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Explainable Artificial Intelligence (XAI) is increasingly pivotal in Unmanned Aerial

Vehicle (UAV) operations within smart cities, enhancing trust and transparency

in AI-driven systems by addressing the ’black-box’ limitations of traditional

Machine Learning (ML) models. This paper provides a comprehensive overview

of the evolution of UAV navigation and control systems, tracing the transition

from conventional methods such as GPS and inertial navigation to advanced

AI- and ML-driven approaches. It investigates the transformative role of XAI in

UAV systems, particularly in safety-critical applications where interpretability is

essential. A key focus of this study is the integration of XAI into monocular

vision-based navigation frameworks, which, despite their cost-e�ectiveness

and lightweight design, face challenges such as depth perception ambiguities

and limited fields of view. Embedding XAI techniques enhances the reliability

and interpretability of these systems, providing clearer insights into navigation

paths, obstacle detection, and avoidance strategies. This advancement is crucial

for UAV adaptability in dynamic urban environments, including infrastructure

changes, tra�c congestion, and environmental monitoring. Furthermore, this

work examines how XAI frameworks foster transparency and trust in UAV

decision-making for high-stakes applications such as urban planning and

disaster response. It explores critical challenges, including scalability, adaptability

to evolving conditions, balancing explainability with performance, and ensuring

robustness in adverse environments. Additionally, it highlights the emerging

potential of integrating vision models with Large Language Models (LLMs) to

further enhance UAV situational awareness and autonomous decision-making.

Accordingly, this study provides actionable insights to advance next-generation

UAV technologies, ensuring reliability and transparency. The findings underscore

XAI’s role in bridging existing research gaps and accelerating the deployment of

intelligent, explainable UAV systems for future smart cities.
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1 Introduction

Unmanned Aerial Vehicles (UAVs) have evolved from early
military reconnaissance tools into essential assets across various
industries (Mozaffari et al., 2019; Sharma et al., 2020). Initially
developed for surveillance during World War I and later refined
with radio-controlled advancements in World War II (Fahlstrom
et al., 2022; Sullivan, 2006), UAVs remained largely confined to
military applications until the late 20th century (Keane and Carr,
2013). Advances in consumer electronics, including lightweight
batteries, high-resolution cameras, and compact processors,
alongside regulatory changes, drove their expansion into civilian
and commercial domains, enabling applications in photography,
disaster response, environmental monitoring, and humanitarian
efforts (Xing et al., 2024; Battsengel et al., 2020; Fotouhi et al., 2019;
Nex et al., 2022).

Between 2000 and 2010, research focused on improving
UAV design, navigation, control systems, and communication
technologies, enhancing their ability to execute sophisticated
autonomous operations (Hassanalian and Abdelkefi, 2017;
Gyagenda et al., 2022; Gu et al., 2020; Ebeid et al., 2018). These
advancements facilitated AI-driven navigation, adaptive flight
control, and real-time decision-making, allowing UAVs to
support critical applications such as disaster relief and climate
monitoring (Hernández et al., 2021; Adade et al., 2021). With
increasing adoption, modern UAVs now face pressing challenges,
including scalability, efficient autonomy, and enhanced situational
awareness. Addressing these challenges requires novel approaches
such as Explainable AI (XAI) to improve trust, transparency, and
decision-making in dynamic environments.

As UAVs have evolved, AI has emerged as a transformative
force in navigation and control, enabling unprecedented levels of
autonomy and precision. AI-driven systems process large datasets
in real-time, allowing UAVs to adapt to dynamic environments
and perform complex tasks such as obstacle avoidance, route
optimization, and accurate target tracking (Lahmeri et al., 2021;
Rovira-Sugranes et al., 2022; Su et al., 2023). These advancements
have significantly expanded UAV operational scope, reducing
human intervention and improving efficiency in applications like
surveillance, environmental monitoring, and disaster response. A
key component of AI-enabled navigation is monocular vision,
which relies on a single camera to perceive the environment,
offering a cost-effective and lightweight alternative to multi-sensor
systems. By leveraging AI and Machine Learning (ML) algorithms,
monocular vision enables UAVs to estimate depth, detect obstacles,
and construct environmental maps in real time, facilitating
precise navigation and responsive control even in dynamic and
unpredictable environments (Padhy et al., 2018b). This integration
allows UAVs to operate efficiently without the reliance on expensive
or bulky multi-sensor setups, making monocular vision an essential
technology for autonomous UAV operations.

However, as UAVs become increasingly autonomous, the need
for transparency and trust in their decision-making processes has
brought Explainable Artificial Intelligence (XAI) to the forefront.
XAI frameworks address the "black-box" nature of AI algorithms by
providing interpretable and human-understandable explanations
for UAV navigation decisions (Minh et al., 2022; Došilović et al.,

2018). For instance, XAI techniques can explain how a UAV
interprets sensor data, including data from consumer electronics-
based components such as high-resolution cameras and lightweight
processors, to avoid obstacles or prioritize routes under specific
constraints. XAI is also significantly important for enhancing
monocular vision by explaining the UAV’s interpretations of visual
data, such as how depth was inferred or why a specific obstacle
avoidance maneuver was chosen. This is especially critical in high-
stakes applications such as environmental monitoring and urban
planning, where stakeholders require assurance about the reliability
and rationale of UAV operations (Kurunathan et al., 2023; Wilson
et al., 2021). Therefore, by combining AI-driven automation
with XAI interpretability and advances in consumer electronics
technologies, UAVs can achieve both operational efficiency and
the transparency needed for greater acceptance and trust in
their capabilities (Shakhatreh et al., 2019; Sharma et al., 2020).
Figure 1 illustrates how the advancements in consumer electronics
and monocular vision have collectively driven the evolution of
UAVs, enabling innovations such as GPS navigation, autonomous
functionality, and XAI.

1.1 Related surveys

State-of-the-art survey papers have significantly advanced
UAV navigation efforts by addressing various challenges and
proposing innovative solutions. For instance, Lu et al. (2018)
reviewed vision-based methods for UAV navigation, focusing
on key components like visual localization, mapping, obstacle
avoidance, and path planning. Similarly, Rezwan and Choi
(2022) provided a comprehensive survey of AI approaches for
autonomous UAV navigation, categorizing optimization-based and
learning-based techniques while exploring their fundamentals,
working principles, and applications. Gyagenda et al. (2022)
analyzed independent navigation solutions for GNSS-denied
environments, emphasizing perception, localization, and motion
planning, whereas Balamurugan et al. (2016) reviewed vision-
based navigation techniques, including Visual Odometry (VO) and
Simultaneous Localization and Mapping (SLAM), alongside sensor
fusion methods for enhanced performance. Alam and Oluoch
(2021) examined adaptive navigation techniques for safe flight
and landing, while Gu et al. (2020) focused on ANN-based flight
controllers for optimization. Ebeid et al. (2018) highlighted the
role of open-source platforms in accelerating UAV research and
development.

In the context of monocular vision, existing reviews such
as Kakaletsis et al. (2021); Yang et al. (2018), and Tong et al.
(2023) have explored its applications in UAV navigation. Belmonte
et al. (2019) examined vision-based autonomous UAVs for tasks
like navigation, control, tracking or guidance, and sense-and-
avoid, emphasizing advancements in vision systems, algorithms,
UAV platforms, and validation methods. This study highlighted
the growing potential of UAVs as personal aerial assistants
enabled by computer vision technologies. Similarly, Xin et al.
(2022) investigated vision-based autonomous landing for UAVs,
showcasing advantages like strong autonomy, low cost, and high
anti-interference capability, while categorizing landing scenarios
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FIGURE 1

The evolution of UAVs over time through combined advances in consumer electronics and monocular vision.

into static, dynamic, and complex environments. Bijjahalli et al.
(2020) emphasized the use of AI-based methods, including
Artificial Neural Networks (ANNs), Support Vector Machines
(SVMs), and ensemble approaches, to enhance localization,
obstacle detection, and data fusion for small UAVs. Collectively,
these studies demonstrate the transformative impact of advanced
navigation and control strategies, pushing UAV capabilities
in increasingly complex environments. Table 1 presents a
comparative analysis of existing survey papers and this review.
The selected surveys were chosen based on their significant
contributions to UAV navigation, obstacle avoidance, path
planning, and vision-based methodologies. These works represent
foundational studies in AI-driven UAV operations, encompassing
techniques such as sensor fusion and monocular vision. However,
despite their relevance, none of these surveys comprehensively
integrate XAI into their frameworks, highlighting the unique
contribution of this review.

1.2 Motivation and contribution

Existing survey papers have primarily focused on UAV
navigation technologies, monocular vision, or the challenges
of AI integration in isolation. However, the critical issue

of interpretability in AI-driven UAV systems remains largely
unaddressed. This review bridges these domains by examining
how XAI can enhance trust, reliability, and decision-making in
UAV navigation. The study provides a comprehensive analysis of
UAV navigation’s evolution–from traditional methods to modern
AI and ML approaches while critically assessing the limitations
of monocular vision and the transformative potential of XAI.
Unlike prior works, it adopts a holistic perspective, emphasizing
the synergy between XAI, monocular vision, and consumer
electronics. By leveraging advancements such as high-resolution
cameras and compact processors, it demonstrates how consumer-
grade hardware facilitates the integration of XAI and monocular
vision, making UAV navigation more accessible and interpretable.
Furthermore, this review identifies key research gaps and offers
actionable insights to enhance the reliability and performance of
AI-driven UAV systems, particularly in high-stakes applications. By
addressing these critical challenges, it represents a significant step
toward bridging the gap between cutting-edge innovation and real-
world deployment in UAV operations. The key contributions of
this work are as follows:

• First, this paper provides a comprehensive overview of
the evolution of UAV navigation and control systems,
highlighting the transition from traditional methods, such
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TABLE 1 A Comparison between existing reviews and presented work.

References Localization
and

mapping

Obstacle
avoidance

Path
planning

Vision-based
methods

Monocular
vision

AI & ML Sensor
fusion

XAI

Lu et al. (2018)
√ √ √ √

× × × ×

Rezwan and
Choi (2022)

× ×
√

× ×
√

× ×

Gyagenda et al.
(2022)

√
× × × × × × ×

Balamurugan
et al. (2016)

√ √
×

√
× ×

√
×

Alam and
Oluoch (2021)

× ×
√

× × × × ×

Gu et al. (2020) × × × × ×
√

× ×

Belmonte et al.
(2019)

√ √ √ √
× × × ×

Xin et al.
(2022)

× ×
√ √

× × × ×

Bijjahalli et al.
(2020)

√ √ √
× ×

√ √
×

This work
√ √ √ √ √ √ √ √

as GPS and inertial navigation, to advanced AI- and
ML-driven approaches. It investigates the role of XAI in UAV
systems, addressing the "black-box" nature of traditional ML
models. This study explores how XAI enhances autonomous
navigation and decision-making in safety-critical applications,
emphasizing the integration of technologies, including
monocular vision and modern consumer electronics, to
expand UAV capabilities across diverse use cases.

• Then, this work underscores the transformative potential of
XAI in monocular vision frameworks, which, despite being
lightweight and cost-effective, face challenges such as depth
perception ambiguities and limited fields of view. This study
demonstrates how the incorporation of XAI, significantly
improves the reliability and interpretability of monocular
vision systems by providing clearer insights into navigation
paths, obstacle detection, and avoidance strategies.

• The work then examines how XAI frameworks enhance
transparency and trust in UAV decision-making, particularly
in high-stakes applications like urban planning and
environmental monitoring. It identifies key challenges,
including scalability, adaptability to dynamic environments,
balancing explainability with performance, ensuring
robustness in adverse conditions, and fostering collaboration
between vision models and Large Language Models (LLMs)
to improve UAV operations. By exploring opportunities
for integrating advancements in consumer electronics,
monocular vision, and XAI, the paper provides actionable
insights that pave the way for future research and the
development of next-generation UAV technologies that are
both reliable and transparent.

The rest of the paper is organized as follows: Section
methdology presents the methodology, Section navig-contr

discusses UAV navigation and control, Section moncol explores
monocular vision for UAVs, highlighting challenges and advances,
Section sec:XAI focuses on XAI integration for UAV navigation
and control, Section challenges addresses the challenges and future
research directions, and Section conclusion concludes the paper.

2 Methodology

This study employs a structured methodological approach
to investigate the role of XAI in monocular vision-based UAV
navigation for smart cities. The methodology includes a systematic
literature review and a methodology-driven analysis of research
gaps and future directions, focusing on the integration of XAI
into UAV systems to enhance interpretability, trust, and overall
performance in dynamic urban environments.

2.1 Systematic literature review approach

The hypothesis driving this study asserts that the integration of
XAI with monocular vision-based UAV navigation systems
substantially improves interpretability, trust, and overall
performance, especially within the dynamic and complex
environments of smart cities. By addressing the "black-box"
nature of AI models, XAI offers greater transparency into the
decision-making processes of UAVs. This increased transparency
is crucial for improving the safety, reliability, and adaptability of
UAV operations in rapidly evolving urban settings. To establish the
current state of UAV navigation, monocular vision techniques, and
XAI applications, a comprehensive and systematic literature review
was conducted. The review process was structured as follows:
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• Selection Criteria: Articles and survey papers were selected
from high-impact journals, conference proceedings, and
technical reports to ensure credibility. The selection was based
on relevance to UAV navigation, AI-based path planning,
monocular vision methodologies, and explainability in AI-
driven UAV applications. Only articles with more than 20
citations were initially considered to ensure the inclusion of
high-quality, well-established research. Additionally, newer
papers with fewer citations but emerging relevance were
selected to capture the latest advancements in the field. Papers
addressing advances in AI-driven UAV systems and their
practical implementations in smart cities were prioritized.

• Classification of Studies: The studies were classified into
key areas that reflect the core aspects of UAV navigation,
monocular vision, and the integration of XAI. The first
category, UAV Navigation Evolution, examines the transition
from traditional navigation systems such as GPS and Inertial
Measurement Units (IMUs) to AI-driven approaches, which
leverage ML and data fusion techniques to enhance the
autonomy, precision, and adaptability of UAV systems. The
second category, Monocular Vision Limitations, addresses
challenges inherent in monocular vision systems, such as
depth perception issues, occlusions, and environmental
sensitivities, which can limit the effectiveness of vision-based
navigation in UAVs. Finally, the Role of XAI in UAVDecision-
Making explores how various XAI techniques, including
post-hoc explainability methods and interpretable model
architectures, have been applied to improve transparency,
trust, and decision-making in UAV operations. This
classification emphasizes the evolution of these fields and
underscores their interconnectedness in advancing UAV
technologies, particularly for applications in smart cities.

• Comparative Analysis: A detailed comparative analysis was
performed to assess the strengths and limitations of existing
studies on UAV navigation, monocular vision, and XAI
integration. While much of the existing literature addresses
individual aspects such as AI-driven navigation or monocular
vision techniques, there is a significant gap in studies that
integrate XAI into monocular vision-based UAV systems.
This gap highlights the need for further research in this
area, particularly to enhance the interpretability and decision-
making capabilities of UAV systems in dynamic environments.
The current study aims to address this gap by focusing on the
synergy between XAI and monocular vision, contributing to
more reliable and transparent UAV operations.

2.2 Methodology-driven research gaps and
future directions

A critical evaluation of existing UAV navigation studies
identified several challenges and research gaps. These include
scalability challenges, particularly the integration of XAI in UAV
systems that operate at large scales in both urban and rural
environments. There is also a need to explore computational
efficiency improvements to deploy XAI without compromising
UAV battery life and processing capacity. Furthermore, adaptability

to environmental conditions is a key challenge, as weather
variations, lighting conditions, and terrain differences impact the
performance of XAI-based UAV navigation systems. Techniques
for adaptive learning and real-time model adjustments must be
examined to enhance performance in dynamic environments. The
balancing of explainability with performance remains an ongoing
challenge, requiring the development of hybrid approaches where
simpler, interpretable models can assist more complex deep-
learning models in critical decision-making processes. Ensuring
robustness in adverse conditions is another key area of focus,
particularly the resilience of XAI-enhanced UAV navigation in
challenging environments, such as disaster zones and low-visibility
conditions. Redundancy mechanisms should be investigated to
ensure system stability in unpredictable scenarios.

Looking toward the future, synergy between XAI, vision
models, and LLMs presents promising opportunities. This study
explores the potential of multimodal AI models for UAVs, where
LLMs are combined with computer vision models to improve
UAV situational awareness and autonomous decision-making. The
integration of LLMswith computer vision inUAV-based perception
systems is examined through real-world applications. Human-
UAV interaction via natural language explanations is also explored,
leveraging LLMs to provide human-readable explanations of UAV
decision-making processes, thereby enhancing human trust in
autonomous UAV operations. Finally, enhancing UAV decision-
making with LLMs involves evaluating how LLMs can be integrated
into UAV mission planning, coordination, and adaptive response
strategies, alongside examining novel architectures that blend
vision, language understanding, and real-time UAV decision logic.

Based on these findings, several actionable insights and
recommendations for advancing XAI-integrated UAV technologies
are provided. These include guidelines for the effective deployment
of XAI in UAV applications, strategies for selecting the most
appropriate XAI models based on operational requirements, and
the development of hybrid AI models that optimize the trade-offs
between transparency and efficiency. The study also proposes the
use of lightweight explainable models suited for real-time UAV
applications and explores the feasibility of leveraging consumer-
grade hardware, such as compact processors and high-resolution
cameras, combined with edge AI techniques, to support cost-
effective UAV navigation solutions. These insights inform the
subsequent sections, which focus deeper into the application of
these recommendations and explore real-world use cases.

3 UAV’s navigation and control

Navigation and control have been primary areas of research
since the inception of UAVs, undergoing significant evolution over
the years. The focus has gradually shifted from basic navigation
techniques to advanced systems that enable UAVs to operate
autonomously in complex environments. Rapid advancements in
consumer electronics have further bridged the gap between high-
end military UAVs and affordable civilian models by introducing
compact, high-performance components originally designed for
consumer markets. This section provides a detailed discussion of
the evolution of UAV navigation systems, the advancements in
consumer electronics for UAV applications, the integration of AI
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and ML technologies, and the challenges in achieving robust UAV
navigation and control.

3.1 Evolution and current state of UAV
navigation systems

Initially, the navigation and control techniques focused on
remotely piloted or semi-autonomous systems that attracted
a growing interest in the sophisticated control mechanisms
used in UAVs today, such as Ground Positioning System
(GPS) guidance (Javaid et al., 2023b; Kwak and Sung, 2018),
Inertial Navigation Systems (INS) (Zhang and Hsu, 2018),
and visual navigation through cameras and computer vision
(Elkaim et al., 2015). Over time, advancements in consumer
electronics introduced compact, high-resolution cameras and
lightweight processors, enabling more accessible and efficient
visual navigation systems. These developments, alongside more
sophisticated control mechanisms, led to the creation of algorithms
such as Proportional-Integral-Derivative (PID), Linear Quadratic
Regulator (LQR), Model Predictive Control (MPC), adaptive
control, robust control, sliding mode control, and fuzzy logic
controllers (Kim et al., 2006). These control techniques aim to
enhance UAV stability, maneuverability, and the ability to respond
to changing environmental conditions. With the rapid growth in
UAV applications, new control strategies have been introduced
to address the increasing complexity of tasks and environments.
State-of-the-art schemes (Balamurugan et al., 2016; Gu et al., 2020;
Ebeid et al., 2018) have also focused on addressing challenges
in complex and GPS-denied environments through autonomous
solutions that enhance perception, localization, and motion
planning. Vision-based techniques have also been developed to
ensure safe flight in dynamic conditions. Neural network-based
controllers optimize performance, and open-source platforms have
accelerated innovation, making advanced tools more accessible.
These advancements have made UAVs highly versatile and capable
of operating autonomously in a wide range of situations, from
agriculture and logistics to disaster response.

3.2 AI and ML-based navigation and
challenges

The integration of AI and ML has transformed UAV navigation
systems, enabling unprecedented autonomy and precision in
operational performance. Techniques such as Deep Reinforcement
Learning (DRL) allow UAVs to optimize navigation strategies
by learning from dynamic environments through trial-and-error
frameworks (Wang C. et al., 2019; Wang et al., 2017). Similarly,
Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) are employed for real-time feature extraction
and sequence analysis in tasks such as obstacle detection and
trajectory prediction (Maravall et al., 2015; Padhy et al., 2018a).
Advanced sensor fusion techniques integrate data from multiple
sources, including monocular vision, LiDAR, and Radar, to
provide UAVs with comprehensive situational awareness (Alam
and Oluoch, 2021). These AI-driven methodologies allows UAVs

to execute complex tasks, such as multi-agent coordination, real-
time path planning, and adaptive flight control, in challenging and
GPS-denied environments.

Despite these advancements, the integration of AI and ML in
UAVs poses several challenges. Computational limitations remain
a significant barrier, as real-time AI processing often exceeds
the onboard capabilities of lightweight UAV platforms, even
with optimized processors (Hashesh et al., 2022). Furthermore,
the generalizability of AI models is hindered by the variability
in operational environments, such as diverse terrains, dynamic
obstacles, and unpredictable weather conditions. The reliance on
training data introduces risks of bias and underperformance in
novel scenarios, requiring robust domain adaptation techniques
(Puente-Castro et al., 2022; Kurunathan et al., 2023). Additionally,
the black-box nature of AI algorithms raises concerns about
interpretability and trust, particularly in high-stakes applications.
Integrating diverse sensors, including consumer electronics-based
monocular vision and advanced sensing technologies such as
LiDAR, introduces synchronization and computational challenges,
further complicating real-time data fusion and decision-making.
Addressing these challenges requires leveraging advancements in
consumer electronics, which have introduced innovative hardware
solutions to enhance UAV navigation and control capabilities.
These contributions are explored in detail in the following section
(Sun et al., 2024; McEnroe et al., 2022). Figure 2 further illustrates
the progression from traditional UAV navigation to AI/ML
integration, emphasizing XAI’s role in enhancing capabilities such
as obstacle detection.

3.3 Consumer electronics in UAV
navigation

Advancements in consumer electronics have profoundly
transformed UAV systems, driving remarkable improvements in
navigation accuracy, operational efficiency, and system versatility.
High-resolution cameras, lightweight and powerful processors
optimized for edge computing, and energy-efficient batteries
have enabled smaller UAVs to perform computationally intensive
tasks under stringent resource constraints (Bebortta et al., 2024).
Previously, UAVs depended on bulky multi-sensor arrays and
centralized processing units, which limited their agility and
deployment flexibility. The shift to monocular vision systems,
utilizing compact and consumer-grade cameras, has revolutionized
depth estimation and environmental mapping by leveraging
cutting-edge advancements in image sensor technology and optical
design. These systems efficiently capture high-fidelity, real-time
visual data crucial for tasks such as obstacle detection, terrain
mapping, and target tracking, offering a cost-effective alternative
to traditional setups like stereo vision or LiDAR.

Furthermore, the integration of consumer-grade Graphics
Processing Units (GPUs) and Tensor Processing Units (TPUs) has
significantly enhanced UAV computational capabilities by enabling
the deployment of on-device AI models. Modern GPUs deliver
accelerated processing power tailored for ML inference, reducing
latency in decision-making processes. This advancement facilitates
real-time navigation and rapid response maneuvers, critical for
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FIGURE 2

The role of AI/ML and XAI in optimizing UAV navigation.

operations in dynamic and unpredictable environments (Ahmed
and Jenihhin, 2022). Edge computing frameworks, enabled by these
processors, allow UAVs to process data locally, reducing reliance
on ground-based control systems and increasing the reliability of
autonomous operations. Energy-efficient battery technologies, such
as Lithium-Polymer (LiPo) batteries, developed through consumer
electronics innovations, have further bolstered UAV performance
by extending flight durations and increasing payload capacities.
These batteries, characterized by high energy density and improved
discharge rates, support longer missions and enable UAVs to
carry additional sensors or communication equipment without
sacrificing efficiency. Complementary advancements in power
management systems and lightweight electronic components
have also contributed to UAV miniaturization, enabling the
development of agile and versatile designs suitable for a
wide range of applications (Sarkar, 2024; Mahmood et al.,
2023).

The collaboration between consumer electronics and UAV
technology has additionally fostered the creation of modular and
customizable UAV systems. Wireless communication technologies,
including Wi-Fi and 4G/5G modules, enhance UAV capabilities by
enabling seamless data transmission and real-time remote control,
essential for applications that require continuous monitoring
and rapid intervention (Ullah et al., 2020; Huang et al., 2024).
These synergies have propelled UAV systems into a new era
of operational excellence, making them indispensable tools
across various domains. Notably, monocular vision systems,
driven by compact and consumer-grade cameras, exemplify

how advancements in consumer electronics have reshaped UAV
navigation. These systems have become a transformative solution
for depth estimation and environmental mapping, offering cost-
effective and efficient alternatives to traditional approaches, as
explored in the next section (Yang et al., 2018; Padhy et al.,
2019).

4 Monocular vision for UAVs:
challenges and advances

Monocular vision systems have emerged as a pivotal innovation
in UAV navigation, offering lightweight and cost-effective solutions
for visual sensing. This section provides the overview, examines
the key challenges, and discusses the existing methodologies
that can enhance their performance and reliability in diverse
applications.

4.1 Overview and challenges

Monocular vision enables UAVs to perceive depth and three-
dimensional objects using a single camera, unlike binocular vision,
which relies on two cameras for stereopsis. While monocular
vision offers a cost-effective and lightweight alternative to
stereoscopic systems, its primary drawback is limited depth
perception, making accurate distance estimation inherently
challenging. This limitation directly impacts essential UAV

Frontiers in SustainableCities 07 frontiersin.org

https://doi.org/10.3389/frsc.2025.1561404
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Javaid et al. 10.3389/frsc.2025.1561404

functions such as obstacle detection, navigation, and scene
understanding (Miclea and Nedevschi, 2021; Madhuanand
et al., 2021), increasing the risk of navigation errors and
collisions.

Despite these challenges, monocular vision remains
fundamental to UAV perception, thanks to recent technological
advancements. High-resolution cameras, lightweight processors,
and efficient image-processing algorithms have enhanced UAVs’
ability to estimate distances, detect objects, and construct real-time
environmental maps. These innovations provide a streamlined
alternative to multi-sensor setups, reducing the size, weight, and
complexity of onboard equipment while maintaining robust
performance. However, while these advancements improve
reliability, they do not eliminate the fundamental limitations
of monocular vision, particularly in complex and dynamic
environments.

In addition to depth estimation issues, monocular vision
systems face several challenges that hinder UAV navigation and
control (Lin et al., 2017; Choi and Kim, 2014; Zhao et al.,
2019b). Size estimation remains problematic, as a single camera
struggles to distinguish objects at varying distances, leading to
ambiguities in detection (Kendall et al., 2014). A limited field
of view further restricts situational awareness, particularly in
complex urban environments where UAVs must track multiple
moving objects such as vehicles and pedestrians. The constrained
visual range reduces the UAV’s ability to anticipate obstacles,
often requiring frequent reorientation to compensate for blind
spots. This leads to increased computational demands, energy
consumption, and potential delays in real-time decision-making.
In dense areas such as intersections or pedestrian zones, UAVs
may fail to detect fast-moving objects in time, increasing the risk
of navigation errors or inefficient path planning. Additionally,
lighting variations, environmental textures, and sudden scene
changes can degrade the reliability of object detection and tracking
(Al-Kaff et al., 2016). The high mobility of UAVs introduces
motion blur, reducing visual data quality and complicating feature
extraction. Occlusions, where objects block one another within
the camera’s field of view, further hinder effective tracking (Lin
et al., 2017; Bharati et al., 2018). Adverse weather conditions such
as rain, snow, fog, and low light significantly affect monocular
vision performance, limiting UAVs’ ability to operate reliably.
Ensuring precise camera calibration and alignment is also critical,
as misalignment can cause navigation errors (Mori and Scherer,
2013).

To mitigate these limitations, ongoing research explores AI-
driven image processing, sensor fusion, and adaptive enhancement
techniques. Deep learning models refine depth estimation from
single-camera inputs, improving object recognition and spatial
awareness. Integrating monocular vision with other sensing
modalities, such as LiDAR and IMUs, enhances depth perception
and environmental mapping. Self-powered sensors (Javaid et al.,
2023a) further improve UAV perception by enabling continuous
environmental monitoring while reducing reliance on external
power sources, contributing to more efficient and sustainable
navigation. These advancements continue to refine monocular
vision, ensuring it remains a viable solution for autonomous UAV
operations.

4.2 Current state of monocular vision

State-of-the-art literature aims to address the aforementioned
challenges and enhance monocular vision by developing robust
algorithms and techniques (Qin and Shen, 2017). Improved
depth estimation algorithms, ML approaches, and sensor fusion
techniques enhance UAVs’ understanding of their surroundings,
enabling more accurate obstacle avoidance, scene reconstruction,
and overall autonomous capabilities. For instance, Ross et al.
(2013) introduced a novel method for achieving high-speed,
autonomous flight of micro aerial vehicles in densely forested
environments using monocular vision. The proposed algorithm
learns from human expertise that allows micro aerial vehicles
to predict and avoid collisions with trees and foliage using
affordable visual sensors. In another work (Schmuck and Chli,
2017), the authors introduced a novel centralized architecture for
collaborative monocular SLAM using multiple small UAVs. Each
UAV independently explores the environment, performing limited-
memory SLAM, and sends its mapping data to a central server with
greater computational resources, leading to enhanced mapping
accuracy and efficiency. In another work (Kendall et al., 2014),
the authors developed a cost-effective, self-contained quadcopter
controller using monocular vision for object tracking without
GPS or external sensors. The system employs a low-frequency
algorithm and parallel PID controllers to track colored objects,
enabling reliable and efficient UAV applications. Minaeian et al.
(2018) introduced an effective, efficient, and robust method for
the accurate detection and segmentation of multiple independently
moving foreground targets within video sequences captured by
UAVs. The presented scheme efficiently estimates camera motion
by tracking background key points and employs a combination of
local motion history and spatiotemporal differencing over a sliding
window to robustly detectmultiplemoving targets. In another work
(Zhao et al., 2019b), the authors proposed a framework combining
a monocular camera, GPS, and inertial sensors to detect, track,
and geolocate moving vehicles. Using correlation filters for visual
tracking and a passive geolocation method, the system calculates
vehicle GPS coordinates and guides the UAV to follow the target
based on image processing results.

Zheng et al. (2016) developed a robust monocular vision-
based control system for quadrotor UAVs, utilizing an onboard
monocular camera and IMU sensors to enable precise navigation
and positioning. Their approach defines image features on a virtual
image plane, simplifying control and enhancing the UAV’s ability
to regulate its position, making it suitable for applications such
as monitoring, landing, and other scenarios requiring accurate
and efficient positioning. Similarly, Fu et al. (2017) introduced
an improved pose estimation method for multirotor UAVs using
an off-board camera. The scheme employed a novel nonlinear
constant-velocity process model tailored to multirotor UAV
characteristics, enhancing observability and robustness against
noise and occlusion for improved vision-based pose estimation.

For collision avoidance, Saha et al. (2014) developed a
real-time obstacle detection and avoidance system for low-cost
UAVs operating in unstructured, GPS-denied environments. Their
mathematical model estimates the relative distance from the
UAV’s camera to obstacles, enabling effective collision avoidance
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while ensuring safety and applicability in complex scenarios.
In another study, Al-Kaff et al. (2016) proposed a real-time
obstacle detection and avoidance method for micro and small
UAVs with limited onboard sensors due to payload and battery
constraints. This method mimics human-like behavior by tracking
changes in obstacle size within the image sequence, identifying
feature points, and extracting obstacles with a high likelihood
of approaching the UAV. By comparing area ratio changes in
detected obstacles and estimating their 2D positions in the
image, the UAV determines the presence of obstacles and takes
appropriate avoidance actions. Additionally, Wu et al. (2018)
combined obstacle detection with waypoint tracking to further
refine avoidance maneuvers, enhancing the overall safety and
operability of lightweight UAVs. These advancements inmonocular
vision have significantly improved UAV capabilities in autonomous
navigation, optimized localization, pose estimation, and collision
avoidance. However, as UAVs become increasingly autonomous,
the need for transparency and trust in their decision-making
processes has brought XAI to the forefront. The following section
explores the role of XAI in enhancing UAV navigation and
control, offering insights into how interpretable AI frameworks
can address the “black-box” nature of traditional algorithms and
improve operational reliability. Table 2 further summarizes the
main contributions of these schemes.

5 Explainable Artificial Intelligence
(XAI) integration for UAV navigation
and control

This section examines how XAI enhances UAV navigation and
monocular vision systems by improving the interpretability and
reliability of navigation decisions. It also highlights the role of
XAI in seamlessly integrating with monocular vision techniques
to optimize depth perception, obstacle detection, and overall
efficiency, enabling transparent and effective UAV operations in
complex environments.

5.1 Role of XAI in UAV navigation

XAI plays a pivotal role in enhancing the navigation
capabilities of UAVs by providing transparency, interpretability,
and trustworthiness to the autonomous decision-making processes.
Traditional AI models, particularly deep learning algorithms, often
function as "black boxes", making it challenging to understand
why UAVs make certain navigation decisions. XAI addresses
this limitation by clarifying the underlying mechanisms and
factors influencing UAV navigation, ensuring more reliable and
accountable operations.

One of the primary contributions of XAI in UAV navigation
is improving obstacle detection and avoidance. Monocular vision
systems on UAVs capture real-time visual data, which XAI-
enhanced algorithms analyze to identify potential obstacles and
determine safe flight paths. State-of-the-art techniques such as
saliency maps, Local Interpretable Model-agnostic Explanations
(LIME), and SHAP highlight the most critical regions in the

TABLE 2 Summary of Key Contributions and Limitations in UAV

monocular vision.

References Key
contributions

Limitation of the
work

Ross et al. (2013)

Learning-based collision
avoidance,
Human-demonstration
input

Limited adaptability to
varying lighting/weather

Schmuck and Chli
(2017)

Centralized SLAM,
Multi-UAV mapping

Scalability challenges
with large UAV fleets

Kendall et al. (2014)

Monocular tracking
algorithm, PID-based
control

Reduced robustness
under severe motion blur

Minaeian et al.
(2018)

Multi-Target Detection
and Segmentation

Performance
degradation in low-light
environments

Zhao et al. (2019b)

Vehicle Detection and
Geolocation

Limited testing across
varied terrains/objects

Zheng et al. (2016)

Virtual image-plane
features, IMU
integration

Less tested under rapidly
changing conditions

Fu et al. (2017)

Nonlinear CV process
model, Noise/occlusion
resilience

Increased computational
demands in complex
scenarios

Saha et al. (2014)

Real-time distance
estimation, Low-cost
solution, GPS-denied
environment

Limited robustness at
higher speeds and
complex obstacle types

Al-Kaff et al. (2016)

Human-inspired
detection logic, Minimal
sensors, Area-based
approach

Less tested under diverse
obstacle shapes and
severe motion blur

Wu et al. (2018)

Integration with path
planning, Dynamic
obstacle handling,
Real-time navigation
adjustments

Reduced evaluation
under extreme weather
or lighting conditions

visual input that influence navigation decisions, making the
decision-making process more interpretable. By providing visual
justifications for avoidance maneuvers, XAI allows developers
and operators to verify and refine navigation models, ultimately
improving UAV safety and adaptability in complex environments
(Çiçek et al., 2021; Gundermann, 2020).

Moreover, XAI enhances the adaptability of UAVs in diverse
operational scenarios. In various applications, including search and
rescue, environmental monitoring, and urban traffic management,
UAVs must dynamically adjust their navigation strategies based on
changing conditions and mission objectives. XAI provides valuable
insights into how environmental factors such as weather variations,
moving obstacles, and terrain shifts influence UAV navigation.
Understanding these influences allows AI models to be fine-tuned,
thereby increasing the robustness and flexibility of UAV navigation
systems across different operational landscapes.

As XAI becomes more embedded in UAV navigation, it
is critical to establish standardized evaluation metrics to assess
its effectiveness and reliability consistently. Current evaluation
methods often prioritize accuracy and performance but lack
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metrics for explainability and user trust. Future research should
focus on developing benchmark datasets and evaluation protocols
that incorporate interpretability scores, explanation fidelity,
uncertainty quantification, and real-time obstacle avoidance
accuracy. Establishing universally accepted evaluation frameworks
will allow for a comparative analysis of XAI-driven navigation
models, ultimately ensuring the scalability and robustness of these
systems in real-world UAV applications.

In addition, trust and accountability are significantly
strengthened through the integration of XAI in UAV navigation.
Operators, regulatory bodies, and end-users are more likely to trust
autonomous UAV systems when they can understand and verify
the decision-making processes. XAI fosters this trust by providing
clear explanations for route selection, speed adjustments, and
obstacle avoidance maneuvers, which can be audited and validated
against regulatory safety standards and operational protocols.
This transparency is essential for regulatory compliance and
for ensuring the broader acceptance of autonomous UAV
technologies in industries such as logistics, surveillance, and
disaster management (He et al., 2021; Zhu et al., 2024).

Furthermore, XAI supports human-in-the-loop decision-
making, where human operators collaborate with UAVs to oversee
navigation in complex or high-risk environments. In scenarios
that require real-time intervention, such as search-and-rescue
missions or disaster response, XAI-powered UAVs can explain
their navigational choices, allowing human operators to assess
the reasoning behind a maneuver and intervene if necessary.
For example, if a UAV initiates an emergency rerouting due
to an unexpected obstacle, XAI can clarify whether this action
was based on obstacle proximity, terrain constraints, or learned
behavioral patterns. This transparent and interpretable decision-
making process ensures that UAVs operate with both autonomy
and human oversight, reinforcing trust and reliability in critical
missions.

5.2 Integration of XAI with monocular
vision

The integration of XAI with monocular vision systems
significantly enhances the autonomy, reliability, and transparency
of UAV operations. XAI provides interpretable insights into the
visual perception and decision-making processes, fostering trust
among users and stakeholders while facilitating effective human-
AI collaboration. This, in turn, strengthens the adaptability and
robustness of UAVs in dynamic and unpredictable (environments.
Despite their cost and weight advantages, monocular vision systems
face inherent limitations such as depth perception ambiguities and
sensitivity to lighting variations. Figure 3 illustrates the challenges
of depth perception in monocular vision-based UAV navigation.
The UAV perceives obstacles within its field of view, but due to
the lack of stereo depth cues, it misinterprets the actual distance
of objects. Obstacle C is misjudged as being closer than it actually
is (red arrow), while Obstacle B represents the correct depth
perception (green arrow). Such depth estimation errors can lead to
inaccurate obstacle avoidance and inefficient path planning in UAV
operations.

Embedding XAI within these AI-driven monocular vision
systems has the potential to improve interpretability and reliability
and bridge the gap between autonomous UAV functionality and
human oversight, ensuring more transparent and dependable
operations (Ghasemieh and Kashef, 2024). Figure 4 Illustrates
UAV navigation leveraging the integration of XAI and monocular
vision. However, to fully utilize the benefits of XAI in monocular
vision-based UAV navigation, it is crucial to address inherent
challenges such as depth estimation ambiguities and environmental
sensitivity. This necessitates the use of AI-driven adaptive
techniques, which will be explored in the following section.

5.2.1 AI-driven adaptive techniques for robust
vision-based UAV navigation

To mitigate the impact of lighting variations and adverse
weather conditions on vision-based UAV navigation, several
adaptive techniques have been developed. AI-driven image
enhancement methods, such as deep learning-based dehazing,
contrast enhancement, and super-resolution techniques, improve
visibility in challenging conditions such as fog, rain, and
low-light environments (Cai et al., 2016; Ren et al., 2018).
Dehazing networks leverages CNNs to restore clear images from
foggy environments. Additionally, Contrast-Limited Adaptive
Histogram Equalization (CLAHE) enhances image contrast in
low-light conditions, improving overall visibility. Super-resolution
algorithms, such as the Enhanced Deep Super-Resolution Network
(EDSR), reconstruct finer details in degraded images, improving
the UAV’s perception of obstacles and terrain (Lim et al., 2017).
Moreover, the integration of multi-spectral and infrared imaging
further enhances situational awareness, allowing UAVs to detect
thermal signatures and obstacles beyond the visible spectrum (Maes
and Steppe, 2019). Infrared (IR) sensors help UAVs function during
nighttime operations, heavy fog, or extreme glare conditions, where
traditional RGB cameras fail. AI-based sensor fusion techniques
combine thermal and visible-light images to improve real-time
detection of objects, pedestrians, and vehicles (Zhao et al., 2019a).
Additionally, polarization-based vision correction methods reduce
glare from reflective surfaces such as water bodies, wet roads,
or glass structures, making UAV navigation more stable in
urban and coastal environments (Liu et al., 2021). ML models
play a crucial role in weather condition classification and real-
time adaptation. AI-powered frameworks, such as deep weather
recognition networks, analyze environmental conditions and adjust
UAV camera settings dynamically (Tahir et al., 2024). RL-based
models further enable UAVs to adapt to varying illumination
and weather conditions, ensuring reliable navigation in rapidly
changing scenarios (Chronis et al., 2023). These systems improve
UAV decision-making by adjusting exposure settings, sensor
sensitivity, and image filtering techniques based on real-time
weather data.

Moreover, sensor fusion approaches, such as combining
monocular vision with LiDAR or radar, provide robust depth
estimation and obstacle detection, reducing dependency on lighting
conditions (Aung et al., 2024). LiDAR-assisted UAV navigation
enhances depth perception in low-visibility environments, while
radar-based object detection ensures obstacle avoidance even
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FIGURE 3

Monocular vision depth ambiguities in UAV navigation.

FIGURE 4

Illustration of UAV navigation leveraging the integration of Explainable AI (XAI) and monocular vision.

in extreme weather such as heavy rain or snow (Tang et al.,
2021). By integrating multiple sensing modalities, UAVs can
create a more comprehensive environmental model, ensuring
greater accuracy in navigation, object tracking, and collision
avoidance. These AI-driven advancements significantly enhance
UAV autonomy, enabling safer and more efficient navigation in
complex, dynamic environments. By leveraging adaptive image
enhancement, multi-sensor fusion, and real-time weather-aware
AI models, UAVs can maintain reliable operations across diverse
terrains and environmental conditions, ensuring greater mission
success in applications such as disaster response, surveillance,
and environmental monitoring (Adão et al., 2017; Singh et al.,
2020).

However, while these sensor fusion approaches enhance
depth perception and environmental modeling, they do not
inherently improve the interpretability of UAV decision-making.
In safety-critical applications, it is equally important to understand

the reasoning behind UAV navigation choices to ensure trust
and accountability. This necessitates the integration of XAI
techniques, which provide insights into UAV perception and
decision-making processes.

5.2.2 XAI-driven interpretability and decision
transparency in UAV navigation

One of the primary benefits of integrating XAI with monocular
vision is the enhancement of perceptual understanding. Monocular
vision systems capture real-time visual data, which DRLs process
to perform tasks such as object detection, segmentation, and
scene understanding. XAI facilitates the generation of interpretable
insights into how visual features are utilized in decision-making
processes. Saliency maps and Gradient-weighted Class Activation
Mapping (Grad-CAM) can highlight regions of interest within the
captured images that significantly influence the UAV’s perception
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TABLE 3 Comparing traditional approaches with XAI-enhanced strategies for UAV navigation and monocular vision.

Focus area Aspect Traditional (Non-XAI)
approach and limitations

XAI-enhanced
approach

Improvements/outcomes

UAV navigation Transparency and
interpretability

Black-box decisions, no clear rationale Saliency maps, LIME, SHAP
highlight decision factors

Enhanced trust, easier debugging,
compliance with safety standards

Adaptability to environmental
changes

Hidden logic hinders handling of
varying weather/obstacles

Interpretable insights on how
conditions affect decisions

Greater robustness, flexibility in
dynamic scenarios

Human-in-the-loop
collaboration

Operators struggle to validate or
intervene effectively

Real-time explanations guide
operator input

Improved teamwork, timely
corrective actions, better mission
success

Monocular vision Perceptual understanding and
scene interpretation

Limited insight into which visual
features influence object
recognition/detection

Grad-CAM, saliency maps
reveal critical visual features

More accurate scene understanding,
confident verification of object focus

Obstacle detection and
avoidance

Relies on raw outputs, limited
understanding of key features

Feature attribution
highlights critical
regions/objects

Safer navigation, refined avoidance
strategies, targeted error analysis

Computational and real-time
performance

Limited/no efficient explanation
methods may slow decisions

Lightweight, edge-based XAI
for quick interpretability

Real-time explanations without
major performance impact

and subsequent actions. This enhanced perceptual understanding
enables operators to verify that the UAV correctly identifies and
prioritizes relevant objects, such as obstacles or points of interest,
thereby improving the accuracy and reliability of autonomous
operations (Zablocki et al., 2022).

Improving decision-making transparency is another critical
aspect of integrating XAI with monocular vision. Autonomous
UAVs must make critical decisions based on visual inputs,
such as navigating through complex environments or selecting
optimal paths for mission objectives. XAI provides transparency
in these decision-making processes by elucidating the rationale
behind each choice. For instance, when a UAV opts to alter
its flight path to avoid an obstacle, XAI algorithms can
generate explanations detailing the factors considered, such as
the size, speed, and proximity of the obstacle. This transparency
is crucial for debugging AI models, ensuring compliance
with safety standards, and fostering trust among users and
stakeholders. By making the decision-making process transparent,
XAI facilitates a better understanding of UAV behavior, which
is essential for both developers and end-users. The integration
of XAI also facilitates adaptive learning and robustness in UAV
operations. The dynamic nature of UAV missions, especially in
environments with unpredictable elements, demands adaptive
learning capabilities to maintain robust performance. XAI-enabled
monocular vision systems allow UAVs to adapt their learning
strategies based on explainable feedback. For example, if a
UAV consistently misidentifies a particular type of obstacle
under certain lighting conditions, XAI can provide insights
into the underlying reasons, such as feature misrepresentation
or model bias. This feedback allows developers to fine-tune
AI models, enhancing their ability to generalize across diverse
scenarios and improving the overall robustness of UAV operations
(Hwu et al., 2021).

Furthermore, a real-world implementation of XAI with
monocular vision can be seen in the Lifeseeker system, which
integrates XAI-driven monocular vision for search and rescue
operations. UAVs utilize monocular depth estimation and AI-
powered scene segmentation to locate missing individuals in

smoke-covered or remote areas. By leveraging XAI-powered
saliency maps, the system highlights temperature variations and
movement patterns, allowing human operators to validate and
refine UAV decisions, reducing false detections, and improving
mission success rates. This highlights a broader advantage of
XAI-integratedmonocular vision that supports human-in-the-loop
systems, which is particularly crucial in real-time, high-stakes
applications such as search and rescue or urban surveillance.
XAI-enabled explanations provide critical insights that empower
operators to make informed decisions and corrective interventions.
For instance, when a UAV encounters an ambiguous visual
scenario, XAI can articulate the reasoning behind its tentative
classifications or actions, enabling the operator to validate, override,
or adjust the UAV’s behavior accordingly (He et al., 2021).
Table 3 further highlights the role of XAI in UAV navigation and
monocular vision.

5.3 Use cases

This section highlights the use cases for integrating
XAI into UAV systems to showcase how it enhances their
performance by improving decision-making transparency,
enabling real-time adaptability, and optimizing navigation
and operational efficiency in complex environments. Figure 5
illustrates the integration of monocular vision and XAI in
key use cases, enabling enhanced predictive analytics for
actionable insights.

5.3.1 Environmental monitoring and wildlife
conservation

Consumer-grade drones equipped with single-camera systems
can be deployed to monitor large and remote natural areas, such as
forests, wetlands, and wildlife reserves, providing continuous aerial
surveillance without the high costs associated with specialized
equipment. Monocular vision enables these drones to capture
detailed visual data, which can be used to track animal movements,
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FIGURE 5

Illustration of monocular vision and XAI algorithms in UAVs facilitating key use cases and contributing to enhanced predictive analytics for actionable

insights.

detect changes in vegetation, and identify signs of environmental
stress or illegal activities like poaching and deforestation. XAI
processes this visual information to identify and classify different
species or environmental conditions and to provide clear,
understandable reasons for its assessments. For example, if the
AI detects a decline in a particular plant species, it can highlight
the affected areas and explain the potential causes, such as
disease signs or adverse weather conditions. This transparency
allows conservationists and environmental scientists to trust the
AI’s findings and make informed decisions based on accurate,
actionable insights. Additionally, XAI can assist in predicting
future environmental changes by analyzing trends and patterns
in the data, offering explanations for its predictions that help
stakeholders understand the underlying factors. The affordability
and accessibility of consumer electronics make it feasible to
deploy these drone systems widely, enabling comprehensive
monitoring efforts even in budget-constrained projects. By
leveraging monocular vision and XAI, UAVs can play a crucial role
in preserving biodiversity, managing natural resources sustainably,
and responding swiftly to environmental threats, thereby
supporting global conservation initiatives in an efficient and
transparent manner.

5.3.2 Intelligent urban tra�c management
In densely populated cities, consumer-grade drones equipped

with single-camera systems can be deployed to monitor traffic
flow, detect congestion, and identify traffic violations in real-time.
Monocular vision allows these drones to capture continuous
video streams of streets, intersections, and public spaces
without the complexity and cost of multi-camera setups.
XAI processes the visual data to analyze patterns such as
vehicle speeds, pedestrian movements, and the occurrence
of traffic incidents. For example, if the AI detects a sudden
slowdown or an accident, it can provide clear, understandable
explanations by highlighting the specific vehicles involved,
the location of the incident, and the factors contributing
to the disruption, such as a traffic light malfunction or a
jaywalking pedestrian.

This transparency is crucial for city planners and law
enforcement agencies, as it builds trust in the system’s assessments
and decisions. Urban authorities can use these insights to make
informed decisions about traffic light timings, road maintenance,
and emergency response strategies. Additionally, XAI can assist
in optimizing traffic flow by suggesting adjustments based
on observed behaviors, such as rerouting traffic to alleviate
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congestion hotspots or implementing new pedestrian safety
measures. The use of consumer-grade electronics ensures that these
drone systems are affordable and scalable, allowing widespread
deployment across various urban areas without significant
investment. Moreover, the user-friendly nature of consumer drones
enables local communities to participate in monitoring and
improving their neighborhoods, fostering a collaborative approach
to urban management.

5.3.3 Forest monitoring with XAI-enabled UAVs
for flora and fauna classification

The integration of XAI intoUAV systems significantly enhances
their functionality by enabling the autonomous identification
and classification of various flora and fauna while providing
transparent explanations for these classifications. A fleet of
consumer-grade UAVs equipped with high-resolution monocular
cameras can be deployed across a sprawling forest ecosystem.
These UAVs, integrated with advanced XAI algorithms, process
real-time visual data to identify and classify different plant
and animal species. The monocular vision system captures
continuous video feeds, which are analyzed by DRLs trained
on extensive datasets of local flora and fauna. XAI frameworks
enable these models to generate interpretable insights into
their decision-making processes. Techniques such as Grad-CAM
and LIME highlight specific regions within captured images
that influenced the UAVs’ classifications. For instance, when a
UAV identifies a particular tree species, Grad-CAM highlights
distinctive features such as leaf patterns or bark textures, while
LIME provides textual explanations, such as "The tree was
identified as Oak due to its lobed leaf structure and rough
bark texture.”

The deployment of XAI-enabled UAVs provides substantial
benefits for environmental monitoring and research. Researchers
can collect comprehensive data on species distribution and
abundance across large areas with greater accuracy and efficiency
compared to traditional ground surveys. The explainable outputs
generated by XAI algorithms facilitate data validation by allowing
researchers to cross-reference UAV classifications with field
observations. For example, during a survey of the forest canopy,
UAVs successfully identified several rare plant species that were
previously under-documented. The explanations provided by XAI
enable researchers to verify these findings by inspecting highlighted
features and understanding the rationale behind each classification.
This level of transparency increases trust in UAV-collected data
and empowers researchers to refine models by addressing potential
misclassifications or biases in the AI algorithms.

Furthermore, the ability of XAI-enabled UAVs to
autonomously classify fauna, such as bird species and small
mammals, offers valuable insights into ecosystem dynamics and
species interactions. Real-time explanations facilitate immediate
validation and adaptation of monitoring strategies, improving
the overall effectiveness of conservation efforts. For instance,
when a UAV detects an unusual concentration of a particular bird
species, XAI explanations help researchers understand behavioral
patterns or environmental factors contributing to the observation,
informing targeted conservation actions.

6 Challenges and future research
directions

This section examines key challenges that limit the application
of XAI in UAV navigation and monocular vision systems and
proposes potential future research directions. It emphasizes critical
areas for development, including scalability, interpretability,
adaptability to dynamic environments, and robustness in real-
world applications.

6.1 Scalability and interpretability in XAI for
monocular vision systems

One of the foremost challenges in integrating XAI with
monocular vision systems is scalability across different UAVmodels
and environments. UAV platforms vary significantly in sensor
configurations, computational capacities, and environmental
operating conditions, requiring extensive model fine-tuning for
each system. Ensuring that XAI methods can generalize effectively
across diverse UAV architectures without excessive retraining is
critical for large-scale deployment. Additionally, monocular vision
systems generate high-resolution visual data that must be processed
in real-time for navigation and decision-making. Balancing
computational efficiency with explainability is particularly
challenging, as XAI models must provide interpretable insights
while maintaining low latency in dynamic and unpredictable
environments (Das and Rad, 2020; Ding et al., 2022).

To address these scalability concerns, future research should
focus on developing lightweight, adaptive XAI models that
can efficiently process high-resolution data across various
UAV platforms. Techniques such as meta-learning, transfer
learning, and model compression can enhance the generalizability
of XAI methods, reducing the need for extensive system-
specific retraining. Additionally, edge-based explainability and
hybrid cloud-edge frameworks should be explored to optimize
computational workloads and enable real-time decision-making.
Future studies should also prioritize the development of contextual
and hierarchical explainability techniques, breaking down UAV
decisions into intuitive, multi-layered insights to improve
interpretability across different operational contexts. Establishing
benchmark datasets and standardized evaluation protocols tailored
for multi-platform XAI scalability will further facilitate the
development of widely adoptable, efficient, and robust explainable
UAV systems.

6.2 Adapting XAI for dynamic
environmental changes

Monocular vision systems in UAVs operate within highly
dynamic environments where lighting conditions, terrain
variations, and the presence of moving or static obstacles can
change rapidly. These fluctuations pose significant challenges
for XAI models, which may struggle to maintain the accuracy
and relevance of their explanations in real-time. Traditional XAI
frameworks often produce static or generalized explanations
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that do not capture the nuanced decision-making required in
such unpredictable scenarios, thereby reducing user trust and
operational reliability (Shah and Konda, 2021; Confalonieri et al.,
2021).

To address these challenges, it is essential to develop adaptive
XAI frameworks that incorporate real-time environmental
context. Integrating DRL with XAI allows UAVs to update their
explainability models based on evolving environmental data
continuously. This integration ensures that explanations remain
accurate and contextually relevant, even in highly dynamic
settings. Additionally, context-aware XAI techniques can improve
the adaptability of UAVs by utilizing temporal and spatial data
to inform explanations. This approach ensures that explanations
evolve with changing conditions, offering more precise and
situation-specific insights. Implementing transfer learning and
domain adaptation strategies further enhances the generalizability
of XAI models, enabling UAVs to perform reliably across diverse
and unforeseen environments.

6.3 Balancing explainability and
performance

One of the critical challenges in building trust in UAV
navigation using XAI and monocular vision lies in balancing the
trade-off between explainability and system performance. High
levels of explainability often require additional computational
resources, leading to increased inference time, higher energy
consumption, and reduced real-time responsiveness (Silva et al.,
2024). Many explainability techniques, such as SHAP, and
Grad-CAM, involve complex backpropagation computations
and additional layers of processing, significantly increasing
computational overhead. This additional processing load can
be particularly problematic for UAVs operating in resource-
constrained environments, where battery life, processing power,
and response time are critical constraints. This trade-off is
especially evident in autonomous UAV surveillance and disaster
response missions, where UAVs must quickly analyze complex
environments, detect anomalies, and make real-time navigational
adjustments while simultaneously providing interpretable
decisions to human operators. In high-risk applications, delays
caused by computationally expensive XAI techniques can
negatively impact situational awareness, collision avoidance,
and time-sensitive decision-making. Additionally, excessive
computational demands can drain battery life more rapidly,
limiting the UAV’s flight duration and mission effectiveness.
As UAVs become increasingly autonomous, addressing the
trade-off between explainability and computational efficiency is
essential to ensure that these systems remain both transparent and
operationally viable.

Future research should focus on developing lightweight
XAI models optimized for real-time UAV deployment. Several
approaches can help mitigate computational overhead while
maintaining interpretability. Techniques such as model
compression (e.g., knowledge distillation and weight pruning)
reduce the complexity of deep learning models while preserving
essential explainability features (Hinton et al., 2015). Edge

computing architectures allow UAVs to offload explainability
computations to low-power onboard processors or external edge
nodes, reducing the burden on real-time decision-making (Xu
et al., 2023). Additionally, selective explainability mechanisms
can be implemented, where explanations are provided only for
anomalies, high-risk decisions, or human-in-the-loop scenarios,
rather than for every prediction (Wang D. et al., 2019). This
adaptive XAI approach ensures that UAVs dynamically adjust
the level of explainability based on mission requirements,
prioritizing transparency when necessary while conserving
computational resources in routine operations. Furthermore,
hardware-accelerated explainability solutions, such as dedicated
GPUs, TPUs, and neuromorphic processors, can significantly
enhance computational efficiency by parallelizing explainability
computations (Tahir et al., 2024). These specialized hardware
components enable UAVs to perform real-time, interpretable
decision-making without compromising flight endurance or
mission effectiveness. Thus, explainability and computational
efficiency remain an open challenge in deploying AI-driven
UAVs. Future advancements should focus on energy-aware
explainability techniques, mission-adaptive XAI frameworks, and
real-time optimization strategies to ensure that UAVs remain both
transparent and operationally effective across diverse applications.
Addressing this trade-off will be crucial for the next generation
of autonomous UAVs, particularly in time-sensitive, resource-
constrained environments where both real-time decision-making
and interpretability are equally vital.

6.4 Ensuring robustness of XAI in adverse
conditions

XAI models integrated with monocular vision systems face
difficulties in maintaining reliability under adverse conditions,
such as low light, fog, rain, or high-motion scenarios. These
conditions can degrade visual data quality, leading to less accurate
explanations and undermining user trust in UAV decisions.
Future efforts should focus on developing XAI models that
incorporate uncertainty quantification to account for degraded
input quality. By integrating techniques such as Bayesian neural
networks or ensemble learning, XAI systems can provide
confidence scores for their explanations, helping users assess the
reliability of UAV decisions in adverse conditions. Furthermore,
future research should leverage multimodal data fusion by
integrating monocular vision with complementary sensors to
enhance robustness and provide trustworthy explanations, even in
challenging environments (Bai et al., 2021; Ali et al., 2023).

Future research should focus on developing adaptive
explainability mechanisms that dynamically adjust explanation
complexity based on operational context. In high-visibility
environments with reliable sensor data, UAVs should be able
to generate detailed, feature-rich explanations, while in low-
confidence scenarios such as heavy fog or fast motion, XAI models
should be designed to simplify explanations while incorporating
uncertainty estimates to prevent misleading interpretations.
Additionally, future work should explore the integration of physics-
informed AI models to enhance the robustness of explanations by
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leveraging physical constraints, such as scene geometry and optical
flow, to improve depth perception and motion estimation in
degraded visual conditions. Future research should also investigate
how context-aware explainability frameworks can be developed to
ensure that interpretability dynamically adapts to environmental
and operational uncertainties. Furthermore, advancements in
self-supervised learning and reinforcement learning-based XAI
models should be investigated to enhance UAV autonomy, enabling
models to learn optimal explainability strategies from real-world
interactions and ensuring a balance between transparency,
accuracy, and operational feasibility.

6.5 Collaborative decision-making
between vision models and LLMs with XAI

Monocular vision systems, while proficient in object detection
and scene analysis, face challenges in contextualizing their
outputs in real-world scenarios. Traditional AI models, such
as CNNs, excel at recognizing patterns and detecting objects
but lack interpretability, providing only binary or probability-
based classifications without insight into the reasoning behind
their decisions. For example, a CNN-based vision model
can detect an obstacle but cannot determine its significance
whether it is a temporary inconvenience or a critical mission
threat. Similarly, existing XAI methods, though designed to
enhance transparency, often struggle to provide intuitive and
contextually relevant justifications, particularly in dynamic and
high-stakes applications such as UAV navigation (Berwo et al.,
2023). Furthermore, most current XAI implementations rely
on static explanations, failing to adapt dynamically to real-
time environmental changes, reducing user trust, and limiting
deployment in critical missions.

Future work should focus on integrating monocular
vision systems with contextual reasoning algorithms, such as
LLMs, to bridge the gap between perception and contextual
awareness (Javaid et al., 2024a). Unlike traditional AI models,
LLMs can generate accurate, natural language explanations
tailored to specific decision contexts, improving trust and
usability. However, LLM-based vision models present significant
challenges in handling real-world navigation complexities,
particularly in dynamic environments where real-time decision-
making is crucial. One of the key limitations is contextual
misinterpretation, as LLMs rely on pre-trained datasets and lack
direct interaction with real-world scenes. This limitation can lead
to misclassification of transient obstacles, such as pedestrians
or moving vehicles, which UAVs may treat as permanent
barriers, resulting in inefficient route planning or unnecessary
evasive maneuvers.

In addition, LLM-vision models struggle with spatiotemporal
reasoning, making it difficult for UAVs to anticipate object
movement patterns and differentiate between static and dynamic
elements in complex environments. Unlike human pilots who
instinctively recognize environmental cues and adapt, LLMs
lack continuous learning mechanisms that allow them to
refine their perception of transient vs. permanent objects in
real-time. Future research should explore hybrid approaches,

integrating LLM-based reasoning with sensor fusion techniques
such as LiDAR, radar, and event-based cameras to enhance
environmental understanding. Furthermore, adaptive and
interactive explainability techniques should be developed to ensure
that UAVs can dynamically adjust the level of interpretability
based on mission constraints and operational uncertainties.
Another important research direction is the development
of lightweight LLM architectures or hardware-accelerated
LLM inference, ensuring that real-time UAV applications
maintain low latency and high computational efficiency while
benefiting from improved contextual awareness. Addressing
these limitations will be critical for deploying LLM-enhanced
vision models in UAVs for real-world applications, ensuring
both operational safety and mission success (Javaid et al.,
2024b).

7 Conclusion

This paper provides a comprehensive exploration of the
advancements and challenges in integrating Explainable Artificial
Intelligence (XAI) into UAV navigation and monocular vision
systems. It outlines the progression of UAV navigation from
traditional methods, such as GPS and inertial navigation,
to modern AI and ML-driven approaches, highlighting the
transformative role of monocular vision and consumer electronics
in enhancing UAV capabilities across various applications. This
study comprehensively focuses on the role of XAI in addressing
the "black-box" nature of AI algorithms, which has long
hindered trust and transparency in UAV systems. By providing
interpretable insights into navigation and control decisions, XAI
fosters greater reliability and usability, particularly in high-
stakes scenarios such as urban planning and environmental
monitoring. The integration of XAI with monocular vision
further demonstrates its potential to overcome limitations
in depth perception and obstacle detection, enhancing the
overall performance and adaptability of UAVs. By examining
the interaction between advancements in consumer electronics,
monocular vision, and XAI, this paper offers actionable insights
to address these challenges and pave the way for future research
and development. This work underscores the critical importance
of combining technological innovation with explainability to
achieve more reliable, efficient, and scalable UAV operations.
The findings serve as a foundation for further exploration
into the intersection of XAI, UAV navigation, and monocular
vision, promoting advancements in next-generation autonomous
UAV systems.
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