquire a comprehensive

understanding of the inherent spatial and temporal configurations

in nature. For instance, these techniques might analyze the

shape, size, color, and texture of the UAVs in the imagery data.

Additionally, the extracted features can be used to classify the UAVs

into different categories, such as fixed-wing, rotary-wing, or hybrid

designs, as well as to determine their speed, altitude, and flight

patterns.

Investigations within the realm of psychological science have

established that individuals possess the capability to accurately

identify entities and environments through the employment of

contextual visual data (Bar, 2004; Tang et al., 2020). Furthermore,

context information has been shown to be beneficial for various

computer vision tasks (Ionescu et al., 2017; Hasan et al., 2019;

Sun et al., 2019; Kang et al., 2022), including those involving

Unmanned Aerial Vehicles (UAVs) or drones. UAVs, which have

rapidly advanced in recent years, offer a versatile and efficient

solution for remote sensing, surveillance, and data collection in

various domains, such as agriculture, disaster response, and law

enforcement.

Hence, it is crucial to extract extensive contextual data that

surpasses the scope of image-based and object-based characteristics

for the precise detection of atypical occurrences within a video,

as the visual context serves a pivotal function in ascertaining

the existence of such anomalies. In the case of UAV-based

surveillance systems, context information can enhance the system’s

ability to recognize and respond to unusual events or potential

threats, which in turn leads to improved safety and security.

Taking pedestrian behavior as an example, as depicted in Figure 1,

strolling along a pedestrian pathway is perceived as a customary

occurrence, whereas ambulating on a busy highway constitutes

an atypical incident. Ignoring context information related to

sidewalks and highways could lead to false detection in UAV-based

surveillance systems.

In the realm of computer vision, context-based abnormal

event detection has consistently garnered considerable scholarly

attention, including UAV-captured videos. As the use of UAVs,

commonly known as drones, has become more widespread

in various industries such as agriculture, surveillance, disaster

management, and aerial photography, there is an increased

demand for reliable and accurate automated analysis of the

captured data. Previous efforts in this area manually predefined

the collections of context based on human experiences, such as

relationship context and scene context. However, the correctness

and completeness of these collections are difficult to guarantee,

and it is impossible to consider all possible context information.

To address these issues, we propose an automatic methodology

of inferential reasoning within contextual framework that mines

elevated contextual insights derived from the fundamental visual

characteristics of information sources. In our approach, a solitary

frame is employed to generate a spatial context graph, which

facilitates the understanding of object characteristics and their

spatial associations. Subsequently, a structural recurrent neural

network incorporates these graphs to establish a spatio-temporal

context graph. To reason about context, an iterative process

involving the mean-field technique is utilized to modify the

conditions of nodes and edges within the spatio-temporal graph,

ultimately enabling the extraction of semantic context from visual

attributes.

UAVs, also known as drones, have gained significant traction

in various applications, such as monitoring system, and search

and rescue operations. They are equipped with sophisticated

sensors and cameras to capture high-resolution aerial imagery and

video footage. Analyzing this data for the detection of abnormal

events is crucial to ensuring the safety and efficiency of UAV

operations. To account for the rarity of abnormal events, we present

an unsupervised approach for inferring spatio-temporal context

graphs through the implementation of a scene segmentation

technique. By employing a deep Variational Autoencoder model

grounded in graph theory, we effectively partition scenes

into distinct clusters. Subsequently, event categorization into

normal and anomalous occurrences is performed based on

their respective cluster affiliations. The proposed methodology

is rigorously evaluated using the UCF-Crime, Avenue, and

ShanghaiTech datasets, including UAV-captured videos. Our

approach substantially surpasses the performance of leading

unsupervised techniques while yielding a noticeable enhancement

in comparison to established supervised methodologies.

Although we mentioned earlier that visual contextual

information is crucial for comprehensive object and scene

recognition, it is especially beneficial for various computer

vision tasks, including those involving UAVs. However, manually

defining context sets is limited in the case of diverse, changing, and

unpredictable context-related events (Pang et al., 2020). Therefore,

our method automatically learns contextual information from

data instead of manually pre-defining contextual content. By

performing a contextual reasoning approach, we establish a

connection between the visual context and the interpretation

of deviant occurrences, thus overcoming the semantic disparity

that exists between the two. The methodology we propose is

versatile, and relevant to an extensive variety of applications in
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FIGURE 1

Unmanned Aerial Vehicle (UAV) perspective for abnormal event detection. The (Left) subplot illustrates the same entity(the pedestrian) in di�erent

scenes (highway and sidewalk) generating an abnormal event and a common event, respectively. The (Right) subplot depicts the abnormal and

normal events caused by di�erent objects (vehicles and the pedestrian) in the same environment(the park on a university campus).

which contextual factors are crucial, such as monitoring through

Unmanned Aerial Vehicle systems.

To summarize, our work offers the subsequent contributions.

• An innovative method that utilizes scene-aware context

reasoning: Our study presents a novel methodology for

identifying anomalous incidents in videos, including

those captured by UAVs, by leveraging scene-aware

context reasoning, which helps bridge the disparity

in meaning between the visual environment and

anomalous occurrences. This is rare in methods of

the field.

• Development of a contextual graph for spatio-temporal data:

We construct a spatio-temporal context graph that encodes

and reasons about context information, thereby enhancing

the precision of identifying anomalous events in various

scenarios, including UAV-captured videos.

• Introduction of deep Variational Autoencoder architecture

that incorporates graph-based techniques for unsupervised

visual environment clustering: Our method incorporates a

graph-based deep Variational Autoencoders for unsupervised

scenario clustering, which enables the identification of

different scene types and the accurate detection of aberrations

that are obscure and contextual in nature.

• Enhanced discrimination between normal and those deemed

abnormal events: By leveraging scene clustering, our approach

can better discriminate between normal and abnormal events

in various scenes, leading to more accurate detections,

particularly in UAV-based surveillance systems.

• Significant improvement in unsupervised abnormal event

detection accuracy: Our proposed method demonstrates

a substantial increase in the accuracy of unsupervised

abnormal event detection when evaluated against cutting-edge

approaches, including those applied to UAV-captured videos.
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2. Related work

Over the last several years, a considerable number of

scholars (Mehran et al., 2009; Li et al., 2013; Luo et al., 2017; Ribeiro

et al., 2018; Feng et al., 2021; Georgescu et al., 2021) have conducted

research on video anomaly recognition. Generally, the studies can

be partitioned into three stages according to the specific technology

used, which are the traditional machine learning (Mahadevan et al.,

2010; Antić and Ommer, 2011; Li et al., 2013; Lu et al., 2013; Cheng

et al., 2015; Hasan et al., 2016), the hybrid stage combiningmachine

learning and deep learning (Hinami et al., 2017; Luo et al., 2017;

Smeureanu et al., 2017; Ravanbakhsh et al., 2018; Sabokrou et al.,

2018a), and the deep learning stage (Sabokrou et al., 2015, 2017,

2018b; Xu et al., 2015; Chong and Tay, 2017; Ionescu et al., 2019).

The initial video anomaly detection studiesmainly usedmanual

features to construct feature spaces. These studies used traditional

machine learning methods, such as basic methods to determine

whether events obey the normal state distribution (Saligrama et al.,

2010), Gaussian mixture models (Kratz and Nishino, 2009), and

Markov models to infer anomalous features (Tipping and Bishop,

1999; Leyva et al., 2017), and sparse learning methods (Luo et al.,

2017) that are more effective than the former two (Lu et al.,

2013). However, these traditional machine learning methods have

a certain degree of dependence on the selection of features and are

often adapted to particular scenarios.

Subsequently, with the emergence of deep learning methods,

artificial features are replaced by deep features, which can effectively

monitor and analyze video semantic concepts. With the properties

of automatically learning and extracting video features according

to the environment, deep learning methods have led to a series

of studies on unsupervised learning methods (Xu et al., 2015;

Hasan et al., 2016; Luo et al., 2017; Sabokrou et al., 2017; Liu

et al., 2018; Wang et al., 2018; Ye et al., 2019). These works

reconstruct the video so that the model gets a stronger response to

anomalous frames during testing. Although such studies overcome

the problem of feature dependency, they are only applicable to

video types with few anomalous patterns and short time series,

having the limitation of low generalization ability. In contrast to

these approaches, Zhao et al. (2017) started to consider the use of

video local spatio-temporal information for video reconstruction

by 3D convolutional autoencoder, yet their study still has weak

generalization ability for anomalous event diversity. Besides, due

to redundancy on consecutive frames (Zhou et al., 2018), using

3D convolutional kernels (Tran et al., 2015) to extract features in

dense RGB frame sequences can sometimes be computationally

more expensive.

In addition, along with the objective social needs such

as diversification and complexity of video anomaly detection,

researchers have also been prompted to focus on the full and

reasonable utilization of video multidimensional information.

Sultani et al. (2018) adopted multiple instance learning methods

to achieve better abnormality detection. This work is one of

the early studies to provide new solutions for weakly supervised

video abnormality detection. On the contrary, Zhu and Newsam

(2019) focused on the influence of dynamic information on

“anomalies” and introduced the attention mechanism to highlight

the response of anomalous video feature segments. But the

potential relationship between instances is still not exploited.

Nevertheless, the overall unreasonable assumption of independent

identical distribution between instances remains yet. Furthermore

Zhang et al. (2019) analyzed the contrast between affirmative

and opposing states of instances in multiple instance learning,

proposed the concept of quantification of intra-packet loss,

and used temporal convolutional network (TCN) for temporal

information correlation. Although this work mostly achieved

anomalous differentiation between normal and abnormal, it was

not sensitive to other more neutral video segments within and

the differentiation was not significant. In order to clean away

label noise, enhancing sensitivity to neutral segments, Zhong

et al. (2019) adopted a hybrid approach of weakly supervised

and fully supervised to handle the detection task. They used

graph convolution to transfer information to denoise the normal

clips in the abnormal video, obtaining pseudo-labels to train 3D

convolutional network (C3D) (Tran et al., 2015) for abnormality

recognition. With high training complexity in the denoising

process, it is very likely that abnormal “miscleaning” will occur.

The outcome of this phenomenon is a reduction in the precision

of detecting and locating abnormal events.

Among the approaches above, reconstruction and prediction

is the current mainstream video anomaly event detection method.

Although it settled the problems of strong feature dependency and

insufficient utilization of video multidimensional information in

previous, the present investigation into the detection of anomalous

video activity is faced with twomajor challenges. The first challenge

is the considerable complexity inherent in the training process

of the employed methods. The second challenge pertains to the

burden of differentiating noise from redundant information in

the features. Notably, some interesting studies using relational

inference modules to enhance the efficacy of video anomalous

event detection (Choi et al., 2012; Park et al., 2012; Leach et al.,

2014) have been proposed recently. Most of them have detected

deviating anomalous events by defining the rule set of context for

inference with the help of temporal relationships between video

frames. While such methods alleviate the ambiguity of anomalous

event definitions in redundant information, they in turn increase

the scene-dependence of anomalous event definitions. Inspired by

them, we adopt the unsupervised idea of scene-aware inference,

and after encoding the contextual information into a spatio-

temporal relationship graph, we attempt attention mechanisms

to perform the next inference step and anomaly detection by

updating the state in the graph. Differently, our method can

achieve automatic mining of high-level features directly related to

anomalous events based on the underlying visual information. That

means it can be applied to detect anomalous occurrences in diverse

settings while bridging the huge gap between the underlying data

and the concepts of anomalous events.

3. Methodologies

During our study, we have evolved a spatio-temporal graph-

basedmethod for context-aware anomaly event inference in videos.

As illustrated in Figure 2, we modeled graphical representation

of spatial relationships using every individual frame of the video
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FIGURE 2

Overview of our proposed framework. The framework is proposed that involves the use of a spatial scene graph (SSG) to analyze each frame I based

on object bounding boxes. The SSG nodes are denoted by i, j, and k, with timestamps t0, t1, and t2. A spatio-temporal scene graph (STSG) is then

constructed by incorporating the temporal modeling of the SSG using a Transformer. Moreover, scene clustering is concurrently performed on the

SSG to di�erentiate between di�erent scene types. Finally, a reasoning model is established on top of the STSG to detect abnormal events across

di�erent scenes.

as an object. In this spatial graph model, we encapsulated the

manifestation of entities and their spatial interconnections within

each frame. The spatial graph was then input into a transformer to

learn dynamic features of each object in the temporal dimension,

ultimately developing the spatio-temporal graph model. Inspired

by Shao et al. (2016), we employed unsupervised clustering to

classify scenes and deduce the spatio-temporal scene graph model.

Finally, we detected anomalous events utilizing the spatio-temporal

scene graph model and the context features acquired through

scene clustering.

3.1. Spatio-temporal scene graph

We represent video feature information as a Spatio-Temporal

Scene Graph (STSG), where nodes encode object appearance,

spatial graph model edges depict object relationships, and temporal

edges model object dynamic features. This encoding scheme

allows us to infer more semantic information about objects

(nodes), object spatio-temporal relationships (edges), and event

occurrence scenarios (entire graph model) compared to existing

research. Consequently, we can detect single-point anomalies,

relationship anomalies, and group anomalies. We achieve the goal

of detecting various scenario anomalies in videos by constructing

and inferring Spatio-Temporal Scene Graphs, implementing the

inference through iterative updates of the node and edge states in

the Spatio-Temporal Graph Model.

3.1.1. Formulation
Assuming an input of a visual medium in the form of a video

consisting of a total of N frames, denoted as V = [I1, I2, · · · , IN],

where I is a certain frame of the video. The Region Proposal

Network (RPN) (Ren et al., 2015) is employed to generate object

bounding boxes for individual frames. The top-K bounding boxes

in the n-th frame are selected as Bn, which includes the entire frame

as an additional bounding box. To construct a spatial scene graph

(SSG) for each frame, we use the image containing k enclosure

boxes. In the SSG, each node vi represents an object, while the

edge ei,j represents the association among the objects. To enable

the inference function through iterative graph updates, we assign

a “normal” or “abnormal” label to each node and edge of the SSG.

In the context of the n-th frame, the designation of the i-th

object is denoted by the label yni , while the label yni,j is assigned

to the relationship between the i-th and j-th objects. We utilize

binary categorization, whereby the label ‘0’ denotes normal objects

or inter-object relationships, while ‘1’ indicates one-field objects or

inter-object relations. To establish a comprehensive definition of

anomalous labels, we define the set encompassing all such labels:

yn = {yni , y
n
i,j|i, j = 1, 2, · · · ,K; i 6= j}. And then SSG model can be

formalized as arg maxyn P(y
n|In,Bn), where

P
(

yn | In,Bn
)

=
∏

i,j∈K

∏

i6=j

P
(

yni , y
n
i,j | I

n,Bn
)

. (1)

Next, we use a Transformer to incorporate temporal

information of multiple SSGs to generate the STSG. In the n-th

frame, the node denoted as vi is linked solely to its corresponding

node vi in the n + 1-th frame by means of the temporal edge

denoted as ei,i, which has a corresponding relation label denoted

as yni,i. Inspired by (Sun et al., 2020), the conclusive probability

distribution is determined with

P(y | V ,B) =
∏

n∈N

∏

i,j

∏

i6=j

P
(

yni , y
n
i,j, y

n
i,i | V ,B

)

, (2)

where y = {yni , y
n
i,j|n = 1, 2, · · · ,N} denotes collection of total

exception tags of the input.

3.1.2. Inferencing on graphs
As previously mentioned, we perform contextual semantic

inference in videos by generating states of nodes and edges in the
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FIGURE 3

Schematic representation of the STSG inference process. The delineation of object boundaries is accomplished through the utilization of a region

proposal network (RPN), which processes raw frames. Subsequently, node spatial edge and temporal edge attributes are derived through specialized

feature extraction modules. These features serve as the initial input for nodeTransformer and edgeTransformer in reasoning. The message-passing

technique is employed to renew Transformers. After computation, nodeTransformer and edgeTransformer yield the predicted anomaly labels y.

model of graph. In this work, we adopt the mean-field graph model

inference method (Xu et al., 2017b; Qi et al., 2019). The probability

function P(y | ·) will be approximated as Q(y | ·). In particular, we

utilized the states hni , h
n
i,j to denote the present state of node i and

the edge between node i, j in frame n, individually. P(yni | ·) of node

i depends on the state hni , h
n
i,j of all nodes and edges.

The approximation Q(yni | ·) depends only on the current

state, i.e., Q(yni | ·) = Q(yni | hni ). The probability distribution

approximation for the edge is also implemented using this idea.

Drawing inspiration fromVaswani et al. (2017); Xu et al. (2022),

we leverage Transformers to calculate the state of Q. Depicting in

Figure 3, STSG model we proposed employs the nodeTransformer

and edgeTransformer to model the hidden states of nodes and

spatio-temporal edges, respectively. Both the nodeTransformer and

edgeTransformer serve to update node and edge states, allowing

for the inference of context semantics from visual features. The

nodeTransformer computation is expressed as follows:

Q = W
(1)
Q E⊤node +W

(2)
Q Ht

node,

K = W
(1)
K E⊤node +W

(2)
K Ht

node,

V = W
(1)
V E⊤node +W

(2)
V Ht

node,

M = softmax(
QK⊤

√

dk
)V,

Ht+1
node

= LN(Enode +MLP(M,Ht
node)),

(3)

where Enode ∈ R
n×d is the node embedding matrix,Ht

node
∈ R

n×dh

is the hidden state matrix of nodeTransformer at time t, Q,K,V ∈

R
n×dk are the query, key, and value matrices, respectively, M ∈

R
n×dv is the output of the self-attention mechanism, LN denotes

layer normalization, and MLP represents a multi-layer perceptron

that applies non-linear transformations to the concatenated input

features. Here, W
(1)
Q ,W

(1)
K ,W

(1)
V ∈ R

d×dk and W
(2)
Q ,W

(2)
K ,W

(2)
V ∈

R
dh×dk are learnable parameters, dk and dv denote the dimensions

of the key and value vectors, respectively, and MLP consists of two

fully connected layers with ReLU activation and a skip connection.

Similarly, the computation of edgeTransformer is formulated as

Q = W
(3)
Q E⊤edge +W

(4)
Q Ht

edge,

K = W
(3)
K E⊤edge +W

(4)
K Ht

edge,

V = W
(3)
V E⊤edge +W

(4)
V Ht

edge,

M = softmax(
QK⊤

√

dk
)V,

Ht+1
edge

= LN(Eedge +MLP(M,Ht
edge)),

(4)

where Eedge ∈ R
m×de is the edge embedding matrix, Ht

edge
∈

R
m×dh is the hidden state matrix of edgeTransformer at time

t, and Q,K,V,M are defined similarly as in the node self-

attention mechanism. Here, W
(3)
Q ,W

(3)
K ,W

(3)
V ∈ R

de×dk and

W
(4)
Q ,W

(4)
K ,W

(4)
V ∈ R

dh×dk are learnable parameters, and MLP

consists of two fully connected layers with ReLU activation and

a skip connection. In this formulation, the edge embeddings are

fed into the edge self-attention mechanism, and the resulting

representation is used to update the hidden states of edges through

a multi-layer perceptron.

To enhance the inference process’s efficiency, we utilize

message-passing techniques during computation. The message-

passing matrixHt+1
msg at time t+ 1 is computed using a simple linear

transformation:

Ht+1
msg = ReLU(W(1)

msgH
t+1
node

+W(2)
msgH

t+1
edge

), (5)

where Ht+1
msg ∈ R

n×dh is the message passing matrix at time t + 1,

W
(1)
msg,W

(2)
msg ∈ R

dh×dh are learnable parameters, and ReLU denotes

the rectified linear unit activation function.
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In the aforementioned formulation, node and edge

representations are integrated using a linear transformation.

This can be perceived as a simplified version of message passing,

where messages are computed as linear combinations of the hidden

states of nodes and edges. Such a formulation can be more efficient

than conventional message passing, particularly for large graphs

with dense connections. The resulting model can encapsulate both

spatial and temporal dependencies within the graph and learn to

deduce context semantics from visual features.

3.2. Scenario clustering

The identification of scene types is essential for comprehending

abnormal events since it is typical for a standard event in one

scene to be considered abnormal in another. To tackle this

issue, we propose an unsupervised scene clustering approach to

discern scene types and deduce the STSG. Given that humans can

effortlessly differentiate The categorization of scenarios based on a

solitary image, we cluster the SSG of static frames to distinguish

between various scenes. By categorizing events into different

scenes, each group can possess its own standard events, which

can be utilized to deduce the contextual framework and identify

anomalous occurrences.

To cluster the scenarios, we introduce a graphic tech-based

Variational Autoencoder (VAE). Specifically, we consider a graph

represented by an adjacency matrix A ∈ R
K×K , where each node is

associated with a feature vector X ∈ R
K×D. Our objective is to learn

a node representation Z(l) in the l-th layer of a Graph Convolutional

Network (GCN), as depicted in Figure 4. The representation of a

node in the l-th layer is provided by

Z
(l)
i = σ





K
∑

j=1

Ai,jZ
(l−1)
j W(l)

c



 , (6)

where σ (·) represents an activation function, and W
(l)
c denotes

the trainable weight matrix of the l-th layer. In the first layer, we

initialize Z(0) = X. To generate the scene graph, we assume that

each node is connected to all other nodes and thus set all elements

of A to 1.

To execute clustering in the latent space, the Soft K-Means

algorithm can be employed with the subsequent equations:

zi = q(z|xi),

γ̂i,m =
exp(−β||zi − µm||

2)
∑M

j=1 exp(−β||zi − µj||2)
,

φ̂m =
1

N

N
∑

i=1

γ̂i,m,

µ̂m =

∑N
i=1 γ̂i,mzi

∑N
i=1 γ̂i,m

,

(7)

where zi represents the latent variable of data point i, µm

denotes the mean of the m-th cluster, β is the temperature

parameter controlling the assignment’s softness, and γ̂ i,m is the

soft assignment of data point i to them-th cluster.

The soft mixture-component membership prediction γ̂ can be

obtained using the softmax function as follows:

γ̂ = softmax(αγ̂ ′), (8)

where γ̂ ′ is the soft assignment matrix derived from the Soft

K-Means algorithm and α is the temperature parameter.

To obtain the estimated parameters of each cluster, we can

employ the following equation

6̂m =

∑N
i=1 γ̂i,m(zi − µ̂m)(zi − µ̂m)

T

∑N
i=1 γ̂i,m

, (9)

where 6̂m is the covariance matrix of them-th cluster.

The energy function can be expressed as follows:

E =

N
∑

i=1

M
∑

j=1

γ̂i,j

(

β||zi − µj||
2 + log φ̂j − log γ̂i,j

)

, (10)

where β is the temperature parameter and φ̂j is the fraction of data

points assigned to the j-th cluster.

The loss function for clustering using the VAE model can be

formulated as follows:

Lclu =
1

N

N
∑

i=1

E+ λ1

M
∑

m=1

d
∑

j=1

1

6̂m,j,j

, (11)

where λ1 represents a trade-off factor, while d represents latent-

space’dimensionality.

During clustering, the number of clustering centers m denotes

the preset number of scene types, and we set m to 10 to cover

common scenes (e.g., campuses, highways, subways, etc). The

training batch of scene clustering is set to 1,024, and we use

the RMSprop optimizer with a 0.0001 learning rate to train the

clustering model.

The VAE model learns a lower-dimensional representation of

the graph utilized for clustering. The Soft K-Means algorithm is

applied to cluster the nodes in the latent space, and the estimated

parameters of each cluster are obtained using equations akin to

those employed in the Gaussian Mixture Model (GMM). The

loss function for clustering using the VAE model is adapted to

encompass the reconstruction loss and the Kullback-Leibler (KL)

divergence term, which serve to train the VAE model.

3.3. Model optimization

Utilizing the methodology of segmenting visual environments,

the contextual scenarios in videos were partitioned into distinct

groups, and the objects and relationships in these scenes were

accurately labeled. This labeled data was then utilized in the

STSG inference, wherein the network’s nodes were trained to

predict the abnormality of objects, while the edges were trained to

predict the abnormality of the relationships between the objects.

The architecture underwent comprehensive education through the

utilization of the backpropagation method, employing a holistic

approach from inception to completion, and all the learnable

model parameters optimized simultaneously. To accomplish this,
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FIGURE 4

Depiction of the graph-based deep Variational Autoencoders (VAEs).

we utilized a cross-entropy loss function with regularization, the

purpose of which was to augment the likelihood delineated before.

For every cluster, the probability of normalcy or deviation was

ascertained for each vertex vi and corresponding edge ei,j within

the n-th frame, individually.

P
(

yni | V ,B
)

= softmax
(

MLN
(

hni
))

,

P
(

yni,j | V ,B
)

= softmax
(

MLN
(

hni,j

))

,
(12)

where the term MLN refers to a multi-layer neural network that is

comprised of two fully-connected layers. In order to simplify the

notation, we denote the anomaly probability of yni and yni,j given

V and B as pni and pni,j, respectively. The loss function of graph

inference is given by

L
m =

1

NK

N
∑

n=1

K
∑

i=1

Lcls

(

yni , p
n
i

)

+
1

NK2

N
∑

n=1

K
∑

i=1

K
∑

j=1

Lcls

(

yni , p
n
i,j

)

+ λ2 ‖Wm‖1 .

(13)

The loss function utilized in the training of the MLN classifier

represents the logistic loss function, denoted as Lcls(·, ·). Variables

associated with the Multilayer Neural Network(MLN) are denoted

asWm. In this investigation, the regularization parameter, denoted

as λ2, is assigned a value of 0.0001. The exponentm inL
m indicates

that the classification model has undergone training with the m-

th cluster. Within each cluster, all entities yni and associations yni,j
receive a designation as typical, while data points from other groups

are randomly selected and labeled as simulated irregularities to

facilitate the training of the model.

3.4. Irregularity score

In order to detect abnormal events in videos, independent

classifiers are trained for objects and relationships within each

group. These classifiers generate classification scores, which are

then utilized to calculate the final anomaly scores. In the context of

the m-th group, assessment scores for categorization, represented

as Pm
(

yni | V ,B
)

and Pm
(

yni,j | V ,B
)

, are derived from the

examination of test data through the evaluation of Equation 12. The

anomaly score is then determined as the minimal categorization

metric observed across all scenario clusters.

Deviation metrics pertaining to entities and their

interconnections are denoted as sni and sni,j, respectively, and

are computed for each of the M groups. The former score

reflects the detection of individual anomalies, while the latter

reflects the detection of group anomalies. To achieve granular

detection at the frame level, the highest score encompassing all

entities and associations within a single frame is identified as the

representative anomaly score for that particular frame. To ensure

that the irregularity score varies smoothly across frames, we apply

a Gaussian filter to enforce temporal smoothness of the final

frame-level anomaly scores.

4. Experiments

4.1. Datasets

The effectiveness of our proposed method is evaluated on

three benchmark datasets, namely UCF-Crime (Sultani et al.,

2018), Avenue (Lu et al., 2013), and ShanghaiTech (Luo et al.,

2017). The UCF-Crime dataset is an extensive compilation of

authentic surveillance footage encompassing 13 distinct categories

of anomalous occurrences across various environments. This

collection is comprised of 1,610 videos for training purposes and

290 videos designated for evaluation, all of which were utilized

in our experiments. Avenue, on the other hand, contains 16

training and 21 testing videos with a total of 35,240 frames,

each lasting about 2 minutes. The dataset includes four types

of abnormal events: running, walking in opposite direction,

throwing objects, and loitering. Lastly, the ShanghaiTech dataset

includes 13 scenes with complex light conditions and various

viewpoints, and consists of over 270,000 training frames and

130 abnormal events. We utilized all of these datasets to

comprehensively evaluate the performance of our proposed

method.
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4.2. Evaluation metric

We assess the performance of our proposed method at the

frame level by computing anomaly scores for each frame. The

performance of the method is evaluated using the Receiver

Operating Characteristic (ROC) curve (Fawcett, 2006), which

involves progressively adjusting the benchmark for irregularity

values. The relevant evaluation metrics employed encompass the

Area Under the Curve (AUC ↑) and the Equal Error Rate (EER ↓).

Moreover, the false alarm rate serves as an assessment indicator for

the likelihood of incorrect categorization. Enhanced performance

of the anomaly detection technique is signified by an elevated AUC

merit (Lobo et al., 2008), a diminished EERmerit, and other merits.

4.3. Comparisons

4.3.1. Analysis on the UCF-crime dataset
The methodology we put forth undergoes assessment

and juxtaposition with numerous prevalent unsupervised and

supervised techniques, employing the UCF-Crime dataset for

this comparative analysis. The performance of our method is

reported in Table 1 in terms of the AUC and false alarm rate,

respectively. To ensure a fair comparison, we reconstructed the

research conducted by Ionescu et al. (2019), substituting their

employed detection mechanism with the Region Proposal Network

(RPN) detector to enhance the methodology. The performances

of other compared methods are taken from Sultani et al. (2018).

The results show that our method outperforms cutting-edge

unsupervised technique, with an improvement of 8.9 and 1.6% on

the Area Under the Curve (AUC) and false alarm rate evaluations,

respectively. Moreover, our approach exhibits similarity to the

most advanced supervised technique (Sultani et al., 2018) currently

available in the field, achieving comparable AUC scores and

false alarm rates without the need for video-level annotations.

This demonstrates the effectiveness of our method in detecting

unknown abnormal events in real-world applications. The ROC

curves of our method are plotted in Figure 5, which encompasses

the contours of unsupervised methodologies and surpasses the

study of Hasan et al. (2016); Ionescu et al. (2019); Lu et al. (2013)

at diverse benchmarks. True positive of the proposed method

marginally exceeds the research of Sultani et al. (2018) when

a middle threshold is selected, indicating the effectiveness of

our method.

4.3.2. Analysis on the avenue dataset
On the Avenue dataset, our method outperforms all existing

methods in terms of both the AUC and EER evaluations, as

shown in Table 2. The cutting-edge research of Ye et al. (2019)

achieved AUC values of 85.9%, while our approach gained

an advancement of 4.0%, demonstrating the effectiveness and

robustness of our method.

4.3.3. Analysis on the ShanghaiTech dataset
Furthermore, we present the findings of our experimental

evaluation conducted on the demanding ShanghaiTech

TABLE 1 A comparative evaluation of abnormal event detection

outcomes between unsupervised and supervised techniques.

Training Method AUC ↑ False
alarm ↓

Unsupervised Hasan et al. (2016) 49.8% 26.9%

Ionescu et al. (2019) 62.1% 9.3%

Lu et al. (2013) 67.4% 3.8%

Ours 76.3% 2.2%

Supervised SVM baseline 50% –

Sultani et al. (2018) 69.2% 2.1%

↑ Indicates that advanced values correspond to superior performance, and ↓ signifies that

lower scores are indicative of better results.

The bold values indicate the best value among all experimental results.

dataset, which contains complex scenes and various actions.

According to the information presented in Table 3, the proposed

approach overtakes the leading-edge strategies on this dataset,

demonstrating its effectiveness in detecting abnormal events in

challenging settings.

4.4. Ablation study

Table 4 showcases a comparative analysis of distinct

constituents’ contributions within the proposed technique

designed for detecting unsupervised abnormal events. The term

“w/o spatial relationships” signifies the exclusion of associations

in space dimension, wherein the STSGs are converted into

object-oriented series over numerous frames, which are then

simulated by Transformers. The term “w/o temporal relationships”

implies its performance on the SSG inference disregarding any

temporal connections, while “w/o relationships” employs a twin

set of fully-connected layers to simulate individual objects in

a standalone manner. We conducted identical scene clustering

for the aforementioned three scenarios. The term “w/o scene

clustering” denotes the exclusion of scenario clustering and

solely relying on a one-class discriminator to differentiate

between regular and aberrant occurrences. Referring to Table 4,

it is observed that discarding spatial dependencies, temporal

dependencies, or spatio-temporal dependencies decreases the

AUC execution by 6.9% − 13.6%, indicating the relevance of

information associations for distinguishing irregular occurrences.

Scenario clustering significantly improves performance, and the

exhibited performance in distinguishing diverse environments to

detect anomalous incidents affirms the efficacy of this approach.

Furthermore, the enhancement reinforces the effectiveness of

the unsupervised scene clustering technique utilized during the

training phase.

4.5. Incident reckon

In order to detect and determine anomalous incidents based on

irregularity values, we employ a method that involves choosing the

local maxima among the chronological progression of irregularity
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FIGURE 5

Comparison of ROC curves for various unsupervised and supervised approaches on the UCF-Crime dataset.

values within a given video. To identify meaningful local maxima,

we utilize the persistence1D algorithm, and then define a fixed time

interval for the region. To group nearby expanded local maximum

regions, we adopt the approach outlined in Luo et al. (2017), which

results in the final abnormal temporal regions where anomalous

incidents can be accurately determined.

On the Avenue dataset, the outcomes of the proposed approach

are presented in Table 5, which exhibits the quantity of identified

anomalous incidents and false alarms. The strategy we developed

can reliably identify anomalous incidents in comparison to the

approaches taken in Wang et al. (2018) and Luo et al. (2017).

The false alarm rate of the proposed approach exceeds the work

in Medel and Savakis (2016), primarily due to their use of minute

benchmarks of irregularity values to identify anomalous incidents.

However, the approach we proposed identifies 47 true anomalous

incidents, compared to the 39 anomalous incidents identified by

the strategy in Wang et al. (2018). These outcomes manifest the

superior validity of the methodology we developed in verifying

the time span of anomalous incidents, rendering it a more feasible

choice for implementation in real-world scenarios.

5. Conclusion

Throughout this article, we propose a novel approach for

unsupervised anomalous incidents identification in videos,

particularly those acquired via Unmanned Aerial Vehicles (UAVs),

which involves the utilization of a contextually responsive

reasoning strategy. As UAVs are increasingly utilized in

various applications such as surveillance, search and rescue,

and environmental monitoring, anomalous incident detection

in UAV-captured videos is pivotal for ensuring safety and

security. Contextual inference overtly entails the extraction of

TABLE 2 Comparative evaluation of abnormal event detection

performance using AUC and EER metrics.

Method AUC ↑ EER ↓

Chong and Tay (2017) 78.2% 21.3%

Hasan et al. (2016) 69.4% 26.1%

Ionescu et al. (2019) 81.0% –

Luo et al. (2017) 82.1% –

Liu et al. (2018) 83.5% –

Wang et al. (2018) 84.7% 22.9%

Morais et al. (2019) 85.6% –

Ye et al. (2019) 85.9% –

Ours 89.9% 20.4%

The bold values indicate the best value among all experimental results.

TABLE 3 Comparative evaluation of abnormal event detection

performance using frame-level AUC and EER metrics.

Method AUC ↑ EER ↓

Chong and Tay (2017) 61.2% –

Luo et al. (2017) 67.9% –

Wang et al. (2018) 71.7% –

Liu et al. (2018) 72.1% -

Ionescu et al. (2019) 72.9% –

Ours 75.2% 25.1%

The bold values indicate the best value among all experimental results.

high-level environmental knowledge from low-level vision-

oriented characteristics. Our approach generates a spatiotemporal

scenario graph to facilitate the explicit establishment of the
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TABLE 4 Performance evaluation of individual components of the

proposed approach in terms of AUC and false alarm.

Method AUC ↑ False alarm ↓

W/o temporal relationships 69.4% 2.9%

W/o spatial relationships 62.7% 5.2%

W/o relationships 62.8% 12.5%

W/o scene clustering 64.9% 7.1%

Ours 76.3% 1.9%

The bold values indicate the best value among all experimental results.

TABLE 5 Outlier event identification outcomes in terms of count of

identified occurrences and false alarms.

Method True positives ↑ False alarm ↓

Wang et al. (2018) 39 3

Luo et al. (2017) 44 5

Morais et al. (2019) 42 13

Ours 47 3

The bold values indicate the best value among all experimental results.

vision-oriented environment, by embedding objects’ visual

morphology and their spatiotemporal associations in graphic

representations. This approach is particularly beneficial in

UAV-captured videos, where the aerial perspective offers unique

contextual information. Furthermore, we evolve a graph-based

deep Variational Autoencoder model for scenario clustering that

can capably ascertain scenario categories and deduce the spatio-

temporal scenario graph within unsupervised. This enables our

method to accurately detect aberrant occurrences with contextual

dependencies and ambiguous sources in various environments,

including those captured by UAVs. Our experiments on three

datasets, including UAV-captured videos, exhibit the superiority

of our approach over current unsupervised methodologies, while

simultaneously highlighting its comparability with contemporary

supervised techniques that represent the cutting-edge of the

field. Subsequent research will endeavor to investigate more

detailed contextual feature in order to expand the methodology

from detecting anomalies at the frame dimension to the more

precise pixel level, further enhancing the effectiveness of atypical

occurrences identification in UAV-captured videos.
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Antić, B., and Ommer, B. (2011). “Video parsing for abnormality detection.” in
2011 International Conference on Computer Vision (Barcelona: IEEE), 2415–2422.
doi: 10.1109/ICCV.2011.6126525

Bar, M. (2004). Visual objects in context. Nat. Rev. Neurosci. 5, 617–629.
doi: 10.1038/nrn1476

Cheng, K.-W., Chen, Y.-T., and Fang, W.-H. (2015). “Video anomaly detection and
localization using hierarchical feature representation and gaussian process regression,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(Boston, MA: IEEE), 2909–2917. doi: 10.1109/CVPR.2015.7298909

Choi, M. J., Torralba, A., and Willsky, A. S. (2012). Context models and out-
of-context objects. Pattern Recogn. Lett. 33, 853–862. doi: 10.1016/j.patrec.2011.
12.004

Chong, Y. S., and Tay, Y. H. (2017). “Abnormal event detection in videos
using spatiotemporal autoencoder,” in Advances in Neural Networks-ISNN 2017: 14th
International Symposium, ISNN 2017, Sapporo, Hakodate, and Muroran, Hokkaido,

Japan, June 21-26, 2017, Proceedings, Part II 14 (Cham: Springer), 189–196.
doi: 10.1007/978-3-319-59081-3_23

Fawcett, T. (2006). An introduction to roc analysis. Pattern Recogn. Lett. 27,
861–874. doi: 10.1016/j.patrec.2005.10.010

Feng, J.-C., Hong, F.-T., and Zheng, W.-S. (2021). “Mist: multiple instance self-
training framework for video anomaly detection,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (Nashville, TN: IEEE),
14009–14018. doi: 10.1109/CVPR46437.2021.01379

Feng, Y., Yuan, Y., and Lu, X. (2016). “Deep representation for abnormal
event detection in crowded scenes,” in Acm on Multimedia Conference, 591–595.
doi: 10.1145/2964284.2967290

Georgescu, M. I., Barbalau, A., Ionescu, R. T., Khan, F. S., Popescu, M., and
Shah, M. (2021). “Anomaly detection in video via self-supervised and multi-
task learning,” in Computer Vision and Pattern Recognition (Nashville, TN: IEEE).
doi: 10.1109/CVPR46437.2021.01255

Frontiers in SustainableCities 11 frontiersin.org

https://doi.org/10.3389/frsc.2023.1197434
https://doi.org/10.1109/ICCV.2011.6126525
https://doi.org/10.1038/nrn1476
https://doi.org/10.1109/CVPR.2015.7298909
https://doi.org/10.1016/j.patrec.2011.12.004
https://doi.org/10.1007/978-3-319-59081-3_23
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1109/CVPR46437.2021.01379
https://doi.org/10.1145/2964284.2967290
https://doi.org/10.1109/CVPR46437.2021.01255
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Liu et al. 10.3389/frsc.2023.1197434

Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A. K.,
and Davis, L. S. (2016). “Learning temporal regularity in video
sequences, in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (Las Vegas, NV, USA: IEEE). doi: 10.1109/CVPR.
2016.86

Hasan, M., Paul, S., Mourikis, A. I., and Roy-Chowdhury, A. K. (2019). “Context-
aware query selection for active learning in event recognition,” in IEEE Transactions on
Pattern Analysis &Machine Intelligence (IEEE), 1.

Hinami, R., Mei, T., and Satoh, S. (2017). “Joint detection and recounting
of abnormal events by learning deep generic knowledge,” in Proceedings of the
IEEE International Conference on Computer Vision (Venice: IEEE), 3619–3627.
doi: 10.1109/ICCV.2017.391

Ionescu, R. T., Khan, F. S., Georgescu, M.-I., and Shao, L. (2019). “Object-centric
auto-encoders and dummy anomalies for abnormal event detection in video,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(Long Beach, CA: IEEE), 7842–7851. doi: 10.1109/CVPR.2019.00803

Ionescu, R. T., Smeureanu, S., Alexe, B., and Popescu, M. (2017). “Unmasking the
abnormal events in video, in 2017 IEEE International Conference on Computer Vision
(ICCV) (Venice, Italy: IEEE). doi: 10.1109/ICCV.2017.315

Kang, Y., Rahaman, M. S., Ren, Y., Sanderson, M., White, R. W., and Salim, F.
D. (2022). App usage on-the-move: context-and commute-aware next app prediction.
Pervasive Mobile Comput. 87, 101704. doi: 10.1016/j.pmcj.2022.101704

Kratz, L., and Nishino, K. (2009). “Anomaly detection in extremely crowded
scenes using spatio-temporal motion pattern models,” in 2009 IEEE Conference
on Computer Vision and Pattern Recognition (Miami, FL: IEEE), 1446–1453.
doi: 10.1109/CVPR.2009.5206771

Leach, M. J., Sparks, E. P., and Robertson, N. M. (2014). Contextual
anomaly detection in crowded surveillance scenes. Pattern Recogn. Lett. 44, 71–79.
doi: 10.1016/j.patrec.2013.11.018

Leyva, R., Sanchez, V., and Li, C. T. (2017). “Video anomaly detection with compact
feature sets for online performance,” in IEEE Transactions on Image Processing (IEEE),
3463–3478. doi: 10.1109/TIP.2017.2695105

Li, W., Mahadevan, V., and Vasconcelos, N. (2013). Anomaly detection and
localization in crowded scenes. IEEE Trans. Pattern Anal. Mach. Intellig. 36, 18–32.
doi: 10.1109/TPAMI.2013.111

Liu, W., Luo, W., Lian, D., and Gao, S. (2018). “Future frame prediction
for anomaly detection-a new baseline,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (Salt Lake City, UT: IEEE), 6536–6545.
doi: 10.1109/CVPR.2018.00684

Lobo, J. M., Jiménez-Valverde, A., and Real, R. (2008). Auc: a misleading measure
of the performance of predictive distribution models.Glob. Ecol. Biogeogr. 17, 145–151.
doi: 10.1111/j.1466-8238.2007.00358.x

Lu, C., Shi, J., and Jia, J. (2013). “Abnormal event detection at 150 fps in matlab,” in
Proceedings of the IEEE International Conference on Computer Vision (Sydney, NSW:
IEEE), 2720–2727. doi: 10.1109/ICCV.2013.338

Luo, W., Liu, W., and Gao, S. (2017). “A revisit of sparse coding based anomaly
detection in stacked rnn framework,” in Proceedings of the IEEE International
Conference on Computer Vision (Venice: IEEE), 341–349. doi: 10.1109/ICCV.2017.45

Mahadevan, V., Li, W., Bhalodia, V., and Vasconcelos, N. (2010). “Anomaly
detection in crowded scenes,” in 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (San Francisco, CA: IEEE), 1975–1981.
doi: 10.1109/CVPR.2010.5539872

Medel, J. R., and Savakis, A. (2016). Anomaly detection in video using predictive
convolutional long short-term memory networks. arXiv [Preprint]. arXiv:1612.00390.

Mehran, R., Oyama, A., and Shah, M. (2009). “Abnormal crowd behavior detection
using social force model,” in 2009 IEEE Conference on Computer Vision and Pattern
Recognition (Miami, FL: IEEE), 935–942. doi: 10.1109/CVPR.2009.5206641

Morais, R., Le, V., Tran, T., Saha, B., Mansour, M., and Venkatesh, S. (2019).
“Learning regularity in skeleton trajectories for anomaly detection in videos,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(Long Beach, CA: IEEE), 11996–12004. doi: 10.1109/CVPR.2019.01227

Pang, G., Yan, C., Shen, C., Hengel, A., v. d., and Bai, X. (2020). “Self-trained
deep ordinal regression for end-to-end video anomaly detection,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (Seattle, WA:
IEEE), 12173–12182. doi: 10.1109/CVPR42600.2020.01219

Park, S., Kim, W., and Lee, K. M. (2012). “Abnormal object detection by canonical
scene-based contextual model,” in Computer Vision-ECCV 2012: 12th European
Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part
III 12 (Berlin; Heidelberg: Springer), 651–664. doi: 10.1007/978-3-642-33712-3_47

Qi,M.,Wang, Y., Qin, J., Li, A., Luo, J., andVanGool, L. (2019). Stagnet: an attentive
semantic rnn for group activity and individual action recognition. IEEE Trans. Circuits
Syst. Video Technol. 30, 549–565. doi: 10.1109/TCSVT.2019.2894161

Ravanbakhsh, M., Nabi, M., Mousavi, H., Sangineto, E., and Sebe, N. (2018). “Plug-
and-play cnn for crowd motion analysis: an application in abnormal event detection,”
in 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) (IEEE),
1689–1698. doi: 10.1109/WACV.2018.00188

Ren, S., He, K., Girshick, R., and Sun, J. (2015). “Faster R-CNN: Towards
real-time object detection with region proposal networks,” in Proceedings of the
28th International Conference on Neural Information Processing Systems - Volume 1
(Cambridge, MA: MIT Press), 91–99.

Ribeiro, M., Lazzaretti, A. E., and Lopes, H. S. (2018). A study of deep convolutional
auto-encoders for anomaly detection in videos. Pattern Recogn. Lett. 105:13–22.
doi: 10.1016/j.patrec.2017.07.016

Sabokrou, M., Fathy, M., Hoseini, M., and Klette, R. (2015). “Real-time
anomaly detection and localization in crowded scenes,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops (IEEE), 56–62.
doi: 10.1109/CVPRW.2015.7301284

Sabokrou, M., Fayyaz, M., Fathy, M., and Klette, R. (2017). Deep-cascade: cascading
3d deep neural networks for fast anomaly detection and localization in crowded scenes.
IEEE Trans. Image Process. 26, 1992–2004. doi: 10.1109/TIP.2017.2670780

Sabokrou, M., Fayyaz, M., Fathy, M., Moayed, Z., and Klette, R. (2018a). Deep-
anomaly: fully convolutional neural network for fast anomaly detection in crowded
scenes. Comput. Vis. Image Understanding 172, 88–97. doi: 10.1016/j.cviu.2018.02.006

Sabokrou, M., Khalooei, M., Fathy, M., and Adeli, E. (2018b). “Adversarially learned
one-class classifier for novelty detection,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (Salt Lake City, UT: IEEE), 3379–3388.
doi: 10.1109/CVPR.2018.00356

Saligrama, V., Konrad, J., and Jodoin, P.-M. (2010). Video anomaly identification.
IEEE Signal Process. Magaz. 27, 18–33. doi: 10.1109/MSP.2010.937393

Shao, W., Salim, F. D., Song, A., and Bouguettaya, A. (2016). Clustering
big spatiotemporal-interval data. IEEE Trans. Big Data 2, 190–203.
doi: 10.1109/TBDATA.2016.2599923

Smeureanu, S., Ionescu, R. T., Popescu, M., and Alexe, B. (2017). “Deep
appearance features for abnormal behavior detection in video,” in Image Analysis
and Processing-ICIAP 2017: 19th International Conference, Catania, Italy,
September 11-15, 2017, Proceedings, Part II 19 (Catania: Springer), 779–789.
doi: 10.1007/978-3-319-68548-9_70

Song, H., Sun, C., Wu, X., Chen, M., and Jia, Y. (2019). “Learning normal patterns
via adversarial attention-based autoencoder for abnormal event detection in videos,” in
IEEE Transactions on Multimedia (IEEE), 1.

Sultani, W., Chen, C., and Shah, M. (2018). “Real-world anomaly detection
in surveillance videos,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (Salt Lake City, UT: IEEE), 6479–6488.
doi: 10.1109/CVPR.2018.00678

Sun, C., Jia, Y., Hu, Y., and Wu, Y. (2020). “Scene-aware
context reasoning for unsupervised abnormal event detection in
videos,” in Proceedings of the 28th ACM International Conference on
Multimedia (New York, NY: ACM), 184–192. doi: 10.1145/3394171.
3413887

Sun, C., Song, H., Wu, X., and Jia, Y. (2019). “Learning weighted video segments
for temporal action localization,” in Pattern Recognition and Computer Vision: Second
Chinese Conference, PRCV 2019, Xi’an, China, November 8-11, 2019, Proceedings, Part
I 2 (Xian: Springer), 181–192. doi: 10.1007/978-3-030-31654-9_16

Tang, K., Zhang, H., Wu, B., Luo, W., and Liu, W. (2020). “Learning to
compose dynamic tree structures for visual contexts,” in 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (Long Beach, CA: IEEE).
doi: 10.1109/CVPR.2019.00678

Tipping, M. E., and Bishop, C. M. (1999). Mixtures of probabilistic principal
component analyzers. Neural Comput. 11, 443–482. doi: 10.1162/089976699300
016728

Tran, D., Bourdev, L., Fergus, R., Torresani, L., and Paluri, M.
(2015). “Learning spatiotemporal features with 3d convolutional
networks,” in Proceedings of the IEEE International Conference on
Computer Vision (Cambridge, MA: IEEE), 4489–4497. doi: 10.1109/ICCV.
2015.510

Vaswani, A., Shazeer, N., Parmer, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). “Attention is all you need,” in Proceedings of the 31st International Conference on
Neural Information Processing Systems (Red Hook, NY: Curran Associates), 6000–6010.

Wang, L., Zhou, F., Li, Z., Zuo, W., and Tan, H. (2018). “Abnormal event
detection in videos using hybrid spatio-temporal autoencoder,” in 2018 25th
IEEE International Conference on Image Processing (ICIP) (IEEE), 2276–2280.
doi: 10.1109/ICIP.2018.8451070

Xu, D., Ricci, E., Yan, Y., Song, J., and Sebe, N. (2015). Learning deep
representations of appearance and motion for anomalous event detection. arXiv
[Preprint]. arXiv:1510.01553. doi: 10.5244/C.29.8

Xu, D., Yan, Y., Ricci, E., and Sebe, N. (2017a). Detecting anomalous events in
videos by learning deep representations of appearance and motion. Comput. Vis. Image
Understanding 156, 117–127. doi: 10.1016/j.cviu.2016.10.010

Xu, D., Zhu, Y., Choy, C. B., and Fei-Fei, L. (2017b). “Scene graph generation
by iterative message passing,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (Honolulu, HI: IEEE), 5410–5419. doi: 10.1109/CVPR.
2017.330

Frontiers in SustainableCities 12 frontiersin.org

https://doi.org/10.3389/frsc.2023.1197434
https://doi.org/10.1109/CVPR.2016.86
https://doi.org/10.1109/ICCV.2017.391
https://doi.org/10.1109/CVPR.2019.00803
https://doi.org/10.1109/ICCV.2017.315
https://doi.org/10.1016/j.pmcj.2022.101704
https://doi.org/10.1109/CVPR.2009.5206771
https://doi.org/10.1016/j.patrec.2013.11.018
https://doi.org/10.1109/TIP.2017.2695105
https://doi.org/10.1109/TPAMI.2013.111
https://doi.org/10.1109/CVPR.2018.00684
https://doi.org/10.1111/j.1466-8238.2007.00358.x
https://doi.org/10.1109/ICCV.2013.338
https://doi.org/10.1109/ICCV.2017.45
https://doi.org/10.1109/CVPR.2010.5539872
https://doi.org/10.1109/CVPR.2009.5206641
https://doi.org/10.1109/CVPR.2019.01227
https://doi.org/10.1109/CVPR42600.2020.01219
https://doi.org/10.1007/978-3-642-33712-3_47
https://doi.org/10.1109/TCSVT.2019.2894161
https://doi.org/10.1109/WACV.2018.00188
https://doi.org/10.1016/j.patrec.2017.07.016
https://doi.org/10.1109/CVPRW.2015.7301284
https://doi.org/10.1109/TIP.2017.2670780
https://doi.org/10.1016/j.cviu.2018.02.006
https://doi.org/10.1109/CVPR.2018.00356
https://doi.org/10.1109/MSP.2010.937393
https://doi.org/10.1109/TBDATA.2016.2599923
https://doi.org/10.1007/978-3-319-68548-9_70
https://doi.org/10.1109/CVPR.2018.00678
https://doi.org/10.1145/3394171.3413887
https://doi.org/10.1007/978-3-030-31654-9_16
https://doi.org/10.1109/CVPR.2019.00678
https://doi.org/10.1162/089976699300016728
https://doi.org/10.1109/ICCV.2015.510
https://doi.org/10.1109/ICIP.2018.8451070
https://doi.org/10.5244/C.29.8
https://doi.org/10.1016/j.cviu.2016.10.010
https://doi.org/10.1109/CVPR.2017.330
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Liu et al. 10.3389/frsc.2023.1197434

Xu, R., Tu, Z., Xiang, H., Shao, W., Zhou, B., andMa, J. (2022). Cobevt: Cooperative
bird’s eye view semantic segmentation with sparse transformers. arXiv [Preprint].
arXiv:2207.02202.

Ye, M., Peng, X., Gan, W., Wu, W., and Qiao, Y. (2019). “Anopcn: Video
anomaly detection via deep predictive coding network,” in Proceedings of the 27th
ACM International Conference on Multimedia (New York, NY: ACM), 1805–1813.
doi: 10.1145/3343031.3350899

Zhang, J., Qing, L., and Miao, J. (2019). “Temporal convolutional network with
complementary inner bag loss for weakly supervised anomaly detection,” in 2019
IEEE International Conference on Image Processing (ICIP) (Taipei: IEEE), 4030–4034.
doi: 10.1109/ICIP.2019.8803657

Zhao, Y., Deng, B., Shen, C., Liu, Y., Lu, H., and Hua, X.-S. (2017). “Spatio-temporal
autoencoder for video anomaly detection,” in Proceedings of the 25th ACM international

conference on Multimedia (New York, NY: ACM), 1933–1941. doi: 10.1145/3123266.
3123451

Zhong, J.-X., Li, N., Kong, W., Liu, S., Li, T. H., and Li, G. (2019). “Graph
convolutional label noise cleaner: train a plug-and-play action classifier for anomaly
detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (Long Beach, CA: IEEE), 1237–1246. doi: 10.1109/CVPR.2019.
00133

Zhou, B., Andonian, A., Oliva, A., and Torralba, A. (2018). “Temporal
relational reasoning in videos,” in Proceedings of the European Conference on
Computer Vision (ECCV) (Munich: Springer International Publishing), 803–818.
doi: 10.1007/978-3-030-01246-5_49

Zhu, Y., and Newsam, S. (2019). Motion-aware feature for improved video anomaly
detection. arXiv [Preprint]. arXiv:1907.10211.

Frontiers in SustainableCities 13 frontiersin.org

https://doi.org/10.3389/frsc.2023.1197434
https://doi.org/10.1145/3343031.3350899
https://doi.org/10.1109/ICIP.2019.8803657
https://doi.org/10.1145/3123266.3123451
https://doi.org/10.1109/CVPR.2019.00133
https://doi.org/10.1007/978-3-030-01246-5_49
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org

	Unsupervised video anomaly detection in UAVs: a new approach based on learning and inference
	1. Introduction
	2. Related work
	3. Methodologies
	3.1. Spatio-temporal scene graph
	3.1.1. Formulation
	3.1.2. Inferencing on graphs

	3.2. Scenario clustering
	3.3. Model optimization
	3.4. Irregularity score

	4. Experiments
	4.1. Datasets
	4.2. Evaluation metric
	4.3. Comparisons
	4.3.1. Analysis on the UCF-crime dataset
	4.3.2. Analysis on the avenue dataset
	4.3.3. Analysis on the ShanghaiTech dataset

	4.4. Ablation study
	4.5. Incident reckon

	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


