Check for updates

OPEN ACCESS

EDITED AND REVIEWED BY Thomas Krafft, Maastricht University, Netherlands

*CORRESPONDENCE Basma Altaf ⊠ baltaf@stanford.edu Eva Bianchi ⊠ ebianchi@stanford.edu

[†]These authors have contributed equally to this work and share first authorship

RECEIVED 01 July 2024 ACCEPTED 08 July 2024 PUBLISHED 23 July 2024

CITATION

Altaf B, Bianchi E, Douglas IP, Douglas K, Byers B, Paredes PE, Ardoin NM, Markus HR, Murnane EL, Bencharit LZ, Landay JA and Billington SL (2024) Corrigendum: Use of crowdsourced online surveys to study the impact of architectural and design choices on wellbeing. *Front. Sustain. Cities* 6:1458100. doi: 10.3389/frsc.2024.1458100

COPYRIGHT

© 2024 Altaf, Bianchi, Douglas, Douglas, Byers, Paredes, Ardoin, Markus, Murnane, Bencharit, Landay and Billington. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Corrigendum: Use of crowdsourced online surveys to study the impact of architectural and design choices on wellbeing

Basma Altaf^{1*†}, Eva Bianchi^{1*†}, Isabella P. Douglas¹, Kyle Douglas¹, Brandon Byers¹, Pablo E. Paredes², Nicole M. Ardoin³, Hazel R. Markus⁴, Elizabeth L. Murnane⁵, Lucy Z. Bencharit⁶, James A. Landay⁷ and Sarah L. Billington¹

¹Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States, ²Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States, ³Graduate School of Education and the Woods Institute for the Environment, Stanford University, Stanford, CA, United States, ⁴Department of Psychology, Stanford University, Stanford, CA, United States, ⁵School of Engineering, Dartmouth College, Hanover, NH, United States, ⁶Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, CA, United States, ⁷Department of Computer Science, Stanford University, Stanford, CA, United States

KEYWORDS

meta-analysis, natural materials, natural light, sense of belonging, self-efficacy, diversity, environmental efficacy, design interventions

A corrigendum on

Use of crowdsourced online surveys to study the impact of architectural and design choices on wellbeing

by Altaf, B., Bianchi, E., Douglas, I. P., Douglas, K., Byers, B., Paredes, P. E., Ardoin, N. M., Markus, H. R., Murnane, E. L., Bencharit, L. Z., Landay, J. A., and Billington, S. L. (2022). *Front. Sustain. Cities* 4:780376. doi: 10.3389/frsc.2022.780376

In the published article, there was an error in Tables 4, 6, 8 as published. The effect sizes in our tables were mislabeled as " η^2 " (eta-squared) but should have been labelled as " η^2_g " (generalized eta-squared). All instances have been replaced by " η^2_g ".

The corrected Tables 4, 6, 8 and their caption appear below.

A correction has been made to **Results Per Independent Variable**, Paragraph 1, Page 7. This sentence previously stated: "Our results are organized for each independent variable with subsections for each dependent variable. The ANOVA results are reported using *p*-value (*p*), *F* ratio (*F*), degrees of freedom (df) and effect size (η^2) ."

The corrected sentence appears below:

"Our results are organized for each independent variable with subsections for each dependent variable. The ANOVA results are reported using *p*-value (*p*), *F* ratio (*F*), degrees of freedom (df), and effect size (η_{g}^2) ."

The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

	Belonging		Self-efficacy		Environmental efficacy ^a	
Study	ANOVA ρ, (F), [ηg2]	Significant interactions	ANOVA ρ, (F), [η ² _g]	Significant interactions	ANOVA ρ, (F), [ηg2]	Significant interactions
1	<0.001***, (44.32), [0.07], Df = 271	Gender × Race × Mat {0.018*, (5.694), Df = 264, [0.009]} Race × Mat {0.049*, (3.911), Df = 264, [0.007]}	<0.001***, (31.37), [0.043], Df = 271	Gender × Race × Mat {0.048*, (3.940), Df = 264, [0.006]} Race × Mat {0.03*, (4.770), Df = 264, [0.007]}	<0.001***, (39.16), [0.029], Df = 271	Gender × Race × Mat {< 0.001***, (11.438), Df = 264, [0.009]}
2	0.004**, (8.41), [0.009], Df = 286	Edu × Mat {0.033*, (4.617), Df = 279, [0.005]} Gender × Race × Mat {0.044*, (4.083), Df = 279, [0.005]} Gender × Race × Edu × Mat {0.041*, (4.200), Df = 279, [0.005]}	0.008**, (7.22), [0.006], Df = 286	$\begin{array}{l} \mbox{Gender} \times \mbox{Mat} \\ \{0.048^*, (3.928), \\ Df = 279, [0.003]\} \\ \mbox{Race} \times \mbox{Mat} \{0.005^{**}, \\ (7.842), Df = 279, \\ [0.007]\} \\ \mbox{Edu} \times \mbox{Race} \times \mbox{Mat} \\ \{0.002^{**}, (9.754), \\ Df = 279, [0.008]\} \\ \mbox{Gender} \times \mbox{Race} \times \\ \mbox{Mat} \{0.004^{**}, (8.417), \\ Df = 279, [0.007]\} \\ \mbox{Gender} \times \mbox{Race} \times \\ \mbox{Edu} \times \mbox{Mat} \{0.024^*, \\ (5.135), \\ Df = 279, [0.004]\} \\ \end{array}$	<0.001***, (16.05), [0.009], Df = 282	Gender × Mat {0.043*, (4.147), Df = 275, [0.002]} Edu × Race × Mat {0.007**, (7.497), Df = 275, [0.004]}
3	<0.001***, (31.481), [0.019], Df = 479	Edu × Mat {0.023*, (5.202), Df = 466, [0.003]}	<0.001***, (18.363), [0.01], Df = 479	Edu × Mat {0.003**, (8.918), Df = 466, [0.005]}	<0.001***, (14.538), [0.005], Df = 475	Gender × Race × Mat {0.016*, (5.803), Df = 462, [0.002]}
4a	0.129, (2.308), [<0.001], Df = 437	Race × Mat {0.003**, (9.059), Df = 417, [0.002]}	0.744, (0.107), [<0.001], Df = 437	Race × Mat {0.025*, (5.044), Df = 417, [<0.001]}	0.449, (0.575), [<0.001], Df = 437	No significant interactions found
4b	0.152, (2.058), [0.005], Df = 424	No significant interactions found	0.833, (0.044), [<0.001], Df = 424	No significant interactions found	0.765, (0.090), [<0.001], Df = 424	Gender × Race × Mat {0.025*, (5.073), Df = 355, [0.014]}
5	0.129, (2.317), [0.005], Df = 456	No significant interactions found	0.125, (2.358), [0.005], Df = 456	No significant interactions found	0.661, (0.193), [<0.001], Df = 451	No significant interactions found

TABLE 4 ANOVA and mixed ANOVA results for materials for all three dependent variables.

^a Some outliers were identified for environmental efficacy scores in the following studies: Study 2 (n = 4), Study 3 (n = 4), Study 4b (n = 4), Study 5 (n = 5). These were removed from the analysis for that specific dependent variable only. *p < 0.05, **p < 0.01.

	Belonging		Self-efficacy		Environmental efficacy ^a	
Study	ANOVA ρ, (F), [ηg2]	Significant interactions	ANOVA ρ, (F), [ηg2]	Significant interactions	ANOVA ρ, (F), [ηg2]	Significant interactions
1	<0.001***, (18.70), [0.029], Df = 271	Gender × Light $\{0.01^*, (6.418), Df = 264, [0.01]\}$	<0.001***, (13.72), [0.018], Df = 271	Gender × Light {0.001**, (10.440), Df = 270, [0.013]}	<0.001***, (23.33), [0.017], Df = 271	No significant interactions found
2	0.274, (1.20), [0.001], Df = 286	Edu × Light {0.017*, (5.749), Df = 279, [0.006]} Gender × Race × Light {0.035*, (4.504), Df = 279, [0.004]}	0.98, (0.00), [0.00], Df = 286	Edu × Light { 0.008^{**} , (7.114), Df = 279, [0.007]} Gender × Light { 0.038^* , (4.357), Df = 279, [0.004]} Gender × Race × Edu × Light { 0.049^* , (3.920), Df = 279, [0.004]}	0.13, (2.30), [0.001], Df = 282	No significant interactions found
3	0.001**, (10.199), [0.006], Df = 479	$\begin{array}{l} \mbox{Edu}\times\mbox{Light} \\ \{ <0.001^{***}, (13.094), \\ Df = 466, [0.007] \} \\ \mbox{Edu}\times\mbox{Gender}\times \\ \mbox{Light} \{ 0.023^*, (5.240), \\ Df = 466, [0.003] \} \end{array}$	0.041*, (4.217), [0.002], Df = 479	Edu × Light {0.004**, (8.551), Df = 466, [0.005]} Gender × Light {0.037*, (4.377), Df = 466, [0.002]}	0.344, (0.897), [<0.001], Df = 475	No significant interactions found
4a	<0.001***, (171.840), [0.033], Df = 437	No significant interactions found	<0.001***, (122.341), [0.023], Df = 437	No significant interactions found	<0.001***, (49.011), [0.006], Df = 437	No significant interactions found
4b	0.087, (2.934), [0.007], Df = 424	Edu × Race × Light {0.05; (3.877), Df = 355, [0.011]}	0.425, (0.638), [0.002], Df = 424	Edu × Race × Light {0.01**, (6.753), Df = 355, [0.019]}	0.678, (0.172), [<0.001], Df = 424	No significant interactions found
5	<0.001***, (16.577), [0.035], Df = 456	No significant interactions found	0.015*, (5.972), [0.013], Df = 456	Gender × Race × Light {0.033*, (4.597), Df = 393, [0.012]}	0.858, (0.032), [<0.001], Df = 451	

TABLE 6 ANOVA and mixed ANOVA results for light for all three dependent variables.

^aSome outliers were identified for environmental efficacy scores in the following studies: Study 2 (n = 4), Study 3 (n = 4), Study 4b (n = 4), Study 5 (n = 5). These were removed from the analysis for that specific dependent variable only. *p < 0.05, **p < 0.01.

Variable	Belonging		Self-efficacy		Environmental efficacy ^a	
Study	ANOVA ρ, (F), [ηg2]	Significant interactions	ANOVA ρ, (F), [ηg2]	Significant interactions	ANOVA ρ, (F), [ηg2]	Significant interactions
1	0.497, (0.46), [0.0006], Df = 271	Gender × Rep {<0.001***, (17.605), Df = 264, [0.024]}	0.711, (0.14), [0.0002], Df = 271	Gender × Rep {0.011**, (6.586), Df = 264, [0.008]}	0.006**, (7.61), [0.005], Df = 271	Gender × Race × Edu × Rep {0.038*, (4.366), Df = 264, [0.003]} Race × Rep {0.04*, (4.263), Df = 264, [0.003]}
2	0.525, (0.41), [<0.001], Df = 286	Edu × Rep {0.008**, (7.104), Df = 279, [0.005]} Gender × Rep {<0.001***, (31.218), Df = 279, [0.023]} Gender × Edu × Rep {<0.001***, (16.102), Df = 279, [0.012]}	0.983, (0.00), [0.00], Df = 286	Gender × Rep {<0.001***, (26.429), Df = 279, [0.021]} Gender × Edu × Rep {<0.001***, (13.007), Df = 279, [0.011]}	0.546, (0.37), [0.00], Df = 282	Edu × Rep {0.004**, (8.652), Df = 275, [0.004]}
3	0.965, (0.002), [<0.001], Df = 479	Gender × Rep {<0.001***, (16.523), Df = 466, [0.009]} Race × Rep {0.019*, (5.526), Df = 466, [0.003]}	0.907, (0.014), [0.0000079], Df = 479	Gender × Rep {<0.001 ^{***} , (12.748), Df = 466, [0.007]}	0.576, (0.313), [0.0000785], Df = 475	Gender × Rep {0.002**, (9.420), Df = 462, [0.002]}
4a	<0.001***, (39.917), [0.010], Df = 437	Gender × Rep { 0.003^{**} , (8.932), Df = 417, [0.002]} Race × Rep { 0.028^{*} , (4.886), Df = 417, [0.001]}	<0.001***, (27.770), [0.005], Df = 437	Race × Rep {0.012*, (6.397), Df = 417, [0.001]}	0.025*, (5.082), [<0.001], Df = 437	No significant interactions found
4b	0.006**, (7.756), [0.018], Df = 424	Gender × Rep {0.037*; (4.399), Df = 355, [0.012]}	0.004**, (8.333), [0.019], Df = 424	No significant interactions found	0.103, (2.672), [0.006], Df = 424	No significant interactions found
5	0.417, (0.659), [0.001], Df = 456	No significant interactions found	0.517, (0.420), [<0.001], Df = 456	No significant interactions found	0.231, (1.442), [0.003], Df = 451	Gender × Race × Rep {0.028*, (4.886), Df = 393, [0.012]}

TABLE 8 ANOVA and mixed ANOVA results for representation for all three dependent variables.

^aSome outliers were identified for environmental efficacy scores in the following studies: Study 2 (n = 4), Study 3 (n = 4), Study 4b (n = 4), Study 5 (n = 5). These were removed from the analysis for that specific dependent variable only. *p < 0.05, **p < 0.01.