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Amid the global emergence of smart cities, there exists a lack of consensus

among scholars and city leaders regarding their perception and development.

Notably, there is a dearth of quality indicators for evaluating the progress

of smart city development. This study addresses this gap by focusing on

identifying the drivers that influence residents’ assessments of life quality and

comfort. By gathering assessments from residents in priority areas identified

as problematic for city prosperity, and incorporating basic measures of

technological development, machine-learning models were constructed using

RapidMiner Studio. These models aim to predict the Human Development Index

(HDI) of the city and discern the most impactful drivers related to citizens’

life satisfaction. The research compares various models, ultimately selecting

the optimal Fast Large Margin model. The findings highlight crucial concerns

for residents, including air pollution, recycling, basic amenities, and health

services. The study relies on a unique dataset comprising o�cial statistical

information from 141 smart cities across 73 countries. The developed models

o�er valuable insights for decision-makers, enabling the formulation of e�ective

strategies for sustainable smart city development and the enhancement of

digitalization policies.
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1 Introduction

Modern key concepts and initiatives of the smart city have undergone many

transformations, and are developing and improving (Kirimtat et al., 2020; José and

Rodrigues, 2024). However, today there is no agreed understanding of this phenomenon

and the definition of the term “smart city” (Camero and Alba, 2019). It is defined as

“the convergence of technology and the city” (Yigitcanlar et al., 2018), and as “centers

of economic wealth and hope for a standardized life” (Kutty et al., 2022). No agreement

has been reached on the unified definition of concepts such as “smart people,” “smart

living,” “smart mobility,” “smart environment,” “smart governance,” “smart economy”

(Tutak and Brodny, 2023), and “citizens’ quality” (Chang and Smith, 2023). There is no

universally accepted understanding of the main drivers for increasing the intelligence of

cities (Azevedo Guedes et al., 2018), what makes a city “smarter” and which drivers of

a smart city can provide a high quality of life and a comfortable, safe environment for
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creativity and innovation (Mora et al., 2019; Camboim et al., 2019).

There is no single approach to the main application domains of a

SC (De Marco and Mangano, 2021). Unknown definitions of the

results of the development of a smart city (Lim et al., 2019).

There is also a mismatch between interpretation and

understanding of what is “smart” and what is “sustainable,” the

“smart mobility” paradigm is not agreed upon (Noy and Givoni,

2018). Even though sustainable development is associated with

the expected results of smart city initiatives, this relationship has

not received due recognition in scientific circles and practical

confirmation (Yigitcanlar et al., 2018). Such uncertainty at the

conceptual level emphasizes the need to improve the understanding

of the possibilities and consequences of smart cities (Kummitha

and Crutzen, 2017).

Despite the current uncertainty, the trend of Smart Cities

initiatives continues to spread rapidly around the world. It aims

to increase the competitiveness of local communities through

innovation and the quality of life of citizens through better public

services and a safer environment (Appio et al., 2019). Modern

cities are oriented toward integrating technological progress

across various spheres and components, such as mobility, energy

management, utilization of natural resources, water supply and

waste processing, air quality, land-use planning, service networks,

construction, as well as economic aspects, social participation,

employment development, and ensuring citizens’ safety (Campisi

et al., 2021). The concept of a smart city is increasingly popular

in the development of policies for modern cities based on digital

and technological innovations (Verrest and Pfeffer, 2019). The

development of a smart city is aimed at creating urban areas with

a high quality of life, incorporating opportunities from modern

infrastructure, such as economic prospects, cultural richness,

demographic-geographic balance, and technological advantages,

including healthcare, education, and governance, as well as aligning

with sustainable development goals, such as ensuring a clean, green,

safe, and reliable environment (Kim et al., 2022). This increases

the level of quality of life and contributes to the satisfaction of

residents with the introduced smart solutions. It is the feeling

of residents regarding the quality and comfort of living that is a

decisive assessment of the level of development of a smart city

(Szczepańska et al., 2023).

The foundation of the smart city concept lies in the broad

and multifaceted application of information and communication

technologies, aiming to establish the most favorable living

conditions for both residents and visitors of the city. It is

important to ensure favorable conditions for economic activity

and environmental preservation. One of the crucial aspects of this

concept is safety in the broadest sense (Tutak and Brodny, 2023).

Despite the often-cited aspiration for sustainable development as

a desired outcome of smart city initiatives, there is little evidence

on how the results of sustainable development are integrated or

achieved within the framework of smart city initiatives (Yigitcanlar

et al., 2018).

The United Nations Economic Commission for Europe

(UNECE) and International Telecommunication Union (ITU)

defines a smart sustainable city as a city that uses innovation,

ICT, and other tools to improve the quality of life of its residents,

increase the efficiency of city management and the quality of

service provision, competitiveness, ensuring needs of the current

generation and preserving opportunities for future generations

in the sense of social, economic, ecological, and cultural areas

[United Nations Economic Commission for Europe (UNECE),

2020]. The UNECE people-smart sustainable city concept expands

the understanding of intelligence in city development and considers

a set of conditions for improving opportunities that can ensure

sustainability and are focused on improving the quality of life and

the development of a harmonious society. This approach includes

ensuring equal opportunities and efficiency, meeting social needs,

and promoting innovation in urban development (United 4, 2017).

Smart city concepts are interesting for scientists and businesses

due to the consolidation of the most commonmodern world trends

toward urbanization, informatization, and globalization (Zheng

et al., 2020). However, today there is no agreed understanding of

key topics regarding research on the level of development of smart

cities (Ismagilova et al., 2019). Also, the main drivers that measure

it are not defined. Therefore, multi-faceted applied research to

identify a reliable set of key performance indicators for smart

sustainable cities is relevant.

The purpose of our research was to identify the main drivers

that influence the feeling of satisfaction with the quality, comfort,

and safety of living in smart cities. Applied research was conducted

based on a unique set of official statistical data on 141 smart

cities from 73 countries of the world. The dependence of the

level of the city HDI, which is a generally accepted measure of

the development of smart cities (IMD Smart City, 2023), on 54

measures of the development of smart cities (The Global Data Lab,

2022) was investigated.

To achieve the goal, the following hypotheses

were formulated:

H1: the level of development of a smart city depends on the

number of its residents.

H2: the role of information technology is exceptional in the

formation of the “smart city” as a vector of global

sustainable development.

Graphical analysis was performed to test H1. To verify H2

we built machine-learning models with RapidMiner Studio for

predicting the HDI-city level and determining the most influential

drivers associated with the perception of citizens of smart cities of

comfort and quality of living based on the analyzed indicators.

2 Literature studies

Modern scientists pay a lot of attention to the concept and

initiatives of smart cities, but the inconsistency and incompleteness

of different approaches give rise to new discussions (Meijer and

Bolívar, 2016). Trindade et al. (2017) analyzed scientific works

on the problems of environmental sustainability and the smart

city to determine the connection between these concepts. They

indicated the need for further research on the effectiveness of

using the concept of a smart city and relevant practices to

ensure the sustainability of cities. José and Rodrigues (2024)

conducted a systematic review of the literature on the application

of innovative practices for the development of smart cities and
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explored the main challenges for innovation in a smart city. The

authors concluded that the main reason for insufficient progress

in smart city initiatives may be the inconsistency of the results

of scientific research on the impact of digital innovations on

smart cities with innovative practices that are used in smart cities

today. Ramaswami et al. (2016) identified the key drivers of

smart cities and proposed the main principles of the development

of smart cities, for the transition to a smart, sustainable, and

healthy future. Ismagilova et al. (2019) considered the creation

of a paradigm of smart cities of the future, which guarantees the

wellbeing and rights of its residents, developed industry, and urban

planning, focused on ecology and sustainability. Addas (2023)

studied the sustainability of smart cities and their impact on health.

The author conducted a comparative study of different cities to

analyze the goals of sustainable development, which may affect

the environmental sustainability and sustainability of the city in

the future. Chen (2023) studied the relationship between smart

cities and urban happiness. He argued that a smart environment

that supports landscaping, controls air pollution and provides

recycling is associated with happiness; for increasing wellbeing

and comfort of life, the efficiency of urban infrastructure is more

significant than technical equipment. The author noted that in

different cities, citizens have different needs to achieve happiness.

Kolokotsa et al. (2024) studied the issue of integration of nature

in smart cities. They analyzed the possibilities of using nature-

based solutions to combat the negative consequences of large-scale

urbanization and climate change. Yadav et al. (2019) proposed a

structural framework in developing economies. Correia et al. (2022)

conducted an in-depth analysis of the relationship between smart

cities and Industry 4.0. In Lipianina-Honcharenko et al. (2024),

an innovative approach to municipal waste management using

intelligent methods of classification, clustering, and forecasting

was introduced. Breytenbach and Kariem (2020) argued that

power imbalance within organizations structurally dampens the

voices of citizens, ultimately jeopardizing the goals of smart

cities. Bibri (2019) provided an overview of smart and smarter

cities from the perspective of sustainability and its connection

with big data analytics. The author claimed that the context of

sustainable development createsmisunderstandings and drawbacks

in comprehending the concept of smart cities. Meanwhile, there are

significant opportunities to utilize big data analytics to achieve the

sustainable development goals of future smart cities. Sheikh et al.

(2023) proposed a new more-than-human approach to governance

in smart cities. Parygin et al. (2022) considered the possibility of

using historical data from social networks to predict public opinion

regarding a specific decision for urban development. Shayan et al.

(2020) studied the risks associated with smart cities. Żywiołek

and Schiavone (2021) investigated the perception of intelligent

solutions by residents of smart cities and their impact on the feeling

of privacy and security, which, in turn, affects the reputation of the

city. The authors proposed a methodology for studying residents’

satisfaction, determining desires and needs, as well as analyzing

risks and potential threats for residents of smart cities. Boreiko et al.

(2017) engaged in the development of models and means of the

server part of the system for passenger traffic registration of public

transport in the “smart” city. In the study (Popova and Izonin,

2023), the authors consider the overall idea of a smart house system,

justify the need to use resource-saving systems and technologies,

and also consider the integration of such systems during the

reconstruction of low-rise residential buildings. Kazarian et al.

(2019) presented a model and principles for developing a smart

home system using a modular structure and the Redux data flow

architectural pattern.

Despite a significant number of scientific studies on the issue

of smart city concepts, there is no consensus among scientists

regarding the approaches to defining the main concepts and main

areas that define a city as “smart.” Analysis of the drivers that

characterize the level of development of smart cities in the context

of sustainable development requires particularly careful research.

Using data science and machine learning methods to understand

and analyze the phenomenon of smart cities.

3 Materials and methods

The methodology for selecting indicators and cities was based

on a comprehensive approach developed by the United Nations

Economic Commission for Europe (UNECE) for evaluating

sustainable smart cities [United Nations Economic Commission

for Europe (UNECE), 2020]. In particular, the methodology for

collecting key performance indicators was used, which involves

a multi-level analysis of urban systems taking into account

technological, social, and economic parameters. The selection

criteria included not only technological development but also

the ability of urban systems to ensure population quality of

life, considering social, environmental, and governance aspects. A

distinctive feature of the study was the combination of objective

statistical data and subjective resident assessments, which allowed

the creation a more comprehensive and representative model for

evaluating smart city development.

To test the hypotheses formulated in Chapter 1, an empirical

analysis of the main indicators of development efficiency and

innovation characterizing smart cities in different countries

of the world was conducted. One of the basic indicators

of the development of the world’s cities is the Smart City

Index (SCI), developed by the Smart City Observatory, which

is part of the Global Competitiveness Center of the IMD.

The international association “World Smart Sustainable Cities

Organization” (WeGO) publishes periodic ratings of the “IMD

Smart City Index” to measure the regional competitiveness of

smart cities in the field of economic and technological growth

and “human” development (standard of living, quality of the

environment, inclusive opportunities). The index is calculated

based on residents’ assessments of various aspects of life in their city

that pose threats to their safe and comfortable living (IMD Smart

City, 2023).

SCI is calculated from 2019. However, in 2023, its methodology

was changed. Modern SCI is focused on citizens’ satisfaction with

various aspects of life in their city and determines the meaning of

comparison of various qualities of cities. This is essentially a city-

oriented Human Development Index (HDI-city). SCI is calculated

based on reliable empirical data and assessments of city residents

regarding the quality and comfort of various aspects of living in

these cities. HDI-city is designed to determine the degree of impact
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FIGURE 1

Bubble chart of dependence of city HDI on population in 2023 for the top 20 smart cities by city HDI rating, 2023.

of technologies on the creation of new opportunities for solving the

problems of urban development and making optimal decisions to

improve the quality of life of its residents.

SCI values are generalized assessments of citizens regarding the

most relevant problems for them, such as housing affordability,

the opportunity to get a decent job, the quality of the natural

environment, the importance of technology in ensuring the quality

of life, the acceptability of personal limitations caused by the use

of AI technology, in particular personal identification and access

technologies to personal data, etc.

SCI 2023 is calculated based on the HumanDevelopment Index

(n.d.) at the city level, provided by The Global Data Lab (2022).

Such a technique makes it possible to more accurately evaluate

an individual city from a scientific point of view and makes a

more transparent and meaningful comparison of quality of life

indicators between different cities and with the general index. SCI

2023 standardizes the performance of the city with the average HDI

of the city and the average value of people’s perceptions (survey)

about the quality and comfort of living in it. The Smart City Index

is another attempt tomeasure the level and determine the dynamics

of development in individual cities worldwide. It aims to facilitate

comparative analysis and simplify the understanding of the impact

of implementing innovative solutions to address key quality-of-life

issues in these cities (IMD Smart City, 2023).

To test hypothesis H1: the level of development of a smart

city depends on the number of its residents, a graphical analysis

of the dependence of the value of city HDI 2023 (IMD Smart

City, 2023) on the population was carried out for the top 20

smart cities according to the rating of city HDI in 2023 (World

Population Review, 2024; Figure 1) and for 30, the largest in terms

of population in 2023, smart cities of the world (Batra, 2025;

Figure 2).

Both Figures 1, 2 indicate the lack of dependence between the

population and the level of sustainable development of smart cities.

To test the hypothesis about the exceptional role of

digitalization in the development of smart cities, an empirical

analysis was conducted based on official statistical data of HDI-city

meters for 141 cities from 73 countries of the world (IMD Smart

City, 2023). To identify the impact of each of the 54 indicators of

sustainable development of a smart city selected for analysis on the

quality and comfort of living, applied studies were conducted in the

RapidMiner Studio environment (RapidMiner Documentation,

n.d.). Fifteen of these indicators are subjective assessments of

citizens regarding priority areas that they consider problematic

for the prosperity of their city (Table 1). The higher the value of

the corresponding indicator, the more % of residents consider

this priority area problematic for ensuring their comfortable and

safe living in their city. The remaining 39 indicators measure the

level of technological development of the city according to the

following structures and technologies: health and safety, mobility,

activities, opportunities (work and school), governance, health,

and safety.

This study reviewed data from 141 cities in 73 countries of the

World. The following variables were used in the applied research:

1. The target variable

City HDI—Smart City Index.

The range of values of this indicator 0.521–0.898 was divided

into two groups: high (city HDI > 0.751) and medium (city

HDI ≤ 0.751).
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FIGURE 2

Bubble chart of dependence of city HDI 2023 on population for smart cities top 30 largest cities in the world by population in 2023.

2. Independent variables:

• Assessments of the perceptions of residents on issues

related to infrastructure and technology solutions

available to them in their city (priority areas; Table 1).

The value of each of the above indicators is the % of

respondents who chose this indicator as a priority direction, that

is, they consider it problematic (one that needs improvement)

in the sense of ensuring high-quality, comfortable living in

their city.

• Indicators reflecting the level of technological development of

the city on structures and technologies under the following

priority areas: health and safety, opportunities, governance

mobility, and activities (Table 2; IMD Smart City, 2023).

We built the following machine-learning models with

RapidMiner Studio (Yildirim, 2021; Poucke, 2020; Kovalchuk

et al., 2023a) for predicting the HDI-city level and determining

the most influential drivers associated with citizens’ perception of

comfort and quality of living in smart cities based on the analyzed

indicators (Yildirim, 2021):

• Naive Bayes Model: supervised machine learning algorithm

for classification problems;

• Generalized Linear Model (GLM): providing a flexible

generalization of linear models for non-normal data;

• Logistic Regression: a method for estimating the probability of

categorical outcomes such as disease state or customer churn

based on observed characteristics;

• Fast Large Margin (FLM): a scalable approximate technique

for max-margin classification related to SVMs;

TABLE 1 The variables that are presented in the priority areas for urban

development.

Variable Means Variable Means

afh Affordable housing pt Public transport

arp Air pollution rdc Road congestion

ba Basic amenities rec Recycling

cen Citizen engagement sed School education

cor Corruption sec Security

fem Fulfilling employment smob Social mobility

grs Green spaces unem Unemployment

hs Health services

• Deep Learning: machine learning algorithms that use multiple

layers of non-linear processing units to learn features and

patterns from data;

• Decision Tree: intuitive predictive models that recursively

partition data to make predictions with simple decision rules;

• Random Forest: an ensemble method that combines

predictions from decorrelated decision trees to improve

accuracy and avoid overfitting;

• Gradient Boosted Trees: combining the predictive power of

ensembles with gradient boosting to sequentially produce

strong classification and regression trees;

• Support Vector Machine (SVM): classifiers based on finding

maximum margin decision boundaries.

The Naive Bayes algorithm relies on Bayes’ theorem, which

asserts that the likelihood of an event happening, given specific
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TABLE 2 Variables reflecting the level of technological development of the city.

Variable Means

Structures

Health and safety bsn Basic sanitation is affordable and addresses the requirements of the most economically disadvantaged areas

rss Recycling services meet the necessary standards

psp There are no problems concerning public safety

app There are no problems concerning air pollution

msps The provision of medical services is satisfactory

fh Finding housing with a rent that amounts to 30% or less of a monthly salary poses no problem

Mobility tcp There are no problems concerning traffic congestion

pts Public transport is satisfactory

Activities gss Green spaces correspond to satisfaction

ca Cultural activities, including shows, bars, and museums are satisfactory

Opportunities (work and school) efs Services for finding employment are accessible

cgs The majority of children have the opportunity to attend a good school

llo Local institutions offer opportunities for lifelong learning

bcj New job creating are being generated by businesses

mfw Minorities feel a sense of welcome

Governance ilg Accessing information about local government decisions is easy

cco Corruption among city officials is not a cause for concern

rcdm Residents contribute to the decision-making processes of the local government

rpf Residents provide feedback on projects undertaken by the local government

Technologies

Health and safety ocmp Utilizing online reporting for city maintenance problems leads to a prompt resolution

ware A website or App that makes it easier for residents to give away unwanted items

fpw The availability of free public wifi has enhanced access to city services

cctv The presence of CCTV cameras has instilled a sense of safety among residents

emp A website or App that enables residents to monitor air pollution effectively

ama Arranging medical appointments online has enhanced accessibility to healthcare services

Mobility csa The use of Car-sharing apps has alleviated traffic congestion

dap Applications that direct you to an available parking space have decreased travel time

bhr The availability of bicycle hiring services has reduced congestion

sts The implementation of online scheduling and ticket sales has simplified the use of public transport

pit The city provides information on traffic congestion through mobile phones

Activities opt The ability to purchase tickets to shows and museums online has simplified the attendance process

Opportunities (work and school) acl Online access to job listings has facilitated the process of finding employment

its Schools effectively teach IT skills

spcb The online services provided by the city have streamlined the process of starting a new business

cis The current internet speed and reliability fulfill the connectivity requirements

Governance pacf Public online access to city finances has contributed to a decrease in corruption

vip The implementation of online voting has led to increased participation

oprp An online platform where residents can propose ideas that have enhanced the quality of city life

pid Processing identification documents online has resulted in a reduction in waiting times
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evidence, is directly proportional to the likelihood of the evidence

occurring when the event has already taken place. This is multiplied

by the prior probability of the event happening. The term “naive” is

used because of the assumption that each feature being classified is

independent of the other features. This simplification streamlines

the model, enabling it to make classifications rapidly in comparison

to more complex models.

In the Naive Bayes model, the computation of the probability

that a data point X is a member of a class Y is performed as follows:

P(Y|X) = P(Y)· P(X|Y)/P(X),

where: P(Y|X) is the posterior probability of class Y given

predictor X, P(Y) is the prior probability of class Y, P(X|Y) is the

likelihood of predictor X given class Y, P(X) is the prior probability

of predictor X.

When categorizing a new data point, the algorithm computes

the posterior probability for each class, and the data point is

assigned to the class exhibiting the highest probability. Despite

its straightforward nature, Naive Bayes frequently demonstrates

commendable performance on real-world datasets. Particularly

effective for categorical data and applications such as natural

language processing, such as spam filtering, Naive Bayes stands

out as a simple yet efficient classifier, often serving as a robust

baseline model.

Generalized Linear Models (GLMs) represent an expansion of

linear regression models, accommodating response variables with

distributions that deviate from normality. Unlike linear regression,

where the response variable is assumed to be continuously and

normally distributed, GLMs relax this assumption. A GLM is

comprised of three key elements:

• Random Component: The response variable Y adheres to

a distribution within the exponential family (e.g., binomial,

Poisson, etc.).

• Systematic Component: A linear function Xβ formed by

the predictors.

• Link Function: A link function g() establishes the connection

between the expected value of the response E(Y) and the linear

predictor Xβ .

The link function serves to convert the anticipated value of

the response into the linear scale of the predictors. Standard

link functions encompass the logit for binomial data and the

log for count data. GLMs provide the flexibility to model non-

normally distributed responses by selecting a suitable link function

and exponential family distribution. Through this framework,

they can effectively manage categorical, count, and other non-

continuous responses. The estimation of GLMs involves the

utilization of maximum likelihood, where the parameter estimates

are determined by maximizing the likelihood of the observed

response values given the predictors.

Logistic regression is employed to forecast binary or categorical

results using predictor variables. It predicts the probability of an

observation belonging to a specific category of the dependent

variable. In the case of a binary outcome, logistic regression

estimates P(Y = 1) as a function of x. To constrain probabilities

within the range of 0 and 1, it utilizes the logistic sigmoid function,

defined as:

f (x) = 1/(1 + eβx),

where βx represents the linear component.

The estimation of β is conducted through maximum likelihood

estimation. The coefficients hold an interpretation as the alteration

in the log odds of the outcome for a one-unit change in X. Unlike

linear regression, logistic regression does not presume a linear

association between predictors and the dependent variable. Instead,

it models the log odds as a linear function. Logistic regression

demonstrates versatility by accommodating both numeric and

categorical predictors. It does not necessitate the predictors to

exhibit linear relationships or follow a normal distribution. This

method is applicable for both predictive tasks and elucidating

the relationship between dependent and independent variables.

Additionally, extensions of binary logistic regression enable the

modeling of multinomial outcomes encompassing more than

two categories.

FLM is a supervised machine learning algorithm designed for

binary classification, serving as an approximate implementation

of SVMs. Its primary objective is to identify the maximum

margin hyperplane that effectively separates the two classes.

The hyperplane is strategically chosen to maximize the distance

between the closest points belonging to the two classes, commonly

referred to as the support vectors. Diverging from SVMs,

which tackle a intricate quadratic programming problem, FLM

employs an approximate optimization approach based on Fisher’s

Linear Discriminant.

In particular, FLM addresses the following

optimization problem:

Maximize: Margin= (wTx+ + b) – (wTx− + b)

Subject to: yi(w
Txi + b) ≥ 1 for all i.

Here, xi represents the training examples, yi denotes the labels,

w stands for the normal vector to the hyperplane, and b is the

offset term. The optimization objective can be effectively addressed

using an iterative algorithm, enabling FLM to handle large datasets

with efficiency. While the models generated by FLM may not

precisely achieve maximum margin, they offer an approximation

of the SVM solution while considerably reducing the training time.

This algorithm proves valuable when seeking the generalization

capabilities of SVMs for extensive datasets where training speed

is a critical factor. It compromises some accuracy in favor of

expedited training.

Deep learning belongs to the category of machine learning

algorithms that leverage multiple layers of non-linear processing

units to extract features and patterns from data. These layers are

comprised of artificial neural networks, each executing a non-

linear transformation on its input and forwarding the output to

the subsequent layer. The lower layers focus on learning simple

features, while the higher layers progressively grasp more intricate

features by building upon the knowledge acquired from the

previous layers. This hierarchical learning structure empowers deep

learning models to discern complex concepts directly from raw

data, such as identifying faces based on pixel values. Prominent

architectures in deep learning encompass convolutional neural

networks (CNNs) tailored for computer vision, recurrent neural
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networks (RNNs) suitable for sequence data like text or audio, and

transformers applied to tasks like translation. The effectiveness of

deep learning hinges on substantial labeled datasets and substantial

computing power for training the multilayer models. Techniques

like backpropagation and stochastic gradient descent are employed

to iteratively adjust model weights and minimize a loss function.

Key merits of deep learning encompass the capacity to directly

learn feature representations from data, achieving state-of-the-art

accuracy in tasks like image, text, and speech processing, and

the ability for end-to-end learning without the need for manually

crafted features. Deep learning is the driving force behind various

contemporary AI applications, ranging from image recognition

to language translation and synthesis. However, it comes with

the drawback of being computationally expensive for training

and tuning.

Decision trees construct a predictive model for a target

variable by acquiring simple decision rules from the features

present in the data. Through a process known as recursive

partitioning, the dataset is repeatedly divided based on the

feature that yields the maximum information gain at each

split. In this structure, each internal node corresponds to a

feature, while each leaf node signifies a prediction, whether

in classification or regression. Notable algorithms for crafting

decision trees include ID3, C4.5, CART, and CHAID, each

employing distinct approaches to measure information gain. The

merits of decision trees encompass interpretability, the capability

to handle categorical features, address non-linear relationships,

and necessitate minimal data preprocessing. However, challenges

arise, such as the propensity for overfitting, instability, and the

generation of biased trees for imbalanced datasets. These issues

can be mitigated through techniques like regularization, pruning,

and the application of ensemble methods. Decision trees find

common applications in tasks like classification, fraud detection,

and customer segmentation. They serve as the foundation for

random forests, a highly popular and potent ensemble method.

Random forest stands as an ensemble-supervised learning

technique applicable to both classification and regression tasks. Its

operation involves the creation of numerous decision trees during

the training phase. For each tree, a random subset of the data

is employed, and nodes are split utilizing the optimal features

derived from a random subset of features. The final prediction is

formed by averaging the predictions generated by each constituent

decision tree. Random forests effectively counteract the overfitting

tendency of decision trees. By leveraging bootstrapped training

samples and feature subsets across many trees, overfitting is

mitigated. The introduction of randomization fosters decorrelation

between individual trees, diminishing variance and enhancing

generalizability. Tuning parameters for random forests encompass

drivers like the number of trees (more being advantageous

but computationally expensive) and the number of features

contemplated at each split (with the default being the square root

of the total features).

The advantages of random forests encompass their adeptness

at handling non-linear relationships, achieving high predictive

accuracy, and robustness to noise. They prove beneficial for both

classification and regression endeavors. Nonetheless, drawbacks

include a potential for overfitting when dealing with noisy data and

a lack of interpretability in the resulting model.

Gradient boosted trees represent an ensemblemachine learning

approach that amalgamates multiple decision tree models to

enhance accuracy and stability. The mechanism involves the

sequential addition of new decision tree models, each predicting

the residuals or errors of preceding trees. This sequential process

boosts the overall model by iteratively reducing loss, aiding in the

correction of biases in the data not captured by earlier trees. The

amalgamation of numerous weaker base learners with high bias

contributes to the formation of a robust overall model. The addition

of trees occurs in a stage-wise manner through an optimization

procedure that minimizes a loss function by learning from

the negative gradient. Common loss functions include squared

error for regression tasks and log loss for classification tasks.

Hyperparameters for fine-tuning include the number of trees, tree

depth, learning rate, and subsample rate for stochastic boosting.

Boosted trees boast advantages such as high predictive

accuracy, inherent feature selection capabilities, and adaptability

for both regression and classification tasks. However, drawbacks

include a lengthier training time compared to random forests and

a tendency to exhibit some degree of overfitting when contrasted

with bagging methods.

Support Vector Machines (SVMs) serve as supervised learning

models applicable to both classification and regression analyses.

The primary objective of SVMs is to identify the maximum

margin hyperplane that most effectively delineates two classes

within the training dataset. By maximizing the margin distance,

SVMs enhance the classification confidence for future data points.

The foundation of SVMs lies in decision planes, which establish

the boundaries for decision-making. These planes distinctly

separate objects with different class memberships. The process of

determining the maximum margin hyperplane involves solving a

quadratic programming optimization problem, yielding support

vectors that define the hyperplane. In instances where data

lacks linear separability, SVMs employ a kernel trick to map

data to a higher dimension. This strategic approach enables the

identification of a hyperplane that optimally segregates the classes.

Commonly utilized kernels encompass linear, polynomial, and

radial basis function kernels. SVMs demonstrate efficacy in high-

dimensional spaces and provide flexibility in selecting kernel

functions. However, challenges include heightened algorithmic

complexity and substantial memory requirements, particularly for

extensive datasets.

The most straightforward method for assessing a binary

classification model is by examining its overall accuracy, which

represents the percentage of correctly classified samples. Accuracy

is computed by dividing the number of correct predictions by the

total number of predictions:

Accuracy =
Number of correct prediction

Total number of prediction
. (1)

In binary classification, accuracy can also be computed using

the metrics of true positives, true negatives, false positives, and

false negatives:

Accuracy =
TP + TN

TP + TN + FP + FN
, (2)

where TP—True Positives, TN—True Negatives, FP—False

Positives, FN—False Negatives.
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Precision quantifies the percentage of positive predictions that

are accurately correct:

Precision =
TP

TP + FP
. (3)

Recall (or sensitivity) gauges the percentage of actual positive

cases that are accurately predicted as positive:

Recall =
TP

TP + FN
. (4)

Specificity assesses the percentage of negative cases that are

accurately predicted as negative:

Specifity =
TN

TN + FP
. (5)

The F-measure strikes a balance between precision and recall

in the overall score. It attains its optimal value at 1 and deteriorates

toward 0 in less favorable scenarios.

ROC (Receiver Operating Characteristic) curves serve as a

visual tool for assessing and comparing the effectiveness of binary

classification models. Here are some key points about ROC curves:

TABLE 3 Distribution of smart cities by levels of sustainable development.

Value Count Percentage

High 121 85,82%

Medium 20 14,18%

The area under the ROC curve (AUC) serves as a

comprehensive measure of model performance across all feasible

classification thresholds.

A perfect classifier achieves an AUC of 1, while a random

classifier attains an AUC of 0.5.

ROC analysis offers tools to choose optimal models and

classification thresholds by considering tradeoffs between true

positives and false positives.

ROC curves facilitate the comparison of multiple models to

identify which one exhibits the best discrimination ability, with the

ideal model being closest to the top-left corner.

Key evaluation metrics for classification models include

accuracy, precision, recall, specificity, F-measure, and ROC

analysis. Optimization of these metrics leads to models that provide

reliable predictions for the target classes.

4 Results

Table 3 presents the distribution of smart cities from the

analyzed data set by levels of sustainable development (high and

medium). Out of 141 cities, 121 have a high level of city HDI.

Therefore, residents of the vast majority of analyzed cities highly

appreciate the quality and comfort of living in their city.

Among the created models, the highest accuracy (97.5%) is

demonstrated by Fast Large Margin (Figure 3).

Figure 4 shows, that the precision is the highest for the Fast

Large Margin model (97.5%).

As can be seen from Figure 5, the recall is the highest (100.0%)

for the following models: Fast Large Margin, Logistic Regression,

Deep Learning, Decision Tree, Support Vector Machine.

FIGURE 3

The accuracy of the created machine learning models.

FIGURE 4

The precision of the created machine learning models.
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FIGURE 5

The recall for the created machine learning models.

FIGURE 6

The F measure for the created machine learning models.

FIGURE 7

The sensitivity of the created machine learning models.

The highest F measure (98.7%) also demonstrated by the Fast

Large Margin model (Figure 6).

All models besides the Naive Bayes model, GLM, and Random

Forest model have the highest specificity (100.0%; Figure 7).

Fast Large Margin, and Generalized Linear Model have the

highest specificity (80.0%; Figure 8).

The highest AUC measure (0.97%) has Generalized

Linear Model. For the Fast Large Margin model AUC = 0.94

(Figure 9).

As can be seen from Table 4, the optimal model for the

prediction levels of HDI cities is the Fast Large Margin model.

The high efficiency of the Fast Large Margin model is

associated with its unique algorithmic characteristics of hyperplane

optimization in a multidimensional feature space. The model

employs complex structural risk minimization mechanisms,

enabling non-linear classification with high accuracy by non-

linearly mapping input data into a higher-dimensional space. The

technical advantage of the method lies in its ability to effectively

solve optimization problems with a large number of features

through empirical risk minimization, efficient regularization to

prevent overfitting, and the use of kernel functions for non-

linear feature space transformation. The mathematical apparatus

of the model allows working with high-dimensional data,

where traditional linear classifiers demonstrate low efficiency,

ensuring robust generalization when classifying complex non-

linear dependencies.

Table 5 presents the confusion matrix. It is used to evaluate the

performance of a classification model and summarizes how well a

model correctly or incorrectly predicts different classes. The Fast

Large Margin model characterized of the high estimation of the

precision, and recall.

Figure 10 confirms the obtained results.

The Fast Large Margin has the best accuracy, precision, recall,

specificity, and F-measure scores among all other built models.
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FIGURE 8

The specificity of the created machine learning models.

FIGURE 9

The AUC of the created machine learning models.

TABLE 4 Comparison evaluation tables for creating machine learning models.

Model Accuracy (%) Precision (%) Recall (%) F measure (%) Sensitivity (%) Specificity (%) AUC

Naive Bayes 82.5 89.3 91.4 90.1 91.4 20.0 0.76

Generalized Linear

Model

92.4 97.1 93.8 95.3 93.8 80.0 0.97

Logistic Regression 87.5 87.5 100.0 93.3 100.0 0.0 0.83

Fast Large Margin 97.5 97.5 100.0 98.7 100.0 80.0 0.94

Deep Learning 87.5 87.5 100.0 93.3 100.0 0.0 0.11

Decision Tree 87.5 87.5 100.0 93.3 100.0 0.0 0.51

Random Forest 90.0 94.0 94.3 94.1 94.3 60.0 0.94

Gradient Boosted

Trees

87.5 87.5 94.3 93.3 100.0 0.0 0.94

Support Vector

Machine

87.5 87.5 100.0 93.3 100.0 0.0 0.51

This model optimized all metrics that can reliably predict the

target classes.

As can be seen from Figure 11, the variables arp—air pollution

(0.132), rec—recycling (0.108), ba—basic amenities (0.105), hs—

health services (0.074), rcdm—residents contribute to the decision-

making processes of the local government (0.072), cis—the current

internet speed and reliability fulfill the connectivity requirements

(0.072) make the greatest contribution to the distribution of

smart cities to the middle or high HDI level. The variables fem

(fulfilling employment) and ocmp (utilizing online reporting for

city maintenance problems leads to a prompt resolution) do not

influence the city HDI level, so they were not included in the

constructed model.

TABLE 5 Confusion matrix for the Fast Large Margin model.

Title 1 True 2 True 1 Class precision

pred minimum 4 0 100.00%

pred high 1 35 97.20%

Class recall 80.00% 100.00%

The Lift Chart explains the obvious advantage of using the Fast

Large Margin model for predicting the HDI level (Figure 12).

The created Fast Large Margin model predicted a 91%

probability of the world’s smart cities belonging to a high level of

HDI (Figure 13).
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FIGURE 10

The ROC curves for the created machine learning models.

FIGURE 11

Weights by correlation.

For the smart cities from the dataset, the probability of city HDI

level was determined (Table 6).

With the help of the built Fast Large Margin model simulator,

you can determine the city HDI level for countries that are not

included in the 2023 rating based on the corresponding values of

the indicators included in the built model and calculate the optimal

parameters of the model according to the specified restrictions.

5 Discussion

Based on a unique data set consisting of city HDI values and

54 main indicators of sustainable development for 141 smart cities

from 73 countries of the world, we conducted an empirical analysis

to determine the main drivers that influence the feeling of life

satisfaction of the residents of these cities. All analyzed cities are

classified by city HDI levels (high and medium). The vast majority

of cities included in the HDI-city SCI 2023 rating have a high level

of sustainable development of smart cities. Living in these cities

makes their residents feel comfort, quality, and life satisfaction.

The falsity of hypothesis H1 about the dependence of the level

of development of a smart city on the number of its inhabitants was

confirmed using graphic analysis. Large cities may be developed

in areas of the latest IT, but they are inferior to the quality of the

natural environment and the comfort of living in a metropolis.

Residents of smart cities do not rate them as safe and suitable for

a happy life in the city.

To test hypothesis H2 about the exclusive role of information

technologies in the formation of a smart city as a vector of

global sustainable development, a set of the following machine-

learningmodels was built: Naive Bayes, Generalized Linear, Logistic

Regression, Fast Large Margin, Deep Learning, Decision Tree,
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FIGURE 12

Lift chart for the Fast Large Margin model.

FIGURE 13

Lift chart for the Fast Large Margin model.

Random Forest, Gradient Boosted Trees, and Support Vector

Machine. The obtained models were compared. Empirical results

were obtained using RapidMiner Studio. It was established that the

optimal model for forecasting the level of sustainable development

of a smart city is the Fast Large Margin model (Poucke, 2020). To

prevent model overfitting, we used the L2 regularization technique,

which allowed us to control prediction errors. The error analysis

showed that 2.5% of predictions deviate from the actual city

HDI level, primarily in borderline cases between medium and

high development stages. Most errors have a normal distribution

within ±0.05 on the HDI scale, indicating high model stability

and its ability to accurately predict city development levels with

minimal deviations.

Using this model, the influence of each of the 54 analyzed

indicators of sustainable development of smart cities on quality

and comfortable living was determined (Table 7). All indicators are

subjective assessments of city residents in the following categories:

priority areas that they consider problematic for the prosperity

of their city; structures (health and safety, mobility, activities,

opportunities (work and school), governance), and technologies:

(health and safety, mobility, activities, opportunities (work and

school), governance). The variables fem and ocmp turned out

to be insignificant and did not enter the constructed model.

Therefore, the majority of residents from 141 cities do not consider

priority areas fulfilling employment a problem for the sustainable

development of their smart cities. Also, utilizing online reporting

for city maintenance problems leads to a prompt resolution

(technologies in health and safety) and does not affect the comfort

and quality of living in smart cities.

Priority areas, which they consider to be the most problematic

for the development of a smart city, exert the greatest influence on

the formation of a feeling of comfort and satisfaction with living in

the city. The top 4 most influential drivers include air pollution,

recycling, basic amenities, and health services. Therefore, the
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TABLE 6 Predictions of the Fast Large Margin model.

City City
HDI

Predictions
cityHDI

Confidence
medium

Confidence
high

1 Medium Medium 0.943 0.057

2 Medium Medium 0.956 0.044

3 Medium Medium 0.647 0.353

4 Medium High 0.097 0.903

5 Medium Medium 0.885 0.115

6 Medium Medium 0.596 0.404

7 Medium Medium 0.776 0.224

8 Medium Medium 0.598 0.402

9 High Medium 0.963 0.037

10 High High 0.063 0.937

11 High High 0.071 0.929

12 High High 0.143 0.857

13 High High 0.137 0.863

14 High High 0.137 0.863

15 High High 0.156 0.844

16 High Medium 0.724 0.276

17 High High 0.049 0.951

18 High High 0.285 0.715

19 High High 0.134 0.866

20 High High 0.260 0.740

21 High High 0.080 0.920

22 High High 0.106 0.894

23 High High 0.142 0.858

24 High High 0.083 0.917

25 High High 0.055 0.945

26 High High 0.057 0.943

27 High High 0.143 0.857

28 High High 0.139 0.861

29 High High 0.118 0.882

30 High High 0.137 0.863

31 High High 0.066 0.934

32 High High 0.095 0.905

33 High High 0.070 0.930

34 High High 0.087 0.913

35 High High 0.051 0.949

36 High High 0.105 0.895

37 High High 0.052 0.948

38 High High 0.061 0.939

39 High High 0.100 0.900

40 High High 0.132 0.868

41 High High 0.102 0.898

(Continued)

TABLE 6 (Continued)

City City
HDI

Predictions
cityHDI

Confidence
medium

Confidence
high

42 High High 0.080 0.920

43 High High 0.080 0.920

44 High High 0.070 0.930

45 High High 0.061 0.939

46 High High 0.071 0.929

47 High High 0.116 0.884

48 High High 0.089 0.911

49 High High 0.071 0.929

50 High High 0.077 0.923

51 High High 0.104 0.896

52 High High 0.089 0.911

53 High High 0.072 0.928

54 High High 0.093 0.907

55 High High 0.078 0.922

56 High High 0.072 0.928

inhabitants of smart cities first all value a safe natural environment,

comfortable living conditions, and safety for their health. This fact

can be explained by the fact that most smart cities are metropolises

with a high level of air pollution, which is 5th in the list of important

to self-government. The majority of respondents want to take a

direct part in solving important problems in their city. None of the

top 5 drivers of sustainable development of a smart city is related to

digitalization. Therefore, the hypothesis that the concept of a smart

city is based exclusively or mainly on the application of information

technologies to improve the quality of life of residents is confirmed

to be false.

The top 20 most important drivers affecting the city HDI

included only 5 associated with technologies: the current internet

speed and reliability fulfill the connectivity requirements, public

online access to city finances has contributed to a decrease in

corruption, a website or App that makes it easier for residents to

give away unwanted items, the presence of CCTV cameras has

instilled a sense of safety among residents, a website or App that

enables residents to monitor air pollution effectively. Moreover, the

last 3 of them relate to the field of health and safety. Residents of

modern cities prefer residential security over IT innovation.

However, artificial intelligence and IoT technologies can

radically transform social justice in urban environments, creating

both new opportunities and hidden risks of inequality. Algorithms

may automatically reinforce discriminatory patterns in the

distribution of urban resources, allocation of social services,

or urban infrastructure planning, leading to deepening social

gaps between different population groups. IoT technologies can

create a total surveillance space where residents’ data becomes a

commodity, and privacy becomes conditional, which is particularly

critical for marginalized communities with fewer opportunities

to resist technological monitoring. At the same time, these same
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TABLE 7 Independent variables are included in Fast Large Margin, by weight rating.

No. Variable Means Category

1 arp Air pollution Priority areas

2 rec Recycling Priority areas

3 ba Basic amenities Priority areas

4 hs Health services Priority areas

5 rcdm Residents contribute to the decision-making processes of the local government Governance (structures)

6 cis The current internet speed and reliability fulfill the connectivity requirements Opportunities: work and school (technologies)

7 rpf Residents provide feedback on projects undertaken by the local government Governance (structure)

8 pacf Public online access to city finances has contributed to a decrease in corruption Governance (technologies)

9 llo Local institutions offer opportunities for lifelong learning Opportunities: work and school (structures)

10 ware A website or App that makes it easier for residents to give away unwanted items Health and safety (technologies)

11 cctv The presence of CCTV cameras has instilled a sense of safety among residents Health and safety (technologies)

12 emp A website or App that enables residents to monitor air pollution effectively Health and safety (technologies)

13 pts Public transport is satisfactory Mobility (structures)

14 app There are no problems concerning air pollution Health and safety (structures)

15 pt Public transport Priority areas

16 msps The provision of medical services is satisfactory Health and safety (structures)

17 smob Social mobility Priority areas

18 bsn Basic sanitation is affordable and addresses the requirements of the most economically

disadvantaged areas

Health and safety (structures)

19 rss Recycling services meet the necessary standards Health and safety (structures)

20 psp There are no problems concerning public safety Health and safety (structures)

21 pid Processing identification documents online has resulted in a reduction in waiting times Governance (technologies)

22 fpw The availability of free public WiFi has enhanced access to city services Health and safety (technologies)

23 sec Security Priority areas

24 vip The implementation of online voting has led to increased participation Governance (technologies)

25 spcb The online services provided by the city have streamlined the process of starting a new

business

Opportunities: work and school (technologies)

26 sed School education Priority areas

27 fh Finding housing with a rent that amounts to 30% or less of a monthly salary poses no

problem

Health and safety (structures)

28 cco Corruption among city officials is not a cause for concern Governance (structures)

29 mfw Minorities feel a sense of welcome Opportunities: work and school (structures)

30 ca Cultural activities, including shows, bars, and museums are satisfactory Activities (structures)

31 dap Applications that direct you to an available parking space have decreased travel time Mobility (technologies)

32 acl Online access to job listings has facilitated the process of finding employment Opportunities: work and school (technologies)

33 oprp An online platform where residents can propose ideas that have enhanced the quality of

city life

Governance (technologies)

34 rdc Road congestion Priority areas

35 cen Citizen engagement Priority areas

36 efs Services for finding employment are accessible Opportunities: work and school (structures)

37 afh Affordable housing Priority areas

38 unem Unemployment Priority areas

39 tcp There are no problems concerning traffic congestion Mobility (structures)

(Continued)
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TABLE 7 (Continued)

No. Variable Means Category

40 pit The city provides information on traffic congestion through mobile phones Mobility (technologies)

41 cgs The majority of children have the opportunity to attend a good school Opportunities: work and school (structures)

42 csa The use of Car-sharing apps has alleviated traffic congestion Mobility (technologies)

43 bhr The availability of bicycle hiring services has reduced congestion Mobility (technologies)

44 ama Arranging medical appointments online has enhanced accessibility to healthcare services Health and safety (technologies)

45 its Schools effectively teach IT skills Opportunities: work and school (technologies)

46 grs Green spaces Priority areas

47 bcj New job creating are being generated by businesses Opportunities: work and school (structures)

48 ilg Accessing information about local government decisions is easy Governance (structures)

49 sts The implementation of online scheduling and ticket sales has simplified the use of public

transport

Mobility (technologies)

50 cor Corruption Priority areas

51 opt The ability to purchase tickets to shows and museums online has simplified the attendance

process

Activities (technologies)

52 gss Green spaces correspond to satisfaction Activities (structures)

technologies can provide more equitable access to urban services,

optimize resource distribution, and create more transparent

communication mechanisms between authorities and residents,

but only under conditions of ethical and balanced implementation.

The following indicators turned out to be the least important

for determining the city HDI: accessing information about

local government decisions is easy (governance, structures),

the implementation of online scheduling and ticket sales has

simplified the use of public transport (mobility, technologies),

corruption (priority area), the ability to purchase tickets to

shows and museums online has simplified the attendance process

(activities, technologies), green spaces correspond to satisfaction

(activities, structures). This list includes two drivers from the

“technologies” category, which once again confirms that the level

of IT implementation is not a determining factor for the life

satisfaction of residents of smart cities. An interesting fact is that

corruption is the third from the bottom in the ranking of significant

drivers of the city HDI. Residents of smart cities do not feel

threatened by this phenomenon for the sustainable development

of their cities.

Besides, cultural, economic, and political differences between

the studied cities can create unique contexts that influence

residents’ perception of quality of life and the effectiveness of

urban technologies. Different socio-economic conditions, such as

income levels, employment structures, and social inequalities, can

shape urban residents’ expectations about the urban environment

in various ways. Political systems and the level of democratic

participation in different countries can significantly impact how

people evaluate governance and opportunities to influence urban

processes. Cultural features, including attitudes toward technology,

collective interaction, and development priorities, can explain

the variability in the perception of different aspects of a

“smart city.” Moreover, cities with a more developed culture

of technological innovation might evaluate the role of digital

solutions differently compared to cities with a more traditional way

of life.

Thus, city planners and policymakers should focus on

addressing the core issues residents face in urban life. While

technological innovations are important, they are secondary

to the fundamental aspects of quality of life. In particular,

leaders should prioritize reducing air pollution, improving waste

recycling systems, ensuring access to basic services, and enhancing

healthcare. Citizen engagement is crucial, as residents seek active

participation in local decision-making processes. This means that

policymakers should develop more transparent and interactive

governance models that enable citizens to directly influence urban

development strategies. Although smart city technologies can be

beneficial, they should be implemented as supportive tools to meet

real human needs rather than as an end in themselves. Our research

highlights the importance of a comprehensive approach to urban

development that prioritizes human experience and environmental

quality over purely technological solutions. City leaders should

view technology as a means to enhance quality of life, not as the

primary goal of urban transformation.

This result can be the subject of our further research. In the

future, we plan to investigate the relationship between city HDI and

country HDI for the analyzed cities. Also, a promising direction

is the development of applied models for the study of the impact

of measuring devices of various security aspects of the countries

of the world (Kovalchuk et al., 2023a,b, 2022; Kovalchuk and

Berezka, 2022; Berezka and Kovalchuk, 2019) on the sustainable

development of smart cities.

The results obtained in this work they can provide important

relevant information to decision-makers regarding important

drivers of residents’ perception of comfort and quality of living

in smart cities. Also, the obtained conclusions can become the

basis for the development of effective strategies for the sustainable

development of smart cities and digitalization policy.
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6 Conclusions

Based on the study of 141 smart cities from 73 countries around

the world, it was established that the main drivers influencing the

feeling of comfort and quality of life among smart city residents are

primarily environmental factors, basic amenities, and healthcare

services, rather than technological solutions. The hypothesis about

the exclusive influence of information technologies on forming the

concept of a “smart city” was not confirmed, as among the 20 most

important factors, only 5 are related to technologies, with most of

them concerning the field of security and health. The assumption

about the dependence of a smart city’s development level on its

population was also disproven.

Using the Fast Large Margin model with 97.5% accuracy made

it possible to determine that air pollution (0.132), waste recycling

(0.108), basic amenities (0.105), healthcare services (0.074), and

residents’ ability to participate in decision-making processes (0.072)

have the greatest impact on the city development index (HDI-city).

Meanwhile, corruption, the ability to purchase tickets online, and

access to information about local government decisions proved to

be the least important factors.

The research results have important practical significance for

city planners and policymakers, who should focus on addressing

the basic problems of urban life, viewing technology as a tool for

improving quality of life rather than as an end in itself. Involving

citizens in decision-making processes and ensuring environmental

safety should become priority areas for modern city development.

The proposed model can be used to predict the development

level of cities not included in the 2023 rating and to develop

optimal sustainable development strategies. A promising direction

for further research is studying the relationship between city HDI

and country HDI, as well as analyzing the impact of various security

aspects on the sustainable development of smart cities.
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