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Dynamics of urban development 
patterns on thermal distributions 
and their implications on water 
spread areas of Vellore, Tamil 
Nadu, India
D. R. Manjunath  and P. Jagadeesh *

School of Civil Engineering, Vellore Institute of Technology, Vellore, India

Recent satellite maps have reported that India is experiencing extreme heat waves, 
surpassing even Middle Eastern countries. This study addresses a critical gap in 
understanding how land use land cover (LULC) changes impact land surface 
temperature (LST), urban heat intensity (UHI), and water spread area (WSA) in 
rapidly growing cities such as Vellore and Katpadi over three decades (1997–2024). 
We used Landsat thermal bands and the support vector machine (SVM) algorithm 
to investigate LULC and LST patterns, examining the effects of urbanization and 
water body reduction on local climate dynamics. The LULC results showed an 
increase in built-up lands from 5.89 to 25.89%, while zooming water areas shrank 
from 3.15 to 1.02%. LST showed a significant increasing trend, with temperatures 
for water bodies and vegetation ranging from 17.4°C to 26°C, and for barren and 
built-up areas from 28°C to 42.6°C. The results of the multivariate analysis revealed 
a positive correlation between LST and the Normalized Difference Built-up Index 
(NDBI) and negative correlations between LST and the Normalized Difference 
Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), and the 
Modified Normalized Difference Water Index (MNDWI). Moreover, spatial and time 
series analyses of WSAs indicated a significant increase in LST. Furthermore, a 
strong negative correlation was found between WSA and LST, with a 10% decrease 
in WSA potentially increasing LST by 0.12°C to 0.55°C in surrounding regions. 
This study offers important contributions to improving land use policy and water 
resource management in urban areas, while addressing environmental concerns 
related to rising temperatures. The findings underscore the urgency of mitigating 
heat impacts and managing water resources in rapidly expanding cities. Our results 
provide valuable insights for policymakers and practitioners aiming to develop 
more sustainable, resilient, and livable urban environments.
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1 Introduction

Climate change and urbanization are crucial concerns for developing cities. By 2030, over 
5% of the global population may experience heat waves under representative concentration 
pathway (RCP) 8.5, with an increase in daylight hours, potentially reducing global GDP by 2.5 
to 4.5% (Woetzel et al., 2020; Woetzel, 2020). According to the National Oceanic and Atmospheric 
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Administration (NOAA), current temperature comparisons with 
20th-century maps show that both warmer and colder regions are 
experiencing rising temperatures (NOAA, 2024). The Ministry of Earth 
Science (MOES) has reported that greenhouse gases (GHGs) are 
contributing to temperature increases, which are further exacerbated by 
aerosol emissions and land use/land cover (LULC) changes (Bayode and 
Siegmund, 2024; Govt. of India, n.d.). Satellite-based projections 
indicate that by 2030, 67% of Tamil Nadu’s population will reside in 
cities, with a predicted overflow of 27.41% into municipalities (Deccan 
Chronicle, 2019). These demographic shifts highlight the need to 
understand how urbanization affects local climates. A study by Christian 
Medical College (CMC, n.d.) found that heat-related diseases, 
particularly those involving multiple organ dysfunction syndrome 
(MODS), resulted in an 11% mortality rate among patients hospitalized 
in the region over two decades (Ninan et al., 2020).

Previous studies have identified that factors have affected LST in 
Vellore, such as urban growth, climate change, terrain, LULC, CO2 
pattern, blue and green spaces, built-up LST, temperature, and vegetation 
(Ghosh and Porchelvan, 2018; Mustafa et  al., 2017; Yuvaraj, 2020). 
However, these studies have often focused on shorter timeframes in 
analyzing LULC, LST, and NDVI. The extraction of LULC classification 
is essential for understanding the different land use area types (IIRS, 
2016). Integrating indices like NDVI, NDWI, and NDBI enhances the 
land features to understand environmental dynamics (Makumbura et al., 
2022; Santhosh and Shilpa, 2023). The LST represents the average ground 
temperature measured at pixel scale using thermal remote sensing 
algorithms (IIRS, ISRO, 2017; Li et al., 2023). The urban heat island (UHI) 
effect poses a significant environmental challenge (Bagyaraj et al., 2023; 
Al Shawabkeh et al., 2024). For example, studies have shown that UHI 
causes uneven exposure to higher temperatures in major U.S. cities (Hsu 
et al., 2021), exacerbates air pollution, increasing ozone concentrations by 
up to 20% in cities (Fallmann et al., 2016; Piracha and Chaudhary, 2022), 
and contributes to heat-related mortality (Jain, 2023; Das et al., 2023). 
Remote sensing tiles have proven to be highly successful and accurate for 
examining LULC and LSTs in urban climate areas (Ahmed et al., 2024; 
Khan et al., 2021). LULC and LST are utilized for diverse applications such 
as analyzing vegetation proportion (Tran et al., 2017), understanding 
seasonal variations (Saha et  al., 2024), future prediction (Kafy et  al., 
2021a), investigating material properties like basalt, which generates less 
heat (Faragallah and Ragheb, 2022), and tourism heat footprint (Bhagat 
and Prasad, 2024; Kafy et  al., 2021b; Xu et  al., 2023). Therefore, 
incorporating LULC and LST considerations should be informed prior to 
the urban planning community to ensure sustainable development.

Water and vegetation are significant blue and green patches on 
maps. Blue and green spaces, particularly, denote aquatic bodies that 
offer excellent heat resistance and cool surrounding regions, allowing for 
better adaption to climate change and enhancing resiliency (Jeppesen 
et al., 2014; Khan et al., 2019; Li et al., 2022). Thus, the cooling advantages 
of water spread areas (WSAs) are crucial for reducing air temperature for 
future urban expansion. However, studies quantifying the effect of WSAs 
on microclimate are minimal. Various surface conditions also influence 
temperature fluctuations (Murakawa et  al., 1991; Reavilious, 2024). 
Further, the cooling effects of water bodies can vary with geometry and 
surrounding landscape features (Du et al., 2016; Lin et al., 2020; Cai et al., 
2018; Theeuwes et al., 2013). Therefore, spatiotemporal analysis yields 
more specific insights into changes in LST related to WSAs.

Recent research has increasingly focused on the impact of LULC 
changes on LST and the UHI effect. For example, Mahata et al. (2024) 

demonstrated that urban expansion in the new town of Kolkata 
significantly increased LST due to poor ecological status. Similarly, 
Tiwari and Kanchan (2024) observed that the influence of built-up 
areas significantly increased min, max, and mean temperatures, 
suggesting that maintaining water bodies and vegetation cover is 
crucial for mitigating LST issues in Varanasi, India. In the context of 
Vellore, Rubeena and Tiwari (2022) noted that LST has attained the 
highest levels in the built-up. Malarvizhi et al. (2022) reported urban 
areas expanding rapidly to adjacent agricultural and vegetation lands.

Understanding the complex interactions between LULC, LST, and 
WSAs is critical for the development of effective urban planning strategies, 
particularly in rapidly urbanizing regions like Vellore. Vellore is a semi-
arid area with high temperatures, urbanization, and variable rainfall. It has 
become Tamil Nadu’s third most populous district, known for its 
prestigious medical and technological institutes, rich cultural heritage, 
and booming industrial sector. This region’s unique blend of urban and 
rural landscapes necessitates a comprehensive approach to studying 
climate change. Unlike previous studies that have focused on either LULC 
or LST and applications, this research integrates these factors with a focus 
on WSAs, offering novel insights into their combined effects on urban 
microclimates. By employing multivariate analysis, this study introduces 
new methodologies and insights into long-term urban climate dynamics.

This study examined Vellore’s dynamic characteristics and 
influencing changes in LULC and LST over nearly three decades (1997, 
2005, 2010, 2015, 2020, and 2024). Specifically, the objectives are as 
follows: (1) To utilize a radiative channel algorithm method to retrieve 
brightness values in urban thermal environments to analyze LST. (2) To 
explore the land use land cover change (LULC) over time. (3) To employ 
multivariate methods to investigate changes in LST by using random 
points and indices such as the Normalized Difference Vegetation Index 
(NDVI), the Normalized Difference Built-Up Index (NDBI), the 
Normalized Difference Water Index (NDWI), and the Modified 
Normalized Difference Water Index (MNDWI). (4) To predict the 
changes in water spread area (WSA) and their impact on LST over 
specified years, understanding how landscape elements impact LST and 
how each entity responds is necessary for informed urban planning.

2 Materials and methods

2.1 Study area

Tamil Nadu is located near the extreme southern tip of the Indian 
subcontinent and includes the city of Vellore (Figure  1), which is 
recognized as a “smart city.” Vellore lies between latitudes 12° 15’ N 
and 13° 15’ N and longitudes 78° 20′ E and 79° 50′ E. The city 
experiences a Tropical Savanna climate, also known as Tropical wet 
and dry (Aw) (Beck et al., 2018; Köppen, n.d.). The city climate is dry 
or hot (≥40°C) throughout the year. The humidity fluctuates between 
40 and 86%, and Vellore’s total land mass is 466.52 km2, while Katpadi’s 
land mass is 274.66 km2. The UV radiation index ranges from high to 
extreme counts (6–12) (Tutiempo.net, n.d.; UV, 2024b; UV, 2024a). 
The Palar River basin intersects this district. The terrain varies with a 
high elevation of 882 m and a low of 153 m above MSL. This region has 
an average rainfall of 1034.3 mm (IMD, n.d.). The tanks like Saduperi 
Lake, Thorapadi Lake, Kavanoor Lake, Kalinzur Lake, Dharapadavedu 
Lake, and Otteri Lake are frequently dry; some are at dead storage 
levels and overgrown with brushes and vegetation (Ghosh and 
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Porchelvan, 2018; Vellore CCBN, n.d.). Vellore had a population of 
696,110 in 2011, whereas Katpadi had 391,100. The principal land use 
area consists of built-up, agricultural, commercial, and industrial 
areas, with an additional 33.90 hectares (3.22%) of the area reserved 
for water bodies (SCMG, 2015; TNUIFSL, 2006; IRIS Cheng, 2021).

2.2 Data acquisition

Data were collected using publicly available geographic datasets. 
The primary data source was the United States Geological Survey 
(USGS). These sites supplied Geo TIFF-format files for 1997, 2005, 
2010, 2015, 2020, and 2024. Data accuracy was ensured by using only 

tiles with 0% cloud cover. Table 1 summarizes the individual satellite 
datasets used in this study. The methodological flow is depicted in the 
Supplementary Figure S1.

2.3 Land use land cover classification

Land-based classification is an essential element in LULC preparation. 
Landsat 8 and 5 imagery from the USGS Earth Explorer1 were analyzed 

1 https://earthexplorer.usgs.gov/

FIGURE 1

Study area map of Vellore & Katpadi.

TABLE 1 Satellite datasets were used in this study.

Data Resolution Year Path/Row Ellipsoid Image acquisition Source Link

Landsat 8

OLI/TIRS C2 L1

30 m 2024

2020

2015

143/051 WGS84 03-03-24

24-03-20

27-02-15

USGS explorer https://earthexplorer.

usgs.gov/

Landsat 5

TM C2 L1

30 m 2010

2005

1997

143/051 WGS84 09-02-10

15-03-05

09-03-97

USGS explorer https://earthexplorer.

usgs.gov/

Administrative 

boundary

NA 2023 India WGS84 11-11-2023 Survey of India https://surveyofindia.

gov.in/
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using ArcGIS 10.8.2 software for 1997, 2005, 2010, 2015, 2020, and 2024. 
A supervised image classification strategy using the Support Vector 
Machine (SVM) algorithm was used to classify LULC into seven 
categories: water bodies, flooded regions, built-up areas, barren lands, 
agricultural lands, rangelands, and vegetation. The classification was 
based on FAO guidelines (Anderson et al., 1976) and FAO standards 
(FAO, 2000), with statistical information in Supplementary Table S1.

2.3.1 Accuracy assessment
Accuracy assessment is the most significant factor in the reliability 

of LULC classification. It estimates the precision of LULC maps by 
comparing the classified results with reference data. In the study, 100 
points were randomly selected to prepare the confusion matrix. 
We employed a comprehensive accuracy assessment framework to 
calculate the kappa coefficient, overall accuracy, producer’s accuracy, 
and user’s accuracy in constructing a confusion matrix.

2.4 Land surface temperature

LST was estimated using thermal bands (Bands 10 and 11) from 
the Landsat series (Rahman et  al., 2022). Steps 1 to 6 provide a 
complete evaluation of the LST for Landsat 8 for 2024, 2020, and 2015. 
Steps 7 & 8 cover the LST for 2010, 2005, and 1997, respectively 
(USGS, 2019; EROS, 2020).

Step 1: Earth Radiation Budget (ERB) Radiance for Landsat 8.
The brightness of the Earth’s radiation refers to the 

surface’s spectral radiance at a specific wavelength. The brightness 
value is expressed in watts per meter squared per steradian 
per micrometer.

 ERB L cal L iL M Q A Oλ = × + −  (1)

where:

LλERB = ERB spectral radiance (Watts/(m2 * sr * μm)).
ML = Band-specific multiplicative rescaling factor.
AL = Band-specific additive rescaling factor.
Qcal = Quantized calibrated pixel values (DN).
Oi = Correction value.
Step  2: Calculation of the Top of Atmosphere Brightness 

Temperature (ABT) Landsat 8.
Thermal data were converted from spectral radiance (Equation 1) 

to top-of-atmosphere brightness temperature using thermal 
constant values.

 

2 273.15
1 1

ERB

Kü
KIn

Lλ

= −
 + 
   

(2)

where:
ABT = Top of atmosphere brightness temperature (Kelvin (K) to 

Celsius (°C)).
K1, K2 = Band-specific thermal conversion constant (Plank’s 

radiation constant).
Step  3: Calculation of the normalized difference vegetation 

index (NDVI).
The NDVI is a standardized vegetation index estimated from 

visible red and NIR bands reflected by greenery.

 
NIR REDNDVI
NIR RED

−
=

+  
(3)

where:
RED = RED band (ρBand 4).
NIR = Near-infrared band (ρBand 5).
Step 4: Calculation of the land surface emissivity (LSE).
It indicates emissivity from the ground surface and a combination 

of diverse entities (soil, vegetation, water, rock, and so on). The surface 

FIGURE 2

LULC change statistics for all classes from 1997 to 2024.
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emissivity was calculated from NDVI values of Equation 3 and the 
greenness of land surfaces (Khan et al., 2022; Sajib and Wang, 2020).

 

( )
( )

2
MINI

MAXI MINI

NDVI NDVI
PV

NDVI NDVI
 −

=   −   
(4)

Step 5: Calculation of the surface emissivity “ε”.

 00.00 84 üPVε = × +  (5)

where:

ε = Land surface emissivity.
PV = Magnitude of vegetation.
Step 6: Calculation of land surface temperature (LST).
The LST is the ratio of the radiative temperature reflected from a 

surface to the radiation from an ideal black surface area at a similar 
temperature. It is retrieved from Equations 2, 4, 5.

 

( )ln
1

2

ABTLST
ABT
C

ε
λ

= ×
 + × 
   

(6)

where:
λ = Wavelength of emitted radiance.

FIGURE 3

LULC classification of Vellore & Katpadi for (A) 1997, (B) 2005, (C) 2010, (D) 2015, (E) 2020, and (F) 2024.
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C2 = Planks radiation constant in mK (milli kelvin).
Step 7: LST Calculation of the Digital Number to Radiance (R) for 

Landsat 5:
The Landsat 5 dataset with thermal band number 6 was used to 

determine LST for 1997, 2005, and 2010 (EROS center, 2020).

 

Lλ λλ λ
 − − = +  −   

LMAX LMIN QCAL ERB LMINQCALMINQCALMAX QCALMIN  
(7)

where:
QCAL = Quantized calibration pixel value in DN.
LMAXλ = Spectral radiance scaled to QCALMAX in Watts/(m2 * 

sr * μm).
LMINλ = Spectral radiance scaled to QCALMIN in Watts/(m2 * 

sr * μm).
QCALMIN = Minimum quantized calibrated pixel value in DN.

QCALMAX = Maximum quantized calibrated pixel value in DN.
Step 8: Calculation of Radiance to Brightness Temperature using 

Equation 7 for a Landsat 5 (USGS and EROS, 2003).

 

2 273.15
1 1

ERB

KT
KIn

Lλ

= −
 + 
   

(8)

where:
T = Satellite temperature in degrees.
K1, K2 = Calibration constant.

2.5 Calculation of the urban heat island 
and SUHI intensity

The UHI is calculated using LST (Equations 6, 8) data:

FIGURE 4

Temporal variation in the normalized difference vegetation index (NDVI) in the study area (A), 1997 (B), 2005 (C), 2010 (D), 2015 (E), 2020, and (F) 2024.
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LST LSTmUHI

SD
−

=
 

(9)

where:
LSTm = The mean temperature of the land surface temperature.
SD = Standard deviation.

2.6 Timeseries, correlation, and regression 
analysis

Spearman’s coefficient of multivariate correlation was used to 
assess the correlations between LST and indices such as NDVI, 
NDBI, NDWI, and MNDWI (Khan et al., 2019; Laerd, 2024). All 
statistical computations were performed using JMP Pro software and 
MS Excel (Jmp, 2024). The correlations are represented via scatter 

plots and color heat maps. Time series analysis and regression 
coefficients were used to analyze the trend in the interaction effect of 
WSAs on LST.

3 Results and discussion

3.1 Temporal variation in land use patterns

The graphical representation of LULC change is shown in 
Figure 2, illustrating the rise and drop with yearly classified LULC 
patterns. The summary statistics for the estimated percentage of area 
trends of each LULC type are shown in Supplementary Table S2.

The LULC classification maps of Vellore and Katpadi for 1997, 
2005, 2010, 2015, 2020, and 2024 are given in Figure 3. The overall 
water bodies reduced from 3.17% in 1997 to 1.12% in 2024, indicating 

FIGURE 5

Normalized difference built-up index (NDBI) temporal variation in the study area for (A) 1997, (B) 2005, (C) 2010, (D) 2015, (E) 2020, and (F) 2024.
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severe water loss. Most of the water-surrounded banks, drylands, and 
surroundings have diminished. Figure 3 shows the decrease in water 
bodies in Vellore, especially in the southwest part of Vellore and the 
northeast parts of Katpadi. Built-up lands increased five times between 
1997 and 2024 (Figures 2, 3) as the population increased by 2.30 times, 
significantly impacting the expansion of built-up areas (UN, 2024). 
The built-up expansion has progressively increased along the key 
national highways, along the banks of the Palar River, in the flooded 
area, and around the region of Vellore & Katpadi.

The agricultural area was 30.57%, and the vegetation was 27.22%, 
accounting for the most significant proportion of the study area covered 
in 1997. The conversion of agricultural land to barren land indicates a 
shift in land use patterns, suggesting a potential change in dependency 
on seasonal crops or a transition to dryland farming practices. The 
range dense cover area spotted by 50% decreased from 1997 to 2024 in 
the southeastern and northern regions, which is not a good sign for 
natural habitat. The possibility of change in the river belt shows that 

3.16% of flooded areas were developed along the banks of the river. The 
imbalanced mix of pixels can also be seen in all classifications.

Considering all land use classifications, it indicates a significant 
shift towards urbanization, with a corresponding decline in water 
bodies and vegetation. Losing water bodies and vegetation cover can 
exacerbate climate change water quality and reduce air quality and food 
security. The trend of a rapid expansion of built-up areas can lead to 
pressure on the ecosystem. The observed changes in vegetation and 
agriculture changes have confirmed the trends observed by Ghosh and 
Porchelvan (2010) and Tiwari and Kanchan (2024) These findings must 
be crafted for sustainable land use practices, potential conservation 
efforts or land management practices, and climate change.

3.2 Accuracy assessment

This accuracy assessment of the LULC maps was conducted 
using 100 random points. These points were cross-referenced 

FIGURE 6

Temporal variations in the normalized difference water index (NDWI) in the study area (A) 1997, (B), 2005, (C) 2010, (D) 2015, (E) 2020, and (F) 2024.
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with ground truth points using Google Earth Pro. The assessment 
involved analyzing producer accuracy and user accuracy with the 
help of a confusion matrix for individual time periods. The 
ground truth points were evaluated based on physical observation 
and Earth Pro data (Kafy et al., 2021b; Rahman et al., 2022; Khan, 
2021). The assessment revealed an overall accuracy of 83% in 
1997, 73% in 2005, 78% in 2010, 76% in 2015, 83% in 2020, and 
92% in 2024. The kappa coefficient values were 0.78, 0.65, 0.72, 
0.7, 0.78, and 0.89 for the respective years. The user accuracy 
was 60–100% for water areas and built-up areas 79.5–100.0%. 
The result of producer accuracy was above 71% for all classes 
except flooded areas and vegetation. These results indicate that 
the accuracy of the LULC maps was above average and of 
high quality.

3.3 Land coverage: NDVI, NDBI, NDWI, and 
MNDWI

3.3.1 NDVI
The NDVI is said to be a numerical index used to evaluate a 

region that has live green vegetation using the spectrum ranging from 
+1 to-1, where values range from-1 to 0 indicate lower green (dry or 
stressed vegetation), and + 1 indicates denser green vegetation (Cai 
et al., 2018; Feng et al., 2019).

Figures 4A,B reported the maximum value of 0.9 to 0.6 NDVI 
range from 1997 to 2005, indicating an area with a good amount of 
healthy, denser vegetation. Subsequently, values decreased slightly 
from 0.54  in 2015, 0.55  in 2020, and 0.52  in 2024, proving that 
vegetation density declined over a period of time (Figure 4).

FIGURE 7

Temporal variation in the modified normalized difference Water index (MNDWI) in the study area (A) 1997, (B) 2005, (C) 2010, (D) 2015, (E) 2020, and 
(F) 2024.
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3.3.2 NDBI
The NDBI is a numerical index used to identify the built-up 

presence or an artificial structure based on the reflectance of 
shortwave and near-infrared waves, with values ranging from +1 
to-1, where +1 indicates the density of buildings and-1 to 0 
indicate the natural features in a region (Addas, 2023; Yang 
et al., 2023).

Figure 5A shows an NDBI value of 0.34 in 1997, indicating a 
low density of built-up areas. Figure 5D shows that the maximum 
value increased to 0.56  in 2015, reflecting a return to a high 
built-up density. Figure  5F shows a maximum NDBI value of 
0.62  in 2024, indicating the changes after the COVID-19 
pandemic (Cov-2, 2023). A detailed observation reveals that 
built-up pixels are generally mixed with barren and agricultural 
land, with greater differences noted between 2005 and 2015 due 
to limitations in resolution (Figures 5B,C,E).

3.3.3 NDWI
The NDWI detects water presence by near-infrared absorbance 

and mid-infrared reflectance. The NDWI value ranges from-1 to +1, 
with-1 indicating water stress areas and 1 indicating more water pixels 
or the presence of water bodies (Feng et al., 2019; Tan et al., 2020).

The changes in water bodies over time are represented in 
Figures 6A,B, with the maximum NDWI range of 0.5 indicating a 
relatively greater presence of water in 1997. Figure 6F shows an NDWI 
value of 0.2 in 2024, indicating a small presence of water in the lakes 
after 2015. The fluctuation of water changes from 1997 to 2024 is 
verified with the global water occurrence change intensity dataset 
from 1997 to 2023 (JRC, 2024; Pekel et al., 2016).

3.3.4 MNDWI
This index is a modification of NDWI, which uses green and 

shortwave infrared bands to enhance the water concentration. A 

FIGURE 8

LST spatial–temporal variations in °C (A) 1997, (B) 2005, (C) 2010, (D) 2015, (E) 2020, and (F) 2024.
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positive 1 indicates a water feature, whereas zero or negative values 
imply vegetation or soil (Xu, 2006).

Figure 7A shows that the maximum MNDWI value of 0.49 was 
moderate in 1997. As a result, the value is reduced to 0.37, which can 
be absorbed in 2024. The reflectance value shows fewer green pixels 
surrounding water bodies in lake areas due to the enhancement of the 
green band.

3.4 Land use and land cover interaction 
with land surface temperature

Thermal sensors are used in LST extraction (Das et al., 2020; Zhao 
et  al., 2023). Various LULC classes were covered: water bodies, 
vegetation, built-up areas, barren land, dense vegetation, flooded land, 
and agricultural land. Figure 8 shows the temporal LST patterns for 
1997, 2005, 2010, 2015, 2020, and 2024.

The LST patterns in Figure 8 show that water bodies and range-
dense vegetation cover exhibited lower temperatures ranging from 
17.4°C to 26°C. This cooling effect is attributed to the water’s high 
absorbance and cooling influence on air temperature, commonly 
referred to as blue spaces (Deng et al., 2018; EPA, 2014; WMP, 2023). 
Dense vegetation similarly showed lower temperatures due to the 
process of evapotranspiration. In contrast, barren land and flooded 
area zones exhibited higher LSTs ranging from 28°C to 42.6°C.

Agricultural lands experienced temperature fluctuations from 
20.1°C to 29°C, which can be explained by the variability of seasonal 
crops and farming practices. Built-up areas showed LSTs ranging from 
27.8°C to 42.6°C, which is indicative of the Urban Heat Island (UHI) 
effect caused by the retention of heat on surfaces. LST results reported 
in Figure 8 are closely comparable with air temperature data for the 
years 1997, 2010, 2020, and 2024 are verified with the German 

FIGURE 9

Urban heat intensity (UHI) of temporal patterns in °C (A)1997, (B) 2005, (C) 2010, (D) 2015, (E) 2020, and (F) 2024.
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Weather Service (DWD) and European Centre for Medium-Range 
Weather Forecasts (ECMWF) model data (Ventusky n.d.).

Climate change and land use practices have influenced the 
observed temperatures from 1997 to 2024. A gradual increase in 
LST during the period highlights the importance of considering 
regional factors and temporal scales in LULC and LST analyses 
(Rubeena and Tiwari, 2022; Tiwari and Kanchan, 2024). Notably, 
the maximum LST values reported for built-up areas in Vellore by 
Rubeena and Tiwari (2022) closely align with our findings for 
built-up and barren land. Effective land management strategies 
focusing on increasing vegetation cover, preserving water bodies, 
and implementing sustainable urban planning could help mitigate 
rising temperatures and enhance cooling effects in urban 
landscapes. Figure  8 reveals a decrease in blue and green areas 
(representing water and vegetation) and an increase in dark red and 
light yellow areas, indicating a reduction in vegetation and an 
associated rise in LSTs.

3.5 LST and UHI

UHIs were extracted using urban and nonurban LST comparison 
methods (Feng et al., 2019). Figure 9 shows the spatial distribution of 
the UHI impact calculated using Equation 9 for 1997, 2005, 2010, 
2015, 2020, and 2024. In 1997, the distribution of the UHI impact was 
significantly less. A temperature drop was also observed, particularly 
around dense vegetation and water bodies (shown in blue pixels 
in LST).

However, from 2005 to 2020, water bodies experienced an increase 
in the LST, resulting in an influence on the UHI effect, which might 
be due to the shift of water to other classes. Between 2020 and 2024, the 
study indicates that the warming trend will vary with rapid urban 
pointing areas. Unlike the results by Mahata et al. (2024), an increase 
in UHI and hotspots is observed. Figure 9 shows how UHIs and LSTs 
influence land cover changes, particularly near built-up areas, water 
bodies, and dense rangelands. The consistent rate of UHI from 2020 to 
2024 may have resulted in post-pandemic adjustments, progressive 
SDGs (SDG, 2022; SDR, 2022), and smart city missions (SCMG, 2015).

3.6 Modeling relationships between the 
NDVI, NDWI, MNDWI, NDBI, and LST

An assessment of the correlation between indices, namely, the 
NDVI, NDWI, MNDWI, and NDBI, over LST through the integration 
of a multivariate correlation investigation is needed. The indices were 
used as independent variables (predictor variables), with the LST as 
the dependent variable (response variable). Statistical relationships 
derived from the Landsat series data explorer using JMP Pro.

Following Mustafa et al. (2020), we quantitatively attempted to 
explain the LST variation by selecting a point over the study area, as 
shown in Figure 10. Moreover, 100 random points were analyzed 
while covering all the perspective classes. All georeferenced points 
(longitude, latitude) and LSTs were decoded with the NDVI, NDBI, 
NDWI, and MNDWI values extracted using ArcGIS 10.8 from 1997, 
2005, 2010, 2015, 2020, and 2024.

The differences in the LST and subsequent indices (NDVI, NDWI, 
NDBI, and MNDWI) were examined to determine the dependency of 

LST. The Spearman’s correlation coefficients were calculated to 
evaluate the relationships. The scatter plots of the NDVI vs. LST, NDBI 
vs. LST, NDWI vs. LST, MNDWI vs. LST, NDBI vs. NDVI, and NDBI 
vs. NDWI are presented in Figure 11, where the assigned correlation 
attributes are indicated by color plots representing the level 
of correlation.

The monotonic correlation between the NDBI and LST with 
95% confidence intervals had Spearman’s ρ values of 0.78 for 1997, 
0.39 for 2005, 0.73 for 2010, 0.47 for 2015, 0.55 for 2020, and 0.62 
for 2024, respectively, as shown in Figure 11. The aforementioned 
values indicate a positive relationship between built-up areas 
and LST. The NDVI and LST correlate with-0.37 for 1995, −0.31 
for 2005, −0.65 for 2010, −0.29 for 2015, −0.35 for 2020, and 
−0.19 for 2024. From 1997 to 2024, reflecting the inverse 
relationship between NDVI and LST. Similarly, Spearman’s 
coefficients of the water indices were 0.05 for 1997, −0.16 for 2005, 
−0.46 for 2010, −0.02 for 2015, 0.07 for 2020, and −0.11 for 2024. 
These values indicate a variable relationship between water bodies 
and LST, with some years showing a weak cooling effect. The 
Spearman’s coefficients of the modified differences water indices 
were-0.60, −0.42, −0.64, −0.53, −0.60, and −0.70 for years 1997 
to 2024. These consistently negative correlations suggest that 
larger or healthier water bodies will tend to lower land 
surface temperatures.

The NDVI and NDBI were negatively correlated. The NDVI, 
NDWI, and MNDWI were strongly correlated from 1997 to 2010 and 
moderately correlated from 2015 to 2024, reporting the changing 
influence of LST over time.

FIGURE 10

Distribution of sampling points in the study area in °C.
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4 Interaction of temperature on the 
water spread areas

Climate change has led to a global decline in water bodies, 
highlighting the need to investigate the impact of LST on water 

indices to identify cooling strategies. The gradual shrinkage of 
lakes is a pressing global issue attributed to both natural factors 
(humidity, precipitation) and human activities (Zhang et al., 2018; 
Yang et al., 2023). Figure 12 shows the selected lakes (Saduperi, 
Kalainjur, Dharapadavedu, and Thorapadi) in Vellore and Katpadi 

FIGURE 11

Showing the multivariate correlation indices LST, NDBI, NDVI, NDWI, and MNDWI from (A) 1997, (B) 2005, (C) 2010, (D) 2015, (E) 2020, and (F) 2024.
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that experienced LST changes. To understand the effect of WSA on 
regional climate, we conducted a periodic assessment of WSAs and 
LST spatial variability in the study area from 1997 to 2024. The 
consistent decline in WSAs in the region is a significant concern, 
necessitating an assessment to understand changes in WSAs and 
LST. Figure 13 illustrates the spatial patterns of LULC with the 
WSA of lakes and their interaction with the LST over the respective 
years across the study area.

The spatial analysis of LULC and LST for 1997, 2005, 2010, 
2015, 2020, and 2024 demonstrates an unpleasant trend in lake 
degradation, as seen in Figure 13. The WSA started sinking after 
1997, followed by a linear decrease from 2005 to 2024. This reflects 
that the WSAs shift from blue to yellow and red over the time 
period. This decline is accompanied by an increase in temperature 
pressure on WSAs, which is evident from the increase in LST, 
which indicates a strong trend with lake encroachment. Notably, 
the lakes’ surroundings have transformed from a cooler 
temperature regime in 1997 to a red, high-temperature zone in 
2024, indicating a significant reduction in lake area and increased 
LST. As a result, the rise in temperature pressure on WSAs is 
visible, and additional time-series analysis is performed to validate 
the trend correlation in LST increase in lakes.

Figure 14 shows each lake’s varying time series patterns for LST 
and WSA. Time series analysis revealed a consistently strong 
negative correlation between LST and WSA in two of the four 
lakes. The R2 values indicate the proportion of variation in WSA 

explained by LST. Specifically, Saduperi Lake (ρ = −0.85, R2 = 0.73) 
and Dharapadavedu Lake (ρ = −0.95, R2 = 0.91) exhibit strong 
negative correlations, suggesting a significant inverse relationship 
between LST and WSA. In contrast, Thorapadi Lake (ρ = −0.20, 
R2 = 0.04) shows a weak correlation, indicating a negligible 
relationship between LST and WSA. Kalinzur Lake (ρ = −0.31, 
R2 = 0.10) displays a moderate negative correlation, suggesting the 
need for further statistical evidence to clarify their relationship. 
Factors like humidity, wind speed, size and number of lakes, and 
dew point can vary yearly, affecting the LST over the WSA. The 
observed trends support the hypothesis that reduced WSA is 
associated with increased temperature in two lakes, which is 
crucial for understanding the climate dynamics and environmental 
impacts. A scenario-based analysis was conducted to compute the 
predicted changes in LST under various circumstances by applying 
the regression equation (Supplementary Equation E1). From 
regression equations, a 10% reduction in the lake area is likely to 
result in an average increase in LST of 0.12°C to 0.55°C. Future 
studies should use high-resolution data and consider additional 
meteorological and climatic factors, weaker-correlated lakes, and 
seasonal variations to understand this relationship better.

The impact of Water Spread Areas (WSAs) on rising temperatures 
highlights the need for strategic ecological space planning. The study 
area, sensitive to climate change, is subject to direct UV radiation, 
variable wind patterns, and unique geographical factors, such as 
elevation and its landlocked position. These factors, coupled with 

FIGURE 12

Showing the extracted water body from Vellore & Katpadi experiencing LST°C in 2024.
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FIGURE 13

LULC maps of the corresponding LSTs of (A) Saduperi, (B) Thorapadi, (C) Kalinzur, (D) Dharapadavedu Lakes in 1997, 2005, 2010, 2015, 2020, and 2024.
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global climate change and urbanization, contribute to fluctuating heat 
intensity in Vellore. The diminishing role of water bodies and the 
reduction in dense vegetation cover further emphasize the urgent 
need for climate-resilient urban planning. The aforementioned 
discussion gist is represented in Figure 15.

5 Conclusion

The current study revealed that the interaction between LULC 
patterns and LST changes, with a particular focus on their impact on 
water bodies. The study identified significant transformations in land 
categories over nearly three decades, including an increase in built-up 
areas, a reduction in vegetation, a decrease in water bodies, and dense 
rangelands. Additionally, the study observed a reduction in dense 
vegetation as a result of expanding built-up areas. Supporting these 
findings, a strong positive correlation was found between LST and 
NDBI, while negative correlations were observed between NDVI, 
NDWI, and MNDWI. This indicates notable increases in LST 

corresponding to decreases in vegetation, water indices, and other 
natural factors.

The majority of lakes experienced a 10% reduction in area, leading 
to an average LST increase of 0.12°C to 0.55°C, with a consistent 
temperature rise over the years. As evident from the analysis, the 
reduction in water spread area has significantly impacted thermal 
distribution, primarily due to global warming. These findings carry 
important implications for urban planning and water resource 
management, emphasizing the urgent need to conserve and protect 
water bodies to mitigate the effects of global warming. To address the 
impact of LULC changes and global warming on water bodies, 
we recommend the following:

 • Implementing zoning regulations to protect lake shorelines and 
surrounding wetlands.

 • Creating new water bodies and restoring degraded wetlands in 
the region.

 • Educating local communities about the importance of water 
conservation and sustainable land use practices.

FIGURE 14

Time series analysis of WSA vs. LST of (A) Saduperi, (B) Thorapadi, (C) Kalinzur, (D) Dharapadavedu lakes.
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 • Investing in climate-resilient infrastructure, such as green roofs 
and permeable pavements, in urban areas surrounding the lakes 
of Vellore.

 • Supporting ongoing research and monitoring of land use changes 
and water quality in the lakes.
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