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Pedestrians are the most victimized group in traffic accidents, and this has raised 
concerns about pedestrian safety in urban Ethiopia. The aim of this study is to 
determine the factors that affect pedestrian safety in Addis Ababa city Roads. 
This study employed a concurrent mixed-methods research method and an 
explanatory research design. Perception-based pedestrian safety data was collected 
from respondents’ key informants and personal observation. Exploratory factor 
analysis was employed to identify significant variables. Besides, the fitness of each 
variable was evaluated under the assumption of ordinal logistic regression, and 
the effect size of significant variables was determined using the odds ratio. The 
result indicates pedestrians are 0.065, 0.181, 0.296, 0.324, 0.289, 0.306, 0.038, 
and 0.193 times less likely to be safe due to narrow sidewalk width, poor sidewalk 
and footpath pavement comfort, inclusivity problems of sidewalks and footpaths, 
illegal vehicle parking, street vending, fast vehicle speed, and absence of traffic 
signs and lights, respectively. Consequently, the use of ordinal logistic regression 
offers a practical and effective means of determining pedestrian safety factors. 
Better pedestrian facilities should be constructed by considering pedestrian flow 
and diversity. Besides, the concerned body should provide spaces for street vendors 
and car parking and enforce traffic rules in the appropriate system to control 
vehicle speed.

KEYWORDS

pedestrian safety, pedestrian, ordinal logistic regression, exploratory factor analysis, 
pedestrian perception

1 Introduction

Many countries across the world are experiencing transportation-related traffic accidents 
with the growth of their vehicle population and urbanization (Cabrera-Arnau et al., 2020; 
Soathong et  al., 2019; Wang et  al., 2019). The number of automobiles has increased 
substantially, which has a detrimental effect on the urban environment, raises the risk of 
accidents, and endangers public health (Alkassabany et al., 2018). As of 2020, 56 percent of 
people on the planet live in cities, and by 2050, that number is predicted to rise to 70 percent 
(UNICEF, 2022). According to this statistic, there are already more than 1 billion cars owned 
worldwide, and by 2050, that number is predicted to reach 2.5 billion (Sousains, 2011). This 
increase in the number of vehicles will increase traffic accidents problems (Welle, 2015).
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Road traffic accidents are among the major public concern on a 
global level (UNECA, 2020; WHO, 2018) and are responsible for 20 
to 50 million non-fatal injuries and for 1.35 million deaths next to TB 
and malaria (Eshetu, 2020; Grzelak et al., 2020; UNECA, 2020; World 
Bank, 2022). They are the primary cause of death for people between 
the ages of 15 and 29 and the second most common cause of death for 
kids between the ages of 5 and 14 (Alkassabany et al., 2018; World 
Bank, 2020). As per the worldwide status report on road safety 
fatalities, the following road user categories share a percentage: 36% 
for passengers, 6% for drivers, 1% for riders, 2% for bicycles, and 55% 
for pedestrians (Haile, 2018; Tulu et al., 2015a). Unfortunately, among 
such death of accident statistics reports, vulnerable road users such as 
pedestrians are becoming more involved in traffic events (Al-sahili 
and Jaber, 2019; Debnath et al., 2021; Levulytė et al., 2017; Lulie, 2019; 
Soathong et al., 2019). Consequently, one of the biggest concerns in 
traffic management is pedestrian safety, particularly in places where 
walking is the primary form of transportation.

The situation of traffic deaths strongly suffers in underdeveloped 
and developing nations (Hussain et al., 2022; Mukherjee and Mitra, 
2022; Reich and Nantulya, 2002). Over 90% of road fatalities worldwide 
are thought to occur in low- and middle-income nations (Heydar et al., 
2019; Lagarde, 2019; Mabunda et al., 2020; Peralta-Santos et al., 2022; 
Reich and Nantulya, 2002). Pedestrians, cyclists, and motorcyclists bear 
a disproportionate share of the burden of road traffic accidents when 
compared to other road users (Hussain et al., 2022; Mabunda et al., 
2020). In developing nations, most pedestrian-related traffic incidents 
take place in urban areas (Al-Majali and Imam, 2019; Fink, 2019) due 
to fast traffic growth (Erga, 2019; Taddesse, 2011), and inadequately 
maintained transportation infrastructure, ineffective traffic 
management, and an unsuitable settlement layout (Aga et al., 2021; Erga, 
2019; Hussain et al., 2022). The majority of their metropolitan road 
networks were constructed without taking pedestrian road safety into 
consideration (Heydar et al., 2019; Job, 2020; Stoker et al., 2015; Tulu 
et al., 2013a; Tulu et al., 2013b). This strongly affected the travel freedom 
of their pedestrian population and has attracted many researchers from 
diverse perspectives in bringing pedestrian friendly environments.

In Ethiopia, walking that takes the most common modality in the 
country experienced with high prevalence of road traffic accidents 
particularly in urban areas (Alemgena et al., 2018). The country’s 
urban centers have seen an increase in traffic injuries over time due to 
expansion in the number of vehicles, population, road network, and 
vehicle kilometers driven (Tulu et  al., 2013a; UNECA, 2020). An 
average of 4,732 citizens per year die on Ethiopian roads; daily, almost 
13 Ethiopians are killed in traffic accidents and never return home 
(UNECA, 2020; Vision Zero for Youth, 2021).

Pedestrians are more victimized by traffic accidents in urban areas 
than in rural surroundings (Alemgena et al., 2018; Tulu et al., 2015a; 
UNECA, 2020; World Bank, 2020) and take 33% of the traffic-injured 
victims (Vision Zero for Youth, 2021). The Ethiopian Federal Police 
Commission’s published pedestrian fatality statistics may not accurately 
reflect the true number of deaths among pedestrians in the nation 

because of issues like incomplete reporting and incorrect categorization 
of traffic fatalities (UNECA, 2020). On the polar opposite, policymaking 
and physical urban planning neglected Pedestrian safety contexts (Tulu 
et al., 2013b; World Bank, 2020). According to the World Bank report, 
88% of urban roads in the country are built without considering the 
safety of the walking population (World Bank, 2020, 2022). Urban 
planners and policymakers lack a critical consideration of the walking 
population (Galanis et  al., 2017) in enhancing pedestrian safety. 
Therefore, pedestrian safety is a contemporary challenge for large urban 
areas in the country and needs critical investigation by 
concerned groups.

Addis Ababa is the largest urban center and one of the fastest-
growing cities in Ethiopia, accounting for a quarter of the country’s 
urban population (World Bank, 2022). In the recent decade, rapid 
vehicular growth observed in the city (AAUATF, 2022; World Bank, 
2014) at the expense of a higher volume of pedestrian population and 
lower road network expansion (AACTMA, 2021; Gebresenbet and 
Aliyu, 2019; Transport Research Laboratory, 2012). In the city, walking 
shares 60–70% of the total mode of transport of the daily pedestrian 
population (AACTMA, 2021; Transport Research Laboratory, 2012). 
Besides, the city holds more than 60% of the country’s fleet volume 
(AACTMA, 2021). However, the city’s current road network fails to 
serve the fast growth of mobility demand of people and vehicles 
(Asres, 2018; Erga, 2019; Fenta, 2014) and intern resulted in deep-
rooted problems in pedestrian safety (Erga, 2019; Zewude, 2015).

According to the report of the federal police commission (2020) 
cited by Vision Zero for Youth, the city of Addis Ababa was identified 
as one of the hotspots of traffic accident areas in the country and takes 
10 and 26% of the national total traffic death tolls and injuries, 
respectively (Vision Zero for Youth, 2021). Pedestrians took the 
majority of the city’s road traffic accident burden (AACTMA, 2021; 
UNECA, 2020) and the fatal rate comparison in modality indicates 
that pedestrians were 23 times more likely to be killed than vehicle 
users (AACTMA, 2021). When measured per 100,000 persons, road 
deaths in the city have been rising over the last five years; from 2016 
to 2020, pedestrian fatalities accounted for 83% of all traffic statistics 
(AACTMA, 2021; Alemayehu et al., 2023).

The streets of Addis Ababa were designed with cars in mind, 
prioritizing vehicle flow over pedestrian safety (BIGRS, 2019; Dahir, 
2019; Fenta, 2014; MOT, 2020; Ruhama, 2022; World Bank, 2022). 
Many of the city’s streets are broad without crosswalks, sidewalks, or 
other traffic-calming amenities (UNECA, 2020). In Addis Ababa, 
pedestrians must choose between walking on the road or in the sand/
mud on the roadside, creating an extremely unpleasant experience 
(Tulu et  al., 2015a). However, the presence of a higher risk of 
pedestrian injury and fatality in Addis Ababa City has received 
increased attention in recent years, and extensive investment efforts 
have been devoted to improving pedestrian safety with various 
approaches (AACTMA, 2022).

The City Administration is now working to overcome traffic 
problems with major investments in building new infrastructural 
facilities (for walking and cycling) and awareness creation for city 
dwellers. For example, the city administration has been conducting 
“Car-Free Day” since 2019 and 16 major road sections are being 
closed once a month on Sunday to promote walking to reduce road 
accidents (AACTMA, 2022). However, the problem of pedestrian 
safety still prevails in the City and even increased in time and space 
(UNECA, 2020). As a result, researches that focus on pedestrian safety 

Abbreviations: AACRTB, Addis Ababa City Road Transport Bureau; AACTMA, Addis 

Ababa City Traffic Management Agency; AOR, Adjusted Odds Ratio; BIGRS, 

Bloomberg Initiative for Global Road Safety; MoT, Ministry of Transport; AAUATF, 

Addis Ababa Urban Age Task Force; UNECA, United Nations Economic Commission 

for Africa; UNICEF, United Nations Children’s Fund.
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in Addis Ababa City are important to explore the 
aforementioned challenges.

Determining and evaluating the variables that influence the 
likelihood of becoming engaged in a traffic incident and pedestrian 
road insecurity helps to facilitate the analysis of pedestrian road safety, 
which is necessary to reduce and offset any negative consequences 
(Grzelak et al., 2020). Decisions on raising the standard of pedestrian 
road safety can be  supported by the use of mathematical models, 
which enable the estimation of the strength and direction of this effect 
(Grzelak et  al., 2020). A popular mathematical model utilized in 
operation studies and pedestrian traffic safety is logistic regression 
(Davis and Cheong, 2019; Davis et al., 2018; Ghasemzadeh et al., 2018; 
Hamilton et al., 2021; Jang et al., 2013; Kong and Yang, 2010; Kwigizile 
et al., 2011; Park et al., 2012; Siddiqui et al., 2006).

Ordinal logistic regression is an extension of logistic regression 
employed in identifying factors of traffic safety in the last decades. 
When the dependent variable of interest is categorical and contains 
more than two categories or levels in a sensible order, it is utilized 
(Bellizzi et al., 2018). Many researchers in different parts of the world 
such as Riccardi et al. (2022) in Great Britain; Alicioglu et al. (2020), 
Liu et  al. (2019), and Pour-Rouholamin et  al. (2017) in the 
United  States; Asare and Mensah (2020) in Ghana; Zewude and 
Ashine (2016) and Bekelcho et al. (2023) in Ethiopia; Sethulakshmi 
and Mohan (2023) in India applied ordinal logistic regression for 
identifying factors associated with pedestrian safety and traffic injury. 
However, none of the studies considered the perception of pedestrians 
and were solely based on the secondary data collected from police 
and/or traffic administration offices.

Generally, pedestrian road safety issues are addressed in many 
studies throughout the world, but scholarly organized research 
regarding pedestrian safety in Addis Ababa is limited and lacks 
methodological reliability. Researchers are primarily concerned with 
pedestrian risk, and facility availability with health and environmental 
variables rather than inclining them to pedestrian safety cases. For 
example, Tulu et al. (2015b) examine the frequency of pedestrian 
crashes in Addis Ababa and determine the causes by modeling 
exposure and road environment variables. However, the risk factors 
and difficulties related to pedestrian safety were not sufficiently 
addressed in this study. Similarly, Amare (2019) also assesses the 
concern of road traffic accident factors in Addis Ababa city by taking 
the Kirkos sub-city as a focus of study. His analysis was based on the 
crash data collected from the traffic office of the city and analyzed 
using multiple linear regressions. However, his Method is unable to 
examine the contribution of each factor for pedestrian safety when 
responses are in categorical form which is okay for ordinal 
logistic regression.

Bekelcho et al. (2023) Used an ordinal logistic regression modeling 
technique to determine the determinant factors for crash severity 
levels that occurred in Addis Ababa City based on data collected from 
2017 to 2020. However, their research was based on secondary data 
which is less trustworthy than primary data that was gathered from 
several offices. It neglected to take into account pedestrians’ 
perceptions of safety, which are the major target of the issue. In 
addition to crucial elements like car speed, his study did not take into 
account street shoe shining, street selling, facility surroundings, or 
other factors.

Another researcher Alemgena et al. (2018) in his study, analyzed 
the importance of pedestrian facilities in terms of environmental and 

connectivity advantage aspects in Nekemte City, but the researcher 
could not correlate them with pedestrian road safety aspects. Besides 
Aregawi (2018) assesses non-motorized transport (NMT) road 
segments in Addis Ababa’s Bole Sub-City in terms of quality, 
accessibility, and environmental importance to understand the 
availability of NMT facilities. However, his content coverage did not 
consider the evaluation of pedestrian road safety aspects. Another 
study conducted by Eguale (2015) explores pedestrian safety problems 
and their remedial solutions in the Kirkos sub-city border. His finding 
employed an analytical hierarchical process (AHP) based method for 
pedestrian safety factor identification that makes different from the 
current study that applied ordinal logistic regression for 
factor identification.

The researcher also reviewed the work of Tufa (2019) and 
Woldeamanuel et al. (2023) who explore the impact of street vending 
on pedestrian safety in the Addis Ababa sub-city borders. However, 
their exploration was only from the perspective of street vending and 
their studies do not consider other factors which are included in this 
study that can help to understand better the concern of pedestrian 
safety. Besides, their focus was mainly on the socio-economic impact 
of street vendors rather than the concern of safety. Regardless of the 
above trial, well-organized research literature related to pedestrian 
safety and its determining factors is not available in Addis Ababa city.

Therefore, this study employed ordinal logistic regression for 
analyzing factors that determine pedestrian safety in the city of 
Addis Ababa by taking the Piassa-Bole Bridge and Megenagna-
Torihayloch corridors as a major focus to get possible answers to the 
questions: (i) what looks the performance of ordinal logistic 
regression for analyzing pedestrian safety? (ii) What are the main 
factors behind the pedestrian safety in the study corridors? (iii) 
What degree of influence do factors contribute to pedestrian safety 
in the study area? This study helps to generate an in-depth view of 
pedestrian problems for academics, officers, and other concerned 
groups to pin out significant directions and recommendations for a 
sustainable and safe pedestrian environment.

2 Research methodology

2.1 Description of the study area

Geographically, the city is located between 8,049′55.929″  - 90 
5′53.853″ North latitude and 38019.547″ -380 38′16.555″ East 
longitudes (see Figure 1). The terrain varies from gently sloping to 
steeply sloping regions with multiple stream valleys and high grades. 
It covers an area of 540 km2 and has an average elevation of 2,500 
meters above mean sea level. Its climate and weather are suitable and 
moderate. The fastest urban expansion is occurring in this City (World 
Bank, 2020, 2022). It serves as the capital of Ethiopia as well as the 
home base for the African Union and other international institutions. 
According to the World Bank (2022) Group, Addis Ababa is the home 
of 25% of Ethiopia’s urban population. The estimated population is 4.8 
million, with an annual growth rate of 4.39% (World Bank, 2022). The 
city’s economy is expanding at a rate of 14% per year and currently 
accounts for around 50% of the GDP of the country (World 
Bank, 2022).

The city boasts more than 60% of the nation’s fleet and more than 
621 km of pedestrian pathways in addition to 2,561 km of asphalt, 
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2,030 km of gravel, and 1,850 km of cobblestone roads (AACTMA, 2021). 
According to the Addis Ababa City Road Transport Bureau report, the 
city has a total area of 3,018,319.7 m/sq. and 636,833.8 meters of sidewalk 
in various widths and materials (Tulu et al., 2013c; AACRTB, 2019). In 
Addis Ababa, walking and public transportation account for the majority 
of travels roughly 85% of all journeys. The percentage of walks varies 
greatly throughout the City (Tulu et al., 2013c; AACRTB, 2019). The 
extent and right of way of Addis Ababa’s road network, however, are 
restricted, and despite a high pedestrian flow, a sizable portion (63%) of 
the network lacks walkways (World Bank, 2022). The chosen road 
corridors for this study are those that run from Torihayloch to Megenagna 
and from Bole Bridge to Piassa Square. These road corridors are selected 
by the Addis Ababa Traffic Management Agency in a four-year 
non-motorized transport enhancement strategy based on high pedestrian 
traffic flow and black spot concentrations.

2.2 Research methods, data source and 
data collection tools

This study was based on a pragmatism philosophical paradigm 
and deductive research approach. Based on the modality of the study, 
a concurrent mixed research method is used to attain the objective of 
the study. The versatility of mixed techniques makes them ideal for 
careful analysis of promising concepts, which is the reasoning behind 
our use. Besides, an Explanatory research design is used to analyze the 
contributing factors of pedestrian safety.

Primary sources of data are used to collect relevant data for this 
study. Accordingly (i) questionnaire was employed to collect data that 
can be used for identifying factors influencing pedestrian safety level 
from respondents. (ii) Observation is also used to see the existing 
pedestrian walking side safety, the reality of factors with the existing 
environment, and other important concerns. Photographs were taken 
to document the existing pedestrian safety, mobility, and the current 
traffic situation in the study border and finally (iii) a semi-structured 
interview was employed to validate the response of respondents with 
these experts closer to pedestrian safety from Addis Ababa City Traffic 
Management Agency and Addis Ababa City Police Commission 
departments. The study also considered secondary data inputs 
collected from books, reports, research, and other website-based 
data sources.

As recommended by Onwuegbuzie and Collins (2007) and 
Taherdoost (2017), the sample size used in the study is determined 
based on the expense of the data collection, time and effort required, 
nature and characteristics of the target population. Accordingly, two 
corridors that extend from Piassa/Menilik Square to Bole Bridge and 
Megenagna to Torihayloch were selected using purposive sampling. 
The researcher then selected 384 samples of respondents 
(pedestrians) across two selected corridors using the convenience 
sampling method. This sampling method is used due to its better 
integration with probability that help to avoid bias when generalizing 
our finding.

To determine the sample size (n), the researcher used the formula 
set by Kothari (2004).

FIGURE 1

Location map of the study area.
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 ( )2 2Z pq / dN =
 

(1)

Where: N = sample size, Z = standard normal variable at 95 
percent confidence level, which is 1.81, p = estimated characteristics 
of the target population (0.5); q = 1- p, d = level of statistical 
significance set (5% margin of errors).

In addition, 10 key informants were selected from Addis Ababa City 
Traffic Management Agency and Addis Ababa City Police Commission 
departments using purposive sampling. These key informants were used 
to triangulate the responses forwarded by the sampled respondents.

2.3 Method of data analysis

2.3.1 Exploratory factor analysis
A major tool in multivariate statistics, factor analysis explains how 

underlying factors affect a set of observed variables (Alavi et al., 2020; 
Taherdoost et al., 2020; Williams et al., 2010; Liao and Valliant, 2012; 
Senaviratna and Cooray, 2019; Meles et al., 2020). It is useful for 
figuring out whether theoretical constructs apply to a particular set of 
data and how well these constructs capture the original variables 
(Sürücü et al., 2023). Thus, instead of considering too many variables 
that may be  insignificant, we  use basic factors that allow easy 
interpretation based on the advice of Barron (2018), Yong and Pearce 
(2013), and Thompson (2007). The suitability of the data should 
be confirmed before performing an EFA analysis. Therefore, this study 
examines the absence of outliers, missing values, multicollinearity, 
singularity, and the presence of enough correlation and sufficient 
sample size recommended by Sürücü et  al. (2023) to evaluate the 
suitability of the data for factor analysis.

 (i) Outliers: Ensuring the absence of outliers and guaranteeing 
univariate and multivariate data normality is crucial before 
applying factor analysis to a dataset (Bartholomew et al., 2021; 
Beavers et al., 2013; Goretzko et al., 2019; Yong and Pearce, 2013). 
The size of the Pearson product–moment correlation coefficients, 
which are used to calculate the EFA results, is decreased when the 
data are not normal. Furthermore, the occurrence of outliers 
results in the creation of fake factors (Sürücü et al., 2023; Zygmont 
and Smith, 2014). Consequently, to improve the EFA analysis, the 
data distribution was examined.

 (ii) Correlation among Variables: The correlation coefficient, 
which establishes the relationship between two variables, is the 
fundamental statistical method used in factor analysis. A low 
correlation value suggests a weak association between the 
variables and inhibits the production of factors, whereas a high 
correlation value enables the creation of factors with two or 
fewer variables. Therefore, this study considered that the 
correlation coefficient of most variables should be at least 0.30 
(Tabachnick and Fidell, 2007) and variables with lower 
correlations were excluded from the exploratory factor analysis.

 (iii) Missing Values: Data messiness affects EFA outcomes. Because 
of this, it is essential to determine whether the data set’s missing 
data happens in a non-random order (Yong and Pearce, 2013). 
To prevent inaccurate estimations, it is advised that missing 
value data be removed from the factor analysis (Baraldi and 
Enders, 2010; Beavers et al., 2013).

 (iv) Multicollinearity: It is advised by the literature to verify if the 
dataset exhibits multicollinearity. Multicollinearity and 
singularity gives unnecessarily inflated standard errors, 
spuriously low or high t-statistics, illogical signs and these 
problems may lead to invalid statistical inferences (Liao and 
Valliant, 2012; Senaviratna and Cooray, 2019). Therefore, 
problematic variables (VIF ≥ 7.5) were excluded from the 
factor analysis.

 (v) Sample Size: It is indicated that insufficient sample size can 
damage the factor analysis process and produce unreliable and 
invalid results (Goretzko et al., 2019; Goretzko and Bühner, 
2022; Howard, 2015; Sürücü et  al., 2023; Watkins, 2018). 
Therefore, caution is required for sample size, because EFA 
generally functions better with larger sample sizes, and larger 
samples lead to more stable solutions by reducing the margin 
of error (Beavers et al., 2013). If the sample size is too small, it 
is not possible to obtain generalizable or reproducible results 
(Sürücü et al., 2024). For this reason, this study accepted the 
recommendation of Sürücü et al. (2023) that confirms factor 
analysis not to be performed with sample sizes less than 200.

2.3.1.1 Bartlett’s test and Kaiser-Meyer-Olkin test
Bartlett’s Test of Sphericity establishes the existence of linear 

combinations and shows that the observed correlation matrix differs 
statistically from a single matrix (Beavers et al., 2013). If this condition 
is not satisfied, it indicates that it is impossible to construct precise and 
trustworthy factors (Beavers et al., 2013). The Bartlett’s Sphericity Test 
result in the EFA needs to be less than 0.05. If not, it is advised to 
repeat factor analysis with a larger sample size or without the items 
causing scattered correlation models from the analysis.

The Kaiser-Meyer-Olkin (KMO) Test is a metric for shared 
variance in items that indicates whether the sample size is adequate 
for exploratory factor analysis. A KMO value of 0.6 or above indicates 
that the value is sufficient for factor analysis (Sürücü et al., 2023). This 
study used 0.6 as a threshold for deciding on the reliability of KMO 
results for factor analysis.

2.3.1.2 Rotation methods: varimax methods
The rotation’s primary goal is to create an optimally simple 

structure that maximizes the amount of high loads on each variable 
while attempting to load each variable on the fewest possible 
components (Sürücü et al., 2023; Yong and Pearce, 2013). There are 
two types of rotation methods: orthogonal (varimax) and oblique 
(promax). According to Tabachnick and Fidell (2007), oblique 
rotations are more suited if the factors have a high degree of correlation 
with one another, while orthogonal rotations are more appropriate 
when the elements are conceptually independent (low correlation) 
(Tabachnick and Fidell, 2007). This study applied the orthogonal 
rotation method to decide how many of the variables to be retained.

2.3.1.3 Components of factor analysis: extraction

2.3.1.3.1 Principal components
Theoretically, principal component analysis presupposes that the 

component is a composite of observable variables or that the component 
is caused by the individual item scores (Beavers et al., 2013). The principal 
component analysis breaks down a large number of variables into fewer 
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components to extract the maximum variation from the dataset (Alavi 
et  al., 2020; Meyers et  al., 2013; Ruengvirayudh and Brooks, 2022; 
Tabachnick and Fidell, 2007; Yong and Pearce, 2013), Consequently, 
we classify principal component analysis as a data reduction method. The 
numbers of factors to be retained are determined by:

 1 Eigenvalue > 1 Rule: Every component and factor has an 
eigenvalue, a value that indicates how much of the variance in the 
items linked to each factor can be accounted for by that factor 
(Beavers et al., 2013). Kaiser (1964) recommended that all factors 
with eigenvalues above 1 should be  kept. However, Other 
researchers claim that it led to an overestimation of the number of 
factors to be removed (Howard, 2015; Sürücü et al., 2024), and is 
recommended that the Scree test be used with eigenvalues to 
determine how many factors to retain (Yong and Pearce, 2013).

 2 Scree Test: An eigenvalue graph of the factors is used in Cattell’s 
Scree Plot test (Goretzko et al., 2019). The factors in the graph are 
represented by the “x” axis, and the eigenvalues that correspond 
to these factors are shown by the “y” axis. The first component, 
which is on the far left, has the highest eigenvalue and makes up 
the greatest amount of variation. The breaking point is then 
formed by the eigenvalues bending at a specific position and 
constantly decreasing after that. The graph’s break point, also 
known as the inflection point, indicates how many components 
need to be kept (Goretzko et al., 2019; Sürücü et al., 2023, 2024).

 3 Variance Extracted: Retaining the components that account for 
a specific percentage of the variation collected is a third technique 
to ascertain the number of factors (Beavers et al., 2013; Sürücü 
et al., 2023). Most researchers suggest that the variance explained 
should be 70–90% (Beavers et al., 2013; Sürücü et al., 2023). 
while, others suggest that 50% and above of the variance 
explained is sufficient (Brien, 2016).

2.3.2 Analysis of factors of pedestrian safety using 
ordinal logistic regression

Logistic regression is used to determine the impact of covariate 
control factors, evaluate interaction effects, estimate the likelihood of 
the dependent variable based on the independent variables, and 
quantify the effect size of the independent variables on the dependent 
(Hosmer and Lemeshow, 2013; Meron, 2011). Meanwhile, Ordinal 
logistic regression (OLR) is used to analyze ordinal response variables 
with more than two categories (Dlamini et al., 2020; Pratiwi and 
Kismiantini., 2019; Sesay et  al., 2021). Therefore, ordinal logistic 
regression is used in this study due to the polychotomous and ordinal 
nature of the dependent variable.

The popular ordinal logistic regression models created for examining 
ordinal response variables are the proportional odds model (PO), two 
iterations of the partial proportional odds model with and without 
limitations, the continuous ratio model, and the stereotype model 
(O’Connell, 2006; Tesfaledet et al., 2019). However, the cumulative logit 
model called the proportional odds model recommended by Li and Fan 
(2019), Pour-Rouholamin et al. (2017), Norusis (2010), and Tesfaledet 
et al. (2019) is used in this study. Since the PO model yields the most 
readily interpretable regression result (Tesfaledet et al., 2019), it is used 
in this study. The selection of an appropriate link function determines 
the accuracy of the model output (Jeong et al., 2018). Hence, the Logit 
link function is used in this study.

2.3.2.1 Modeling assumption
The satisfaction of the statistical model’s assumptions determines 

the validity of conclusions made using contemporary statistical 
modeling approaches (Rosner, 2010). As a result, the following model 
assumptions were considered in this study.

 (i) The proportional odds or parallel line regression 
assumption: the relationship between each pair of outcome 
groups is the same since the coefficient that describes the 
relationship between the lowest versus all higher categories of 
the response variable are the same as those that describe the 
relationship between the next lowest and all higher categories 
(Akin and Şentürk, 2012; Ari and Yildiz, 2014; Carophine, 
2016; Ombui et al., 2011). In other words, the model assumes 
that no input variable disproportionately affects a specific level 
of the outcome variable. If the assumption is violated, the 
modeling approach fails, which is the major consideration in 
the validation process (Ari and Yildiz, 2014). Parallel line test 
is considered to check this assumption.

 (ii) No Multicollinearity: Multicollinearity occurs when statistical 
models have two or more explanatory variables that are highly 
correlated with each other (Agresti, 2007). Multicollinearity 
leads to problems with understanding which variable 
contributes to the explanation of the dependent variable and 
assuming the absence of collinearity is an important step in 
ordinal regression (Agresti, 2007, 2010; Hair et al., 2010; Ringle 
et al., 2020). To test for this assumption, we use the VIF value 
of a variable less than 7.5 and a tolerance of above 0.1 (Agresti, 
2007, 2019; O’Connell, 2006; Ringle et al., 2020; Shrestha, 2020).

 (iii) Linear relationship: The logistic regression model does not 
assume a linear relationship between the dependent and the 
independent variables but a linear relationship between the 
logit of the response and the explanatory variables and further 
does not require the independent variable to be in an interval 
or unbounded (Carophine, 2016).

 (iv) Data normality: The model makes the assumptions that all of 
the variables are included in the regression model and that the 
error terms are independent. Over the error term, no normal 
distribution assumption is made (Carophine, 2016).

Given an ordinal scale with K categories as the dependent variable 
and a vector of explanatory variables denoted by 𝒙 = (𝒙1, 𝒙2, 𝒙3,…, 
𝒙p), the OLR’s cumulative logit model is described as follows with 
Hosmer and Lemeshow (2013) using Equation 2.
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Where s is the dependent variable (1, …, S – 1) and α1, …, αS − 1 is 
the threshold model and 𝛃 is a vector of the regression coefficient. 
Ordinal logistic regression with five categories of dependent variables 
is defined as:
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Odds are the ratio of the probability that an event will occur 
divided by the probability that it will not occur (Basbas et al., 2013). 
They tell us how much the logit changes based on the values of the 
predictor variables. The odds value was calculated as follows.
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The odds ratio is used to show the level of the tendency of a part 
of the population in a certain category to part of the population in 
other categories in a predictor variable (Agresti, 2010; Kateri and 
Agresti, 2013; Kleinbaum and Klein, 2010; Purnomo, 2021). The value 
of the odds ratio is used to interpret the ordinal logistic coefficients 
and is calculated using Equation 13.
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If the predicator XK changes by ∆ units, it will give a change of exp. 
(BK∆); a value of one indicates no relationship, between zero and one 
indicates a negative relationship, and above one indicates a positive 
relationship (Ali et al., 2016; Kleinbaum and Klein, 2010).

2.3.2.2 Ordinal logistic regression model evaluation

2.3.2.2.1 Model significance testing
The (log) likelihood ratio statistic is used for judging the 

model significance testing (Williams, 2020). This is because the 
Log statistic is computationally easy and is given automatically in 
the output of most statistical computer packages (Hilbe, 2015; 
Starkweather and Moske, 2011). The Likelihood Ratio statistics 
of this study were computed using Equation 14.
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Wald test (Wβi) is used to test the significance of each coefficient 
in the model (Muhammad and Tuti, 2013; Pasaribu et al., 2019). It was 
computed by dividing the maximum likelihood estimate (MLE) of the 
slope parameter ( )iβ  by the estimate of its standard error, iβ  using 
Equation 15.
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2.3.2.2.2 The goodness-of-fit tests
Compute the Pearson chi-squared and deviance statistics on the 

cross-classification of covariate patterns with observed and 
estimated response frequencies as a straightforward way to evaluate 
goodness of fit (Fagerland and Hosmer, 2017). Covariate patterns 
and response categories are tabulated to get the PR test statistics. If 
there are fewer covariate patterns than observations, then this 
method performs well (Fagerland and Hosmer, 2017). PR test of 
Pearson Chi-square and deviance statistics are used in this study to 
examine the Goodness-of-Fit test as recommended by Fagerland 
and Hosmer (2017), Hilbe (2015) and Hosmer and 
Lemeshow (2013).

 
( )

( )22

1 1 1

ˆO
PR X

ˆ
2 ˆ

= = =

−
=∑∑∑

k c

i k j

ikj Eikj

Eikj
 

(16)

 
( )

2

1 1 1

OPR D2 2 O lˆ o
ˆ

g ˆ
= = =

= ∗∑∑∑
k c

i k j

ikjikj
Eikj

 
(17)

https://doi.org/10.3389/frsc.2024.1488387
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Bishaw et al. 10.3389/frsc.2024.1488387

Frontiers in Sustainable Cities 08 frontiersin.org

Where: i represents the index of the two subgroups based on 
the Ôs, K is the number of observed covariate patterns because 
of the categorical covariates, and c is the number of 
response categories.

The reference distribution for both PR (χ2) and PR (D2) is the 
chi-squared distribution with (2 K - 1) (C - 1) - Pcat - 1 degrees of 
freedom, where Pcat denotes the number of dichotomous variables 
needed to model all the categorical covariates (substitute  
dummy variables for categorical covariates with more than two 
categories). This reference distribution adheres well to the 
distribution of PR (χ2) and PR (D2) under the proportional odds 
model (Fagerland and Hosmer, 2013, 2016; Pulkstenis and 
Robinson, 2004). The model’s good fit to the data  
is the null hypothesis for the goodness-of-fit tests. Therefore, a 
low p-value suggests that there is a problem with the model 
(Fagerland and Hosmer, 2017).

2.3.2.2.3 Parameters of estimation of coefficients
The table of Parameter estimates tells us specifically the 

relationship between our explanatory variables and the  
outcome (Adejumo and Adetunji, 2013; Hilbe, 2015). The 
Maximum Likelihood estimation (MLE) that maximizes the 
likelihood function (Liang et  al., 2020) is used in this study.  
Its likelihood function for a sample with ‘n’  
independent observations, (yi, xi), i = 1, 2,...,k as  
decided in Das and Rahman (2011) and Hosmer and 
Lemeshow (2013).
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The principle of maximum likelihood estimation (MLE) 
is to estimate parameter vectors by maximizing the likelihood 
function (Ali et  al., 2016; Kleinbaum and Klein, 2010). 
Since the closed-form solution for θ is not possible to obtain, a 
numerical approach is required to estimate the parameters 
(Kleinbaum and Klein, 2010). Hence, the procedure used is 
Newton–Raphson.
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Where H (θ) is a nonsingular Hussian matrix and the 
elements of the matrix are the second partial derivative  
elements of the ln-likelihood function for the parameters to 
be  estimated. Whereas g(θ) is the gradient vector with  
the first partial derivative element of the ln-likelihood function 
for the parameter to be  estimated and m is the number 
of iterations.
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N.B: Iteration stop if, ||
( ) ( )1 || ,ε+θ − θ ≤m m

where e is a very small 
number approaching zero.

2.3.2.2.4 Measuring strength of association
The pseudo R square value represents the proportion of variation 

in the outcome variable accounted for by the independent variables. 
The model with the largest R2 statistic is “best” according to this 
measure (Adejumo and Adetunji, 2013). In this case, McFadden, Cox 
& Snell, and Nagelkerke R2 value indicates the amount of variation in 
the dependent variable. Nagelkerke R2 was more reliable than the 
McFadden and Cox and Snell R2 in evaluating the strength of the 
relationship between dependent and independent variables (Smith and 
Mckenna, 2012). Hence, the Nagelkerke R2 was opted for this study and 
computed by Equation 22.
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(22)

Where: L ( ß) is the log-likelihood function and L ( ß (0)) is the 
log-likelihood with the threshold.

2.3.2.2.5 Test of parallelism
Finding out whether it is reasonable to presume that the location 

parameters’ values are constant across answer categories is made easier 
with the use of the test of parallel lines (Adejumo and Adetunji, 2013). 
To test the parallelism assumption −2 log-likelihood and Chi-square 
(X2) statistics recommended by Kleinbaum and Klein (2010) and 
Meron (2011) are used in this study. The link function used is 
appropriate if there is evidence to reject the null hypothesis (Ari and 
Yildiz, 2014; Fullerton and Xu, 2012; O’Connell, 2006).

2.3.2.2.6 Classification accuracy
Correctly classified response rate (CCR) is the percentage of correct 

observations (Alicioglu et al., 2020; Ghasemzadeh et al., 2018; Pratiwi and 
Kismiantini., 2019). The higher value of CCR shows a better accuracy of 
the output (Chen and Hughes, 2004; Ghasemzadeh et al., 2018; Hosmer 
and Lemeshow, 2013; Kline, 2013; Pratiwi and Kismiantini., 2019).

 
Number of correct predictionCCR 100

Number of observation
= ∗

 
(23)

https://doi.org/10.3389/frsc.2024.1488387
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Bishaw et al. 10.3389/frsc.2024.1488387

Frontiers in Sustainable Cities 09 frontiersin.org

2.4 Variables used in the ordinal logistic 
regression model

The level of perception of pedestrian safety that was 
considered as a dependent variable was categorized into five 
ordered classes of very poor, poor, fair, good, and very good and 
coded as 1, 2, 3, 4, and 5, respectively. Variables considered in the 
study were identified from research literatures and by asking 
experts who have closer understanding on pedestrian affairs. A 
total of 11 independent variables were collected from literature 
and experts for this study to investigate pedestrian safety. The 

overall methodological step followed in this study is shown in 
Figure 2.

3 Results and discussion

3.1 Perception based pedestrian’s level of 
safety

Based on Figure 1, the majority of the respondent’s safety was 
poor and very poor which accounts for 62.5%. Besides, 15.1% of 

FIGURE 2

Methodological framework of factors of pedestrian safety.
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FIGURE 3

Safety scale of pedestrians.

the respondents’ feeling of safety was fair across the study 
corridors. On the other hand, 15.4 and 7% of the respondents 
reported high and very high levels of feeling of safety (See 
Figure 3) Based on the descriptive statistics result of Table 1, the 
most repeatedly reported safety score was very poor. The median 
and mean scores were on the poor level of safety (see Table 1). So, 
the result is so important to figure out major factors that affect 
pedestrians’ level of safety.

3.2 Demographic, socio-economic 
condition and pedestrian safety

The demographic and socio-economic characteristics of the 
respondents such as sex, age, income, occupation, and health status 
were considered in this study and the result is presented in Table 2. 
Accordingly, from the total of 384 respondents, 224 (58.3%) were male 
and the remaining 160 (41.7%) were female. This implies that the sex 
compositions of the respondents were dominated by male pedestrians. 
The age category of the respondents was divided into four categories 
and the majority of the respondents 196 (51%) were pedestrians aged 
between the age of 14–30 years and followed by 31–45 years old 
(25.3%). Respondents aged 38–60 and 61–75 years take 78 (20.3%) 
and 13 (3.4%) respectively. This implies that most pedestrians (76.3%) 
are within the working age group. Based on income level, most of the 
respondents (58.3%) were those who did not have enough income for 
their day-to-day life.

The employment types of pedestrians presented in Table 2 indicate 
that 30.5 and 29.7% were from self-employed and government-
employed classes, respectively. Besides, 25.8%, 2.6 and 11.5% of the 
respondents belonged to NGO-employed, pensioned, and unemployed 
groups, respectively. This data will be helpful to see its association with 
pedestrian safety. Finally, the health status indicated that the majority 
of the respondents (67.7%) were normal respondents who did not 

TABLE 1 Summary statistics output.

Statistics

N Mode Median Mean Std. Error of 
Mean

Std. Deviation Variance

384 1 2 2.31 0.066 1.292 1.670

Source: Computed from field survey data, 2023.

TABLE 2 Linkage of demographic and socio-economic conditions and pedestrian safety.

N % ꭓ2 d.f Sig (2-sided)

Sex Male 224 58.3 46.368 4 0.001

Female 160 41.7

Age 14–30 196 51.0 9.891 12 0.625

31–45 97 25.3

46–60 78 20.3

61–75 13 3.4

Income Do not have enough income 224 58.3 293.626 4 0.001

Have enough income 160 41.7

Occupation Self-employed 117 30.5 36.299 16 0.003

Government employed 114 29.7

Private/NGO employed 99 25.8

Pensioned 10 2.6

Unemployed 44 11.5

Health Hearing problem 14 3.6 191.645 12 0.001

Visual problem 54 14.1

Physically disabled 56 14.6

Normal 260 67.7

Source: Computed from field survey data, 2023.
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have any health problems. On the other hand, 32.3% of the 
respondents have hearing, visual, and physical disability problems. 
According to Zarei et  al. (2024), the general health condition of 
pedestrians has a strong relationship with pedestrian’s sense of safety. 
Therefore, the presence of diverse health conditions of pedestrians will 
help to identify pedestrian safety factors.

The chi-square test was employed to examine the presence of 
significant difference pedestrian safety level across the the different 
socio-economic status of respondents. According to Table 2, there was 
significant difference in perception of safety because of sex, income, 
occupation, and health status classes of pedestrians. However, the age 
of the respondent and pedestrian safety had no association (ꭓ2 = 9.891, 
sig = 0.625). This could be due to the possibility of having lower level 
of safety perception among all age classes of pedestrians. Therefore, 
except age, demographic, and socio-economic conditions of 
respondents have resulted in a significant variation in safety scale 
among pedestrians. The finding of the study supports the work of Lin 
et al. (2017) and Mamun et al. (2018) who examine a linkage between 
pedestrian safety and demographic and socio-economic condition 
of pedestrians.

3.3 Data evaluation for factor analysis

The Kaiser-Meyer-Olkin (KMO) test and Bartlett’s test of 
Sphericity were used to evaluate the output of exploratory factor 
analysis (EFA). First, the Kaiser-Meyer-Olkin test of sampling 
adequacy assesses whether or not our sample size is sufficient for 
factor analysis. A value of less than 0.5 indicates the sample is too 
small. In this case, the value is KMO = 0.884, which means our sample 
size is sufficient.

The second statistic is Bartlett’s test of Sphericity which tells us 
whether we have an adequate number of correlations between our 
variables for factor analysis. In this case, we  are looking for a 
significance value of less than our alpha level (p < 0.05). As a result, 
we can decide that the correlations among variables are enough for 
factor analysis (p < 0.001).

As factor analysis looks for relationships between variables, 
we establish and investigate whether there are relationships that exist 
between variables or not in addition to Bartlett’s test. As an 
assumption, there need to be  at least some moderate-to-high 
correlations in our data (i.e., r > =0.3). Thus, cross-tabulation was used 
to observe the strength of the relationship. Except for one variable, i.e., 
the cleanness of walking surfaces and has closeness of ditches, plenty 
of moderate to very good correlations exist among variables (see 
Supplementary Table 1) and the result suggested that the analysis is 
appropriate. On the other hand, in factor analysis, we also want to 
avoid multicollinearity. According to Tabachnick and Fidell (2007) 
high correlation value (r ≥ 0.9) enables the creation of factors with 

two or fewer variables. Thus, they must be removed to avoid their 
disturbance in variable significance evaluation. In this study, the 
presence of shoeshine across pedestrian paths as a variable is removed 
to keep the context described above (Table 3).

3.4 Selection of variables using exploratory 
factor analysis

3.4.1 Eigenvalues, total variance explained and 
scree plot

As many factors as there are variables in a factor analysis will 
always be extracted. In this instance, the questionnaire contains 11 
variables. But the majority of these elements will be irrelevant. To 
decide the number of factors being kept, eigenvalues over 1, total 
variance, and Scree Plot are considered (see Table 4). All of the 
factors that are present in the data set are listed in the first three 
columns. The percentage of variance (%) column indicates the 
portion of the dataset’s volatility that each element can account for. 
When compared to the later elements, the initial few factors 
explain comparatively larger shares of the variance. The elements 
that we seek to extract are just those that contribute significantly 
to the variance.

3.4.1.1 Extraction sums of squared loadings (ESSL)
The middle set of columns is nearly the same as the first, but it 

only shows the variables that significantly contribute to the variance 
in our data. Only the items that meet our extraction criteria of 
eigenvalues greater than one are displayed in this section. The “Total” 
column displays each factor’s eigenvalue prior to rotation. The factor 
analysis produced two factors that were retrieved in our findings.

3.4.1.2 Rotation sums of squared loadings (RSSL)
After the rotation, the extracted factors’ eigenvalues are displayed 

in the last set of columns. Rotation maximizes the loading of each of 
your variables onto one while minimizing its loading on the other 
components. In this way, the eigenvalues are closer to each other and 
the factor loadings are optimized. Two factors that together accounted 
for 71.32% of the variance in the data were identified by the analysis.

3.4.1.3 Scree plot
This graph plots all 11 eigenvalues for two factors (see Figure 4). 

This can aid in visualizing the elements to maintain. An ‘elbow’ or 
point on the curve where the eigenvalues level out and drop off is 
frequently depicted in these representations. Eigenvalues that are 
more than this might be significant enough to keep, while the rest 
might not. In the scree plot curve, the graph appears to fall off after 2 
factors and drop after 3. So, using this method of extraction, we can 
justify 2 factors here.

TABLE 3 KMO and Bartlett test (Computed from field survey data, 2023).

Test statistics

Kaiser-Meyer-Olkin measure of sampling adequacy. 0.884

Bartlett’s test of Sphericity Approx. Chi-Square 3952.004

d.f 55

Sig. <0.001
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FIGURE 4

Scree plot diagram.

3.4.2 Rotated component matrix
To determine exactly how many factors to retain, the output of the 

rotated component matrix is the most important table as indicated in 
Supplementary Table 5. It tells how each variable loads onto each of two 
factors after rotation, and to what extent. This allows us to interpret 
what each of your extracted factors might represent. According to the 
result except for the 11th variable, variables have above 0.5 coefficients 
and are identified as important variables for the study (see 
Supplementary Table 2). Therefore, the 11th variable cannot be taken as 
a factor due to its smaller coefficient and the result approved that only 
those factors under component 1 fulfill the assumption.

3.5 Evaluating variables for ordinal logistic 
regression modeling

3.5.1 Assessing multicollinearity among 
independent variables

Multicollinearity increases the standard error of the regression 
coefficient so that the possible results of the Wald test of each 
independent variable will not be  significant (Agresti, 2007, 2019; 
Muhammad and Tuti, 2013; O’Connell, 2006). In logistic regression, 
there must be no multicollinearity. From the selected variables shown 
in Table 5, two of them have VIF values above 7.5. Hence, they were 

TABLE 4 Total Variance Explained (Where c, cumulative; V, variance).

Initial eigenvalues ESSL RSSL

Total V % C % Total V % C % Total V % C %

1 6.78 61.65 61.66 6.78 61.66 61.66 6.50 59.13 59.13

2 1.06 9.66 71.32 1.06 9.66 71.32 1.34 12.2 71.32

3 0.94 8.57 79.9

4 0.70 6.38 86.28

5 0.39 3.51 89.79

6 0.34 3.12 92.91

7 0.25 2.29 95.20

8 0.23 2.13 97.33

9 0.14 1.29 98.63

10 0.09 0.82 99.44

11 0.06 0.55 100

Extraction method: Principal component analysis; Source: Field survey data, 2023.
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removed from the list of independent/explanatory variables (see 
Table 5). This is good information to proceed to the ordinal logistic 
regression modeling. However, the fitness of each variable has to 
be evaluated individually before the final modeling to enhance the 
reliability of the model.

3.5.2 Likelihood ratio test, goodness of fit test 
and pseudo R2

The variable selection process helps to decrease the risk of over 
fitting the model by reducing the number of independent variables in 
the model (Larasati et  al., 2011). The researchers examine every 
variable at a time by investigating the fit of the model statistics like 
likelihood ratio chi-square statistics, the goodness of fitness, and 
pseudo-R2 as recommended by Chen and Hughes (2004) and Kline 
(2013). Accordingly, those variables that satisfied the parsimony of the 
rule of statistical outputs were identified as important variables. All 
variables that are considered important are used for the final modeling 
of the ordinal logistic regression. According to Table 4, all eleven 
variables have a significant statistical value of model-fitting 
information. All of these independent variables are statistically 
significant at a 95% confidence interval (p = 0.05). Hence, they are 
considered from the important variable lists because of their fitness to 
satisfy the assumption of the likelihood ratio test in the model (see 
Supplementary Table 3).

However, the cleanness of the surface and closing of ditches (X2), 
and the presence of construction inputs (X8) fail to attain the 
precondition of the goodness of fit test and pseudo-R2 procedures (see 
Supplementary Table 3). Even though they have a good fit for the 
model based on the likelihood ratio test, the corresponding goodness 
of fit test indicates their poor fit in the modeling of pedestrian safety. 
These two factors were removed from the final modeling of pedestrian 
safety. Clarity of walking surface and closeness of ditches has a very 
low Nagelkerke R2. On the contrary, the presence of construction 
inputs as a variable has very good performance interims of strength in 
explaining pedestrian safety. However, the value was not significant 
and that led the variable to being avoided in the modeling of 
pedestrian safety using the feelings of sample pedestrians.

3.5.3 Variable significance evaluation
From the 11 (eleven) independent variables, four variables, i.e., 

closeness of ditches along with clarity of walking surfaces, and 
presence of construction inputs are removed from the ordinal logistic 
regression modeling due to their poor fit. Furthermore, the first 
variable was removed from the variable list due to its lower coefficient 
(below 0.5) in the exploratory factor analysis. Its pseudo R2 is low as 
compared with other independent variables (Nagelkerke =0.047). On 
the other hand, the presence of shoeshine and the availability of 
crossing opportunities were removed due to the multicollinearity 
problem. The rest seven variables are chosen as important variable, 
and are included in the final regression modeling (see Table 5 and 
Supplementary Table 3).

3.6 Parameter estimates and interpretation 
of odds ratio for pedestrian safety

The magnitude of the association between a few chosen 
explanatory variables and the result is explained by the table of 
parameter estimates. Usually, one does not interpret the threshold 
coefficients separately; they merely indicate the intercepts. As a result, 
we typically do not need to explicitly interpret the threshold settings 
(Adejumo and Adetunji, 2013). The odds are used to explain the 
direction of the relationship and whether the variable contributes to a 
lower or higher level of safety (see Table 6).

Sidewalks are a critical pedestrian infrastructure built for 
pedestrian traffic and related activities (Rodrigues et al., 2023). The 
degree to which walking is a convenient and secure form of 
transportation depends on the general features and state of sidewalks 
(Fonseca et al., 2022). It has been noted that wide, spotless, and well-
maintained sidewalks promote safe and comfortable walking. The 
sidewalk’s paving materials have a big impact on how safe and 
comfortable it is for pedestrians. Elderly and disabled people’s mobility 
is restricted by slippery materials, uneven surfaces, fractures, 
depressions, and flooded sidewalks, all of which pose a serious risk to 
pedestrian safety (Hosseini et al., 2022).

TABLE 5 Multicollinearity diagnosis.

Independent variables Collinearity Statistics

Tolerance VIF

Width of sidewalk (X1) 0.272 3.683

Walking surfaces are clean and have closed ditches (X2) 0.899 1.112

Comfort of sidewalk pavement (X3) 0.166 6.014

Sidewalks and footpaths are inclusive (X4) 0.473 2.113

Illegal vehicle parking (X5) 0.470 2.128

Street shoeshine (X6) 0.111 9.024

Street vending (X7) 0.139 7.182

Construction inputs (X8) 0.262 3.819

Vehicle speed was fast (X9) 0.305 3.279

Presence of traffic lights and signs (X10) 0.172 5.813

Availability of crossing opportunities (X11) 0.130 7.680

Source: Computed from field survey data, 2023.

https://doi.org/10.3389/frsc.2024.1488387
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Bishaw et al. 10.3389/frsc.2024.1488387

Frontiers in Sustainable Cities 14 frontiersin.org

According to the result of Table 6, the odds of pedestrian safety 
decrease by 93.5% when sidewalks become narrow in comparison to 
the wider one (AOR = 0.065, 95% CI = 0.030). Thus, pedestrians are 
more likely exposed to poor safety when the sidewalk width becomes 

narrow. At the same time, the result indicates that pedestrians who 
travel over uncomfortable sidewalk pave are 0.18 times less likely to 
be safe as compared to those who travel on comfortable sidewalk 
pavement (AOR = 0.18, 95% CI). Therefore, this study confirms the 

TABLE 6 Parameter estimates for feeling of pedestrian safety (Source: Computed from field survey data, 2023).

ꞵ Std. Error Wald Sig. Exp (ꞵ) 
[AOR]

95% CI of ꞵ

L.B U. B

Threshold [Pedestrian Safety = very 

poor]

−6.156 0.424 210.316 0.000 −6.988 −5.324

[Pedestrian Safety = poor] −3.101 0.275 126.749 0.000 −3.641 −2.561

[Pedestrian 

Safety = moderate]

−1.416 0.189 56.157 0.000 −1.787 −1.046

[Pedestrian Safety = high] 0.287 0.151 3.629 0.057 −0.008 0.582

Location [width of 

sidewalk = narrow]

−2.727 0.189 208.716 0.030 0.065 −3.096 −2.357

[width of 

sidewalk = medium]

−2.504 0.594 17.788 0.949 0.082 −3.667 −1.340

[width of sidewalk = Wide]

[Sidewalk and footpath 

pavement comfort = poor]

−1.712 0.521 10.788 0.001 0.181 −2.734 −0.691

[Sidewalk and footpath 

pavement comfort = fair]

−0.159 0.265 0.358 0.549 0.853 −0.679 0.361

[Sidewalk and footpath 

pavement comfort f = good]

0.198 0.450 0.194 0.660 1.219 −0.684 1.081

[Sidewalk and footpath 

pavement comfort = very 

good]

[Inclusivity of sidewalk and 

footpath = no]

−1.216 0.207 34.419 0.000 0.296 −1.622 −0.810

[Inclusivity of sidewalk and 

footpath = yes]

[Vehicle parking = agree] −1.127 0.399 7.969 0.005 0.324 −1.909 −0.344

[Vehicle 

parking = undecided]

−0.850 0.804 1.118 0.290 0.427 −2.425 0.726

[Vehicle parking = disagree]

[Street vendors = agree] −1.240 0.276 20.135 0.000 0.289 −1.782 −0.698

[Street 

vendors = undecided]

−0.102 0.290 0.124 0.725 0.903 −0.671 0.466

[Street vendors = disagree]

[Fast vehicle speed = Yes] −1.185 0.242 24.051 0.000 0.306 −1.658 −0.711

[Fast vehicle speed = no]

[Presence of traffic light and 

sign = Not available]

−3.262 0.421 60.147 0.000 0.038 −4.086 −2.437

[Presence of traffic light and 

sign = not easily available]

−1.647 0.242 46.328 0.000 0.193 −2.121 −1.173

[Presence of traffic light and 

sign = some easily available]

−0.644 0.448 2.069 0.150 0.525 −1.521 0.233

[Presence of traffic light and 

sign = easily available]
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findings of Di Mascio et al. (2020), Hosseini et al. (2022), and Hosseini 
et  al. (2022). The key informants mentioned the problem of 
uncomfortable pavement of footpaths and sidewalks exist in different 
sections of the study corridors and the researchers also observed the 
problem when pedestrians feel unsafe during their flow.

The inclusive nature of sidewalks and footpaths was examined as 
one factor of pedestrian safety. According to Humanity and Inclusion 
(2018) reports many of the road physical arrangements lack the tact 
of considering diverse travel choices in many cities of the world. As a 
result, many children, disabled, and old-age groups of the population 
suffer from traffic accidents and insecurity (Humanity and Inclusion, 
2018). Based on this assertion, inclusivity was assessed as one factor 
in Addis Ababa mainly in the study borders. The result of Table 6 
indicates the odds of failing a pedestrian to very low safety increases 
by 0.296 times due to failure of inclusivity of pedestrian footpaths and 
sidewalks. The response of the key informants also approves the 
problem of inclusivity of these facilities. Besides, the researcher 
observed non-inclusive footpaths and sidewalks that ignore the 
walking freedom of old aged and disabled pedestrians and almost all 
sites were free of facilities for them.

Pedestrians are 0.32 times less likely to be safe as a result of illegal 
vehicle parking (see Table 6). As observed from the site many sites of 
pedestrian paths are closed by vehicles and many of them stay for a 
longer time of days. Based on the response of Addis Ababa city 
administration traffic management agency staff responses, pedestrian 
facilities are installed for pedestrian service. But the reality on the 
ground is not practical. Because of this many of the pedestrians feel 
unsafe when they move in the study corridors. This result is consistent 
with the study of Idzior (2021), Gemeda (2015), and Deme (2016) 
who point out on-road parking as one cause of pedestrian insecurity.

Street merchants operate their unofficial businesses on sidewalks 
that are designed for pedestrian use. This results in a conflict over the 
usage of public spaces and raises the topic of whether street vendors 
enhance a city’s liveliness or irritate witnesses. Based on the result of 
Table  6, the probability of pedestrians having very poor safety 
increases by 0.29 times because of street vendors across pedestrian 
paths. This result agreed with the research findings of Tufa (2019) and 

Woldeamanuel et al. (2023). Street vending is an everyday event and 
based on repetitive observation, many of the pedestrian’s safety was 
disturbed due to the absence of free commuting space due to vendors.

The speed of vehicles was a very crucial risk factor for pedestrian 
safety in this study. According to the report in Table 6, pedestrians 
were 0.31 times less likely to be safe as vehicle speed is fast. The finding 
of this study supports the finding of Arias et al. (2021). According to 
the observation of the researcher, pedestrians were unsafe during fast 
driving speed. According to the key informant and direct observation, 
the legal speed is not respected and a pedestrian crash was observed 
practically during the survey. Finally, the study explores that 
pedestrians are 0.038 and 0.19 less likely to be unsafe, respectively, due 
to shortage and absence of traffic lights and signs. The study of Pollack 
et al. (2014), Olkeba et al. (2023) and Bhowmick et al. (2021) supports 
this argument.

3.7 Model evaluation

As explained previously, the researcher assesses the performance 
of an ordinal logistic model based on its model-fitting statistics and 
the accuracy of the predicted classification (Adejumo and Adetunji, 
2013; Chen and Hughes, 2004; Larasati et al., 2011). Model-fitting 
statistics, including Pearson and Deviance goodness-of-fit statistics, 
assess how well the model fits each occurrence based on its expected 
and observed frequencies. In addition, the model statistics depend on 
the pseudo-R2 statistics. Accordingly, the p-value is less than 0.05 and 
the chi-square statistics for model fitting information are considered 
statistically significant, which indicates that the model fits very well 
(see Table 7).

Comparing the observed data for consistency with the fitted 
model is a standard statistical technique for determining if a model 
fits. Table 8 shows the standard goodness-of-fit metrics, Pearson and 
deviance result, based on the observed and expected frequencies. 
We  begin with the alternative theory that there is a good fit. 
We  conclude that we  have a good model if we  do not reject this 
hypothesis (that is, if the p-value is big) and the observed data match 

TABLE 7 Model fitting information of modeling output.

Model fitting information

Model −2 Log likelihood Chi-square d.f Sig.

Intercept only 778.935 480.280 14 0.000

Final 298.655

Link function: Logit

Source: Computed from field survey data, 2023.

TABLE 8 Goodness of fit and test of parallel lines.

Goodness-of-Fit Test of parallel lines

X2 Sig. Model −2 Log Likelihood X2 Sig

Pearson 90.3 0.96 Null hypothesis 187.160 10.093a 0.899

Deviance 128.3 0.96 General 177.067

Null hypothesis: the location parameters are the same for all response groups, according to the

Link function: Logit; Nagelkerke R2 = 0.841, d.f = 198

Source: Computed from field survey data, 2023.
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the model predictions. When the significant level is higher than 0.05, 
the Pearson and deviance statistic is deemed significant. The result 
from the data suggests that the model fits very well because the 
significant level is p is greater than 0.05 (0.96 > 0.05). The Nagelkerke 
R2 value indicates that 84.1% of pedestrian safety is explained by all 
the independent variables together. The pseudo R2 result of this study 
has better modeling performance (three fold) than Meles et al. (2020) 
and Bekelcho et al. (2023) that employed ordinal logistic regression 
for examining traffic accident severity level. So, the model has the best 
performance to explain the factors of pedestrian safety. The test of 
parallel line derived based on the recommendation of Ari and Yildiz 
(2014), Carophine (2016) & Ombui et al. (2011) is used for evaluating 
the output of the model. The parallel line assumption states that 
parameter estimations remain unchanged for cut-off points and that 
the correlation between the independent and dependent variables 
remains constant regardless of the categories of the dependent variable 
(Ali et  al., 2016; Kleinbaum and Klein, 2010). Otherwise, this 
assumption asserts that the categories of the dependent variable are 
orthogonal to one another. If the assumption is incorrect, there is no 
parallelism (Fullerton and Xu, 2012). Likelihood Ratio statistics and 
ꭓ2 values are used to test parallel lines assumption and examine the 
equality of the different categories, and decide whether the assumption 
holds or not. The significance value of the parallel line test is greater 
than alpha at 0.05 (p = 0.899). Hence, we  have to accept the null 
hypothesis that states the location parameters are the same across the 
response categories and hence the link function used is appropriate 
(see Table 8).

When evaluating models, the best models are those with high 
prediction accuracy and little likelihood of classification errors (Chen 
and Hughes, 2004; Kateri and Agresti, 2013; Pratiwi and Kismiantini., 
2019). In this study, the correctly classified response (CCR) was 
derived by a linear discriminant analysis via cross-validation 
technique to check whether the classification accuracy was achieved 
or not. Table 9 demonstrates that 332 out of 384 respondents have the 
proper classification, yielding an accuracy rate of 86.5%. It indicates 
that the responses were effectively classified using the chosen 
model’s output.

4 Conclusion and recommendation

The challenge of rapid growth of fleet volume and fast growth 
of pedestrian population on travel freedom attracted the interest 
of many researchers from diverse perspectives. This study was 

conducted to explore major factors of pedestrian safety in the city 
of Addis Ababa. Primary and secondary data were integrated by 
taking Piassa to Bole Bridge and Megenagna to Torihayloch 
corridors as a focus of the study. The perception of pedestrians was 
taken as a means to identify factors under ordinal logistic 
regression. Finally, using the results forwarded the following 
conclusions are forwarded. The result of ordinal logistic regression 
provides higher Nagelkerke R2, good-fit, reliable classification 
accuracy and the model can be used to list significant factors of 
pedestrian safety. Therefore, ordinal logistic regression analysis 
indicated narrow sidewalk width, lack of comfort on the pavement 
of the sidewalk, failure of walking facility to consider diverse road-
users, Illegal vehicle parking, street-vending, fast vehicle speed and 
absence of traffic signs and light were strongly responsible for the 
lower perception of the safety of pedestrian across the study 
corridors. To improve the perception of safety for pedestrians, 
enough vehicle parking and pedestrian resting shades should 
be available, and local concerned bodies should provide better and 
alternative working sites for street merchants. Moreover, the local 
body should provide clear markings and signs along with 
appropriate speed breaking in areas having high traffic flow and 
sidewalk width, quality, and inclusiveness should be evaluated for 
the safe flow of pedestrians. Additionally, alternative crossing 
facilities and distributing roads should be planned in the study 
borders. Academicians should give focus to the concern by 
conducting ongoing pedestrian safety researches, consultations, 
and educational campaigns to the community about the impact of 
fast vehicle speed, illegal parking, and street vending to the 
community for raising awareness. Finally, further researches are 
highly recommended to explore new ideas for better integration of 
road, vehicle, and pedestrian environments.

5 Limitation of the study

The researcher tried the best and final effort to avoid limitations. 
However, some limitations were identified in this study. Primarily, the 
perception of drivers on how the pedestrian safety problem occurred 
was not included in examining pedestrian safety. Besides, the effect of 
land use pattern (the state of pedestrian safety around densely working 
community at schools, markets, and other commercial centers) and 
the role of road design, vehicular agglomeration, and road network 
pressure for pedestrian safety were not considered in this study. More 
importantly, this study did not examine and/or compare the role of 

TABLE 9 Accuracy of classification.

Observed Predicted Total Accuracy
(%)

Very poor Poor Fair High Very high

Very poor 133 6 0 0 0 139 95.7

Poor 3 87 11 0 0 101 86.13

Fair 0 2 47 9 0 58 81

High 0 0 14 45 0 59 81

Very high 0 0 0 7 20 27 74.1

Total 136 95 72 61 20 384 86.5

Source: Computed from field survey data, 2023.
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each factor for pedestrian safety in different spatio temporal contexts. 
In this aspect, future works should employ better and advanced spatial 
data collection tools like mobile trucking and GPS. Therefore, the 
above-listed gaps have to be considered in future research works for 
better analysis of factors of pedestrian safety.
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