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Artificial intelligence (AI) is increasingly proposed as a solution to environmental

sustainability challenges, with applications aimed at optimizing resource

utilization and energy consumption. However, AI technologies also have

significant negative environmental impacts. This duality underscores the need

to critically evaluate AI’s role in sustainable practices. One example of AI’s

application in sustainability is the Occupant Controlled Smart Thermostat

(OCST). These systems optimize indoor temperature management by

responding to dynamic signals, such as energy price fluctuations, which

reflect power grid stress. Accordingly, regulatory frameworks have mandated

performance standards for such technologies to ensure e�ective demand

responsiveness. While OCSTs are e�ective in managing energy demand

through predefined norms like price signals, their current designs often fail

to accommodate the complex interplay of conflicting priorities, such as user

comfort and grid optimization, particularly in uncertain climatic conditions.

For instance, extreme weather events can amplify energy demands and user

needs, necessitating a more context sensitive approach. This adaptability

requires OCSTs to dynamically shift between multiple normative constraints (i.e.,

norms), such as prioritizing userdefined temperature settings over price-based

energy restrictions when contextually appropriate. In this paper, we propose

an innovative approach that combines the theory of active inference from

theoretical neuroscience and robotics with a rulebook formalism to enhance

the decision-making capabilities of autonomous AI agents. Using simulation

studies, we demonstrate how these AI agents can resolve conflicts among

norms under environmental uncertainty. A minimal use case is presented, where

an OCSTmust decide whether to warm a room based on two conflicting rules: a

“price” rule that restricts energy use above a cost threshold and a “need” rule that

prioritizes maintaining the user’s desired temperature. Our findings illustrate the

potential for advanced AI-driven OCST systems to navigate conflicting norms,

enabling more resilient and user-centered solutions to sustainable energy

challenges.
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1 Introduction

Artificial intelligence (AI) has been offered as a solution

to issues of environmental sustainability (Addimulam, 2024;

Albarracin et al., 2024a,b; Challoumis, 2024). AI, particularly

that involving generative models and large-scale machine learning

applications, exert significant environmental pressures. These

include high electricity consumption during training and inference

phases, reliance on energy-intensive data centers that contribute up

to 1.3% of global electricity demand, and the resultant greenhouse

gas emissions—often exceeding 7.84 kg CO2 equivalent for a single

instance of complex inference (Berthelot et al., 2024; Luccioni

et al., 2024). The production and operation of the necessary

hardware exacerbate resource depletion, particularly rare metals,

and increase abiotic depletion potential (Kristian et al., 2024;

Luccioni et al., 2024). Despite AI having a significant negative

impact on the environment (Berthelot et al., 2024; Kristian et al.,

2024; Luccioni et al., 2024), AI technologies promise to help us

tackle environmental challenges by optimizing resource utilization

and energy consumption (Kristian et al., 2024). One example of

a sustainable use of AI technology is Occupant Controlled Smart

Thermostat (OCST). OCSTs allow for intelligently adjusting the

temperature in an indoor environment by considering a variety of

real-time signals; including price signals, which may be indicative

of a higher energy demand and pressure on power grids. By

lowering demand locally—when global demand is too high—

OCSTs, such as smart thermostats, smart lighting, smart plugs,

smart security systems, or electric vehicle charges are capable

of optimizing utilization of the power grid. For that reason,

regulations have been developed to ensure that thermostats systems

sold as OCST meet certain requirements in responding to relevant

variables, such as price signals tracking energy demands (e.g., the

appendix JA5 for Technical Specifications for Demand Responsive

Thermostats of the California Energy Commission).

In an ideal world, OCSTs should be capable of making decisions

by balancing responses to multiple norms in context that may

conflict with one another, and not just those related to price

signals. For instance, if a homeowner has a preference that conflicts

with responses to a price signal, given the context at hand, the

OCST should be capable of shifting norms, from the homeowner

defined norm to the price signal-based norm, or to any number

of norms. Such an ability to shift among norms—in a context

sensitive fashion—is particularly relevant in uncertain climates. In

normal weather, price and energy demands may be well balanced

with energy needs, such that a single price rule may allow to

optimize comfort and energy demand. In turn, in case of extreme

temperature shifts, both population demands, and individual needs

are exacerbated. A single rule about price or comfort may put too

much stress on the power grid or disregard the needs of OCST

owners, which may cause undue stress or discomfort for occupants,

and damage to their property.

In this paper, we show through simulation studies how active

inference (Da Costa et al., 2022; Lanillos et al., 2021) can be

combined with a rulebook formalism (Anne et al., 2021; Censi et al.,

2019) to develop autonomous AI agents capable of shifting between

levels of conflicting norms under environmental uncertainty.

Traditional approaches to OCST decision making, such as the

Nest Learning Thermostat, use pureMachine Learning approaches,

which limits the ability of OCSTs to adapt to novel scenarios or

noisy data. In turn, active inference approaches, which are based

on Bayesian techniques, allow models to respond confidently to

novel scenarios. This is so because they are built out of cause-

and-effect relationships and factor into inference the quantification

of uncertainty about outcomes and decision. This allows for

probabilistic recommendations or decision making that can adapt

to novel environments and allows for learning even when there is

minimal data, missing data or noisy data.

Although there may be several advantages to using active

inference instead of reinforcement learning for OCST agents, the

goal of this paper is not to demonstrate such advantages. The

aim of this paper is to show how active inference can be used

to address some of difficulties an OCST agent may face when

presented with conflicts of norms defined by a user. We apply our

proposed approach to a minimal use case of OCST behavior that

must decide whether or not to warm a room under conflicting

norms that occasionally conflict. The first norm is a “price” rule

(r1) that states that the OCST shall not use energy to warm up or

cool down the house when the price of energy is above a predefined

threshold. The second norm is a “need” rule (r2) that states that

the OCST shall ensure that the temperature of the house always

meets the desired temperature preset by the owner, or temperature

threshold. There are few methods of behavioral specification—for

autonomous AI systems—that address conflicting norms (Censi

et al., 2019). Conflicting norms may include legal norms (Arkin,

2008) (e.g., rules of a traffic code in the case of an autonomous

vehicle), as well as implementation limitations (e.g., rules regarding

energy consumption and computation limits), preference based,

local cultural norms of conduct (e.g., courtesy norms between

users of the road) (Thornton et al., 2017), or moral or ethical

norms (Bjørgen et al., 2018). The “rulebook” is one of the few

formalisms that has been developed to incorporate a diversity

of conflicting rules to enable adaptive conduct in autonomous

agents (Anne et al., 2021; Censi et al., 2019). The rulebook

formalism was initially developed to model normative reasoning

in autonomous vehicles. However, nothing prevents applying the

rulebook formalism to other sorts of autonomous systems. The

rulebook provides formalism for representing the priority among

rules and the extent to which a given behavioral outcomewill jointly

satisfy the different rules encoded in the rulebook. The rulebook

determines whether a given outcome should be entertained, given

the order of priority over the various rules to be satisfied; an

outcome being allowed, for instance, if it satisfies higher level norms

despite failing to satisfy lower level norms. We show how active

inference can enhance the rulebook formalism by equipping it with

context sensitivity.

2 Method

2.1 The simulation scenario

In cold climates, assuming a dynamic pricing scheme, rules r1

(the price rule) and r2 (the need rule) described in the introduction

are naturally in conflict depending on the time of the day, or

energetic “context”. In the morning, the temperature of the house is

lower, and the price of energy is higher, as the population demand
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on the power grid is higher (Figure 1, context 1). In the afternoon,

as the sun warms the house and the environment—and as people

leave the house to go to work and demand on appliances reduces—

the demand on the power grid falls and prices reduce (Figure 1,

context 2). This is so, despite the need for cooling down houses

as the afternoon temperature rises. In the afternoon, r1 and r2 are

not in conflict. Then, in the evening, as the demand for energy

and the need to warm up the house kick back in, r1 and r2 enter

in conflict again, as homeowners may want to respect their price

threshold while meeting their needs (e.g., warming up the house).

This pattern is described in Figure 1.

Alternatively, occupants may temporarily or permanently

bypass these rules, disregarding the established priority order.

This approach would prioritize comfort over energy efficiency.

In turn, if a user wishes to join a demand response program,

they are required to relinquish control of the thermostat setpoint,

refrigerator compressor cycles, and other settings, which will

be directly adjusted by the power company using Power Line

Communication signals during peak demand times. For example,

if there are 100 homes in the neighborhood, these will be randomly

organized into four groups based on total usage, with 25 homes

cycled through every 15 mins during peak demand hour. This

method effectively reduces the load on the grid. Automation in

this industry operates under a strict “if this, then that” framework,

leaving no room for fuzzy logic or ambiguity. The challenge

faced by an ideal OCST would be to act as an intermediary

solution between relinquishing decisional power and abandoning

participation to demand response programs altogether. The job

of the OCST in this case is to decide, based on the user’s needs

and budget, whether to expend energy given where the price and

temperature threshold are and where the price and temperature

curves are at the time of decision.

At first glance, rulebooks appear to be a good solution to meet

such a challenge. An OCST implementing a rulebook could have

one of two possible orders of priority: r2 over r1, meaning that

the price rule (r1) would be prioritized over the need rule. The

consequence of this order would be that in an energy context such

as that of the morning or the evening (e.g., contexts 1, Figure 1),

when the house temperature is below the temperature threshold set

by the owner, and the price of energy above the price threshold

set by the owner, the OCST would not be allowed to warm up

the house. In turn, in a context such as that of the afternoon

(i.e., context 2, Figure 1), the OCST would be allowed to expend

energy to bring down the temperature to the threshold as the price

of energy is low. An OCST implementing the opposite order of

priority r1 over r2 would have the opposite behavior in contexts

1, warming up in the morning and the evening.

Unless a rulebook is restructured, its order of priority will

always be respected. This is fine as long as the OCST knows

for sure that respecting the order of priority imposed by the

rulebook will yield the right decision given the energetic context

and associated true environmental temperature (e.g., not warming

up in the morning, cooling down in the afternoon, and warming

up in the evening). However, sometimes, due to the uncertain

nature of the weather, we may want the OCST to override the base

case for the order of priority. For instance, when the climate is

relatively predictable, adhering to a rulebook might suffice—such

as following set thermostat cycles like WAKE (ramp up), AWAY,

HOME, and SLEEP (ramp down). However, in cases of extreme

climate conditions or homes with specific thermal loads, such as

those with many windows causing significant heat gain during the

day, it may be desirable to override the base order of operations.

For example, warming up in the morning or cooling earlier in

the afternoon could help prevent thermal stress on the house

infrastructure. While the rulebook formalism allows for predefined

solutions—such as adjusting priorities, collapsing rules with similar

importance, or introducing new rules—it lacks a mechanism to

autonomously and dynamically adapt or “navigate” these rules in

real-time; the only solution being the restructuring of the rulebook,

which is also a problem since restructuring or learning a new

rulebook creates a lag period during which temperature control will

be suboptimal. In other words, rulebooks preclude adaptability or

context sensitivity.

This reflects the fact that rulebooks are not adaptable

and flexible enough to handle uncertainty in novel scenarios.

Addressing such dynamic scenarios effectively requires integrating

causal factors into a generative model that learns over time.

For instance, instead of relying on static sensing (e.g., using an

Ecobee thermostat in areas of high thermal load), a Bayesian

approach could adapt to varying conditions, optimizing heating

and cooling cycles across the entire home to reduce inefficiencies

and waste. Accordingly, the alternative that we propose in this

paper is to consider OCST as solving an inference problem; namely,

inferring the context and deploying the most likely policy that

satisfies prior preferences or constraints implicit in multiple rules.

Specifically, we use the Bayesian approach of active inference

to trigger an override of the base order of priority, when the

environmental or climatic context becomes uncertain, to ensure

operation within sustainable bounds given known regulations. Our

approach allows the OCST to respect the base order of priority in

times of certainty, and to autonomously shift to the override of

that order of priority in time of uncertainty. Our simulation study

shows how this approach remains robust despite fluctuations in

energetic contexts.

2.2 The rulebook formalism

The rulebook 〈R,≤〉 is a tuple, or set of hierarchically organized

“rules” r that each define the extent to which a certain outcome

violates or satisfies a rule. A rulebook can also be a set of rules with

a (partial) order, where “partial” means that not all the rules are

necessarily comparable to each other. In this case, the rulebook is

not a tuple. R is a finite set of rules, and ≤ is a priority order for

the rules. The rulebook allows one to formally express the relation

between conflicting or equivalent rules related in order of priorities

(e.g., prefer satisfying rule 1 over rule 2). Outcomes “o” are

realized in the environment or world. The rulebook defines a set of

preference relations between outcomes called “realization”, where

each outcome “o” corresponds to an element on the realization set.

Realization could also be modeled as combined states of the world;

for instance, o = (P,T,s) where p could be the current price, T the

temperature and s the current time stamp. It could also be a world

trajectory {i.e. a function o → [P(o), T(o)]} tracking temperature

and price over time. For the simple OCST agent considered in

this paper, an element oi of the realization may be “use energy to
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FIGURE 1

Scenario for the simulation studies. Home temperature and price are anti-correlated, and fluctuate throughout the day. For simplicity, the price and

temperature thresholds that underwrite the rules are the same (red line). In context 1, expending energy (e.g., to warm up or cool down) violates the

price rule, but satisfies the need rule. In context 2, expending energy satisfies both the need and price rule. Note that this depiction serves as a

heuristic to illustrate situations wherein rules may conflict (e.g., context 1), and situations wherein rule may be complementary (e.g., context 2). This

simplified depiction does not consider additional patterns, such as space context and occupation. For instance, o�ce buildings tend to be

unoccupied in the evening but are busier in the morning. Including such factors would require adjusting the demand curve accordingly. Additionally,

here we are only displaying a 12-hour window to illustrate typical peaks in demand that occur during wake time.

increase or decrease the temperature”. Rules “r” constitute scoring

functions over the elements of the realization set, such that for each

element of o, there will be a rule r(o). The output r(o) = 0 means

that the outcome “o” on the realization set respects the rule r, and

the output r(o) > 0 means that the outcome violates the rule. This

means the rules effectively encode cost functions of outcomes. Of

course, one can use any domain in which an ordering exists, and

is not limited to 0 and 1, that may allow for more fine-grained

evaluations of the extent to which a rule is violated. In our simple

use case, the function r(o) for discrete outcomes is expressed as:

r (o) = {0, o satisfies r 1, o violates r (1)

The cost function r(o) computes the degree of violation of its

argument (e.g., 0 or 1 in Equation 1), which is the outcome of the

realization set o. This means that if r(o1) < r(o2), the outcome o2
on the realization set violates r more than o1. Rules in a rulebook

can be expressed as a directed graph that reflects the hierarchy of

rules, or preordering ≤. In such a graph, nodes represent the rules,

and the edges represent the ordering, such that r1 > r2 means

that r2 is ranked higher than r1. If r2 has priority over r1. If an

outcome x satisfies r2 but not r1, then the outcome “o” will be

allowed. If the outcome violates r2 [i.e., r2(o)= 1], despite satisfying

r1 [e.g., r1(o) = 0], then the outcome “o” will be disallowed. If

one wants to interchange those orders of priority (e.g., flipping the

edge), then one has to restructure the rulebook, which could be

computationally expensive and likely to introduce lags and bugs.

2.3 Active inference for rulebooks

The active inference approach proposed in this paper leverages

the rulebook formalism to represent the order of priority between

rules, but adds to the rulebook the computational capacity to

navigate, or move through the rule book, by overriding not

only norms, such as allowed by the order of priority of the

rulebook (e.g., the override of r1 by r2), but by overriding the

base case of priorities itself (e.g., acting according to r2 > r1
instead of r1 > r2). Active inference, understood broadly, is a

Bayesian decision-making scheme that, upon receipt of an input,

(1) infers the cause of the input using information about the

likelihood of that input under each possible cause, and (2) predicts

what the future input will be if the system acts in such a way

to change the input generating cause. Active inference enables

decision-making under uncertainty by considering “preferences”

that a system may have for certain outcomes, while acting to

disclose the causal structure of the world—learning this structure

along the way. The upshot of this is a rich decision-making

scheme with information seeking (epistemic) and constraint

satisfying (utilitarian) aspects. These dual aspects are formally

equivalent to Bayes optimality under Bayesian decision theory

(minimizing expected cost) and optimal design (maximizing

expected information gain), respectively (Berger, 2011; Lindley,

1956; Parr et al., 2022).

We use a discrete state space generative model based on

active inference (Parr et al., 2022). This model implements a

Partially Observable Markov Decision Process (POMDP), such as

commonly used in the active inference literature (for a detailed

description of the generative model and update equations, see

Friston et al., 2017; Parr et al., 2019). Active inference models

are typically used to model agentic behavior: e.g., navigation

and planning (Kaplan and Friston, 2018), but can be used to

model any sequence of events of a controlled process (e.g.,

series of human decisions). Agents in active inference are

generative models represented as a joint probability of (latent

or hidden) states denoted as st = (s1,s2, . . . sT), observations
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denoted as ot = (o1,o2, . . . oT), and policies that determine

the transition among states. Update equations are then applied

to these models to infer the current state of affairs, given the

observations at hand, and to forecast or predict the next states

and observations given the possible actions available to the: the

action selected being that which is most likely to generate the

most preferred observation. Technically, action or policy selection

minimizes expected free energy, which can be decomposed into

expected information gain and expected cost, where expected

cost corresponds to the rule-based violations above. For a

detailed description of the update equations, see (Smith et al.,

2022).

For an illustration of the basic approach, we use the T-

maze paradigm, which is a specific implementation of active

inference used to simulate decision making under uncertainty

for multi-armed bandit tasks (Pezzulo et al., 2015). The T-

maze paradigm illustrates the unique capabilities of active

inference by implementing—in the process of decisionmaking—an

adjudication component based on the resolution of an explore-

exploit trade-off based upon the relative precision of expected

information gain and expected cost, respectively. The implicit

adjudication resolves as the agent learns the structure of the T-maze

environment. After resolving uncertainty about the environment,

the expected information gain receipts, leaving expected cost has

the principal determinant of choice behavior (for the complete

MATLAB specification of the T-maze used in this paper, see Smith

et al., 2022).

We use the A,B,C,D notation characteristic of active inference,

where A denotes a likelihood mapping between the states of

the environment and observable consequences. The remaining

variables B,C,D parameterize prior beliefs about environmental

dynamics and preferred outcomes (Da Costa et al., 2020). In the

T-maze, the agent makes a decision that minimizes expected cost

(specified as prior constraints over the possible outcomes of its

decision and implemented in the C parameters of the generative

model (Co = -ln P(o)). Note that when the prior constraints are

very precise, the preferred outcome o∗ renders the cost Co∗ = 0, as

in the case of r(o∗)= 0.

Depending on the context of the trial (encoded by the

parameters Ds = P(s0) of the generative model, the preferred

outcome will be on either the left arm of the T-maze or the right

arm of the T-maze (i.e., left arm is better: D = [1 0]; right arm is

better: D = [0 1]). This corresponds to the (unknown) position

of the rewarding outcome, under the generative process, or true

environmental structure.

If the agent makes the right decision right away, it receives a

reward. Alternatively, the agent can search for information; i.e.,

explore by seeking information that indicates the context. However,

if the agent makes the decision to go to the informative cue—at the

bottom arm of the maze—and only then makes the right decision,

its reward is halved, because it is only allowed two moves and has

to commit to the upper arm it chooses. This is the explore-exploit

trade-off: go right away and find your reward 50% of the time, or

use the first move to resolve uncertainty about where the reward

is and then secure it on the second trial. Active inference dissolves

the explore-exploit dilemma by minimizing expected free energy,

which includes expected information gain. This means the Bayes

optimal policy is to seek out information that resolves uncertainty

about the context and then exploit the information gained by

securing preferred outcomes.

The agent has parametric beliefs “d” over the context of the

trial. The agent also has beliefs “a” about the likelihood of where

the desired outcome may be, and which track the true probability

A = (P(o | s)) of where the outcome is situated. The (Dirichlet)

parameters a and d can be learned over time, which allows the agent

to make the right decision even when starting with uncertainty

about context and outcome contingencies. Finally, the agent has

beliefs about the ways it can navigate the T-maze, or about the

probability of transitioning between states when engaging an action

u. The transition probabilities are encoded in B = P(st|st−1,u), a

prior on dynamics under the generative model.

The behavioral manifestation of the explore-exploit trade-off,

if the agent is allowed to learn the structure of the environment,

is that at the beginning of a series of trials, the agent will tend to

acquire information about the context, before retrieving its reward.

If the context is predictable (i.e., the reward is always on the right),

the agent will learn that the context is invariant. At some point,

the expected information gain will fall below the expected cost,

and the agent will switch from exploration (i.e., responding to

epistemic affordance) to exploitation (i.e., responding to pragmatic

constraints). The point at which this occurs depends upon the

precision of prior constraints, relative to expected information gain.

In other words, if there are certain outcomes that must be avoided

at all costs, these outcomes will be avoided, even if they could be

informative. Note that prior constraints (like rules) are specified

over all possible outcome modalities (i.e., the different kinds of

things the agent can measure or observe). Some kinds of outcomes

may have imprecise or forgiving constraints, while others may be

specified very precisely and will therefore be prioritized over the

remaining constraints.

Note that the agent could also be allowed to learn its own

priors C with respect to preferred outcomes (Sajid et al., 2022),

thereby updating the agent’s predisposition toward constraint

satisfaction. Here, we do not allow for constraint learning. It is

the expression of the explore-exploit tradeoff that we leverage in

our simulation, the context of the T-maze being energetic context

for the decision of the OCST, the arms of the T-maze being the

decision of expending—or not—energy to warm up or cool down

the house, and the prior constraints on outcomes specified by

the rules at hand (see Figure 2). In the following simulations, the

option two visit the lower arm—to sample the “cue” and resolve

uncertainty about the energetic context—entails a suspension of

overt action (i.e., expending energy) to gather information about

the current context.

2.4 Simulation setup

Our simulations implement the rulebook formalism using

the T-maze paradigm by allowing the agent to reverse the base

priority when unsure about action selection. This involves using

two T-maze agents (or one agent with two states of mind), each

parameterized to comply with the two rules r1 (price rule) or r2
(temperature rule). Crucially, one of the T-mazes “defers” to the

other when opting for the “cue” option (lower arm) instead of

deciding to expend energy (left arm) or not (right arm). In our
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FIGURE 2

Top row: Relation between the two T-mazes. The bottom T-maze implements r1 (price rule) by being parameterized to avoid expending energy in

context 1. The top T-maze implements r2 (need rule) by being parameterized to expend energy in context 1. Bottom row: Flowchart of the

interaction between the two T-mazes. From left to right, the first T-maze implementing the price infers the energetic context and decides (action

selection) whether it should expend energy or not, or whether it should defer the decision to the next T-maze implementing the temperature rule.

The second T-maze decides to either expend energy, refrain from expending energy, or to abstain from deciding altogether.

simulation, we assume that the first rule of the rulebook, r1, has

priority over the second rule, r2. The rule r1 is the “price” rule which

states that o can satisfy (0) or violate (1) r1 depending on whether

the current price of energy is above or below a price threshold set by

the homeowner. The second rule, r2, is the temperature rule, which

states that o can satisfy (0) or violate (1) r2 depending on whether

the temperature of the house is above or below a temperature

threshold set by the homeowner (cf. Figure 1).

In more detail, we implemented the rulebook formalism

under the T-maze paradigm by adapting the semantics of the

rulebook to the semantic of the T-maze. Instead of representing

the “left” and “right” positions, the arms of the T-mazes represent

states sanctioned under r1 and r2, namely, expending energy (left

arm) or not (right arm). The outcomes associated with these

states are the elements on the domain of the rulebook, which

here correspond to “0” or “1”. The likelihoods that the energy

expenditure states afford outcomes scoring “1” or “0” are inverted

within each T-maze, reflecting the constraints due to price and

temperature. As we will see below, depending on the conditions

of our simulation, there may be no uncertainty in the likelihoods

of observing 1 or 0 in each state or they can be some ambiguity

or uncertainty.

Because the agents prefer “0” (i.e., to satisfy r) over “1” (i.e.,

to violate r), the agent in each T-maze will have an incentive to

select the action “u” that will bring it to the state that satisfies

the rule implemented by the agent. Now, because the two agents

implement rules that contradict one another, the “satisfying” state

in each T-maze relative to context must be inverted. This is the

novelty of our approach. For the agent implementing r1 (price rule),

not to expend energy is better under context 1, whereas for the

agent implementing r2, to expend energy is better under context

1. In context 2, expending energy is satisfying for both agents. The

context under which decisions should be made is encoded in prior

beliefs about initial states D, which are updated on the basis of

previous trials. As the context changes, with the fluctuations in the

weather, the agent learns the probability of each context through

accumulating Dirichlet parameters in d.

Depending on the order of priority in the rulebook, this setup

allows deferring to a lower priority rule, when uncertain about

what to do concerning the high priority rule (see Figure 3). In

other words, by inducing this setup in endows the implementation

of a rulebook with a context sensitivity that accommodates the

uncertainty about context. In the particular example considered

in this paper, context sensitivity is operationalized through a

conditional statement (if, then) that triggers inference by the r2
T-maze if the final decision in the r1 T-maze is to abstain from

moving from the initial state.1 This reflects the ability of the OCST

to defer to other rules in the rulebook when uncertain about the

lawfulness of a satisfying course of action under the rule that has

priority. The corollary of this is that the OCST (i) will act according

to its order of priority only when certain about its decision, which

in our simulation is a mixture of certainty about context and

outcome probability, and (ii) will reverse the priority order when

1 Note that because we allowed decisions over 2-time steps, and because

we considered the abstention as resulting from the decision over the end

state, some of the abstentions result from deciding on the first decision

step but deciding not to decide on the second timestep by returning to the

starting location. This ensures all the decisions are made by the T-mazes in

full confidence.

Frontiers in SustainableCities 06 frontiersin.org

https://doi.org/10.3389/frsc.2025.1571613
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Constant et al. 10.3389/frsc.2025.1571613

FIGURE 3

Context fluctuation in simulations 1, 2 and 3.

uncertain about the overall situation by deferring to the T-maze

implementing r2.

The consequence of this—as shown in the result section—is

that, when there is no uncertainty about the probability of outcomes

(i.e., A), and only uncertainty about the energetic context—which

fluctuates over trials—the OCST will learn the context and rarely

defer to r2. In turn, when there is uncertainty about the likelihood

of outcomes, as well as uncertainty in beliefs about the energetic

context, the agent will learn the probability of outcomes and the

energetic context, and defer to r2, thereby inverting the priority

order. Narratively, this means “respecting the price rule, as per

the order of priority when the climate makes the OCST confident

about its decisions and inverting the order of priority to respect the

temperature rule when the climate renders the OCST uncertain of

its decision”.

We ran three simulations under two different conditions (6

simulations in total). Each simulation was over 50 trials. In each

trial, the OCST was presented with one of the two energetic

contexts detailed in Figure 1. Under each condition, each of the

three simulations takes one of the 3 possible patterns of contextual

volatility (see Table 1, Figure 4). The first pattern alternates over the

50 trials between context 1, which presents 5 times, and context

2, which presents 5 times. The second pattern alternates between

context 1 and 2 on each trial. The third pattern presents context

1 five times and context 1 one time, and context 1 five times and

context 1 one time repeatedly, over 50 trials. The goal of such

fluctuations in context was to challenge the model, which has to

learn the fluctuation in context to settle on the right decisions given

the context at hand. Learning was implemented by passing the

Dirichlet parameters of the likelihood a and initial states d from the

previous trial to the next trial, enabling the agents to accumulate

evidence for the relative probability of each context in the different

experimental conditions.

Narratively, the simulations amount to a situation where,

in the same 12 h span, from 6am to 6pm, the energetic

context relative reflecting the temperature and price conditions

would fluctuate with regularity (simulation 1), fluctuate with

regularity, but more quickly (simulation 2), and finally would

fluctuate with less regularity with varied pace. Conditions 1

TABLE 1 Conditions.

Simulation 1 Simulation 2 Simulation 3

Condition

1

Pattern: 1 1 1 1 1 2

2 2 2 2 . . .

Pattern: 1 2 . . . Pattern: 1 1 1 1 1 2

. . .

GP certainty: 100% GP certainty: 100% GP certainty: 100%

Condition

2

Pattern: 1 1 1 1 1 2

2 2 2 2 . . .

Pattern: 1 2 . . . Pattern: 1 1 1 1 1 2

. . .

GP certainty:

91.5%

GP certainty:

91.5%

GP certainty:

91.5%

and 2 correspond to levels of certainty in the generative

process producing the outcomes used by the OCST to infer the

right action.

The outcomes of interest in our simulation—over which there

can be uncertainty—are whether an arm of the T-maze representing

performing the behavior (u) or not performing the behavior (¬u)

will satisfy (0) or violate (1) the rules at hand (r1 and r2).

While our study does not include a sensitivity analysis—to

test how active inference handles spikes in energy and price,

extreme weather, or user overrides based on real world data—

it does include simulation scenarios; wherein the price and

weather fluctuate in ways that makes self-correction increasingly

difficult. This is reflected in Figure 5, in the scenario that is the

hardest to predict (scenario 3). When allowing for uncertainty in

environmental inputs, the OCST defers to the priority rule, thereby

defaulting to a “better safe than sorry” strategy when conditions

change unexpectedly.

In condition 1, there is no additional uncertainty over which of

the true outcomes will be generated by the generative process. This

facilitates learning. Under condition 2, we allow some uncertainty

in the generative process of the true outcomes. In our scenario, this

represents an environment with uncertain weather conditions. This

means that our simulatedOCST faces a dual challenge. First, it must

learn the pattern of energetic context to generate the right behavior.

Second, it must learn whether its action (i.e., expending energy, u,

or not expending to warming or cooling, ¬u) will violate or satisfy

the rule, which is made more difficult under condition 2 where
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FIGURE 4

OCST robustness in the absence of environmental uncertainty.

FIGURE 5

OCST robustness under environmental uncertainty.

the OCST is faced with a volatile and unpredictable scenario (i.e.,

uncertainty in the generative process). Note that active inference,

in the context of this study, could have been used to learn and

adjust the OCST’s behavior to the user’s preferences regarding

the conflicting rules. This could be achieved (e.g., through user

control) by learning the prior preferences of the model to reflect

the user preference over the base order of priorities (e.g., between

r1 and r2).

3 Results

The 3 simulations under condition 1 show how our model

for OCST remains robust despite irregularities, or fluctuations

in context (Table 2). Under condition 1 (Figure 4), our OCST is

supposed to function just like a normal rulebook-based OCST,

giving priority to the price rule (r1). Under context 1, the OCST

learns to refuse to warm up, and learns to cool down in context
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TABLE 2 Results under conditions 1 and 2 showing the number of decision outcomes that were lawful given the true context at hand (Hit), the number

of unlawful decisions given the true context at hand (Miss), the number of times the model implementing rule 1 deferred to the model implementing rule

2 (deferring), and the number of times the rule 1 model deferred and the rule 2 model did not make a decision to either use energy or not (abstentions).

Simulation 1 Simulation 2 Simulation 3

Condition 1 Condition 2 Condition 1 Condition 2 Condition 1 Condition 2

Hit 47 (94%) 44(88%) 47 (94%) 45 (90%) 47 (94%) 30 (60%)

r1(x)= 0 45 23 43 22 46 8

r2(x)= 0 2 21 3 23 1 22

Miss r2(x)= 1 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Miss r1(x)= 1 1 (2%) 2 (4%) 1 (2%) 1 (2%) 1 (2%) 1 (2%)

Deferring (a blue dot at the

bottom)

3 (6%) 24 (48%) 4 (8%) 26 (52%) 2 (4%) 40 (80%)

Abstention (two blue dots) 1 (2%) 3 (6%) 1 (2%) 3 (6%) 1 (2%) 18 (16%)

2, irrespective of the patterns of context fluctuation. Figures 4, 5

show the decisions over the 50 trials, under each condition and

simulation. In each figure, the green dots represent a decision to

expend energy, which is allowed when r(o) = 0. The red dots

represent the opposite decision. This depends on the context, which

is represented as “1” or “2” at the bottom of the plot for each

simulation. The top series in each plot represents the decision of the

T-maze complying to the temperature rule (r2). The bottom series

represents the decision of the T-maze complying to the price rule

(r1). Blue dots indicate that the decision was to defer to the r2 T-

maze when the blue dot is on the bottom series. Blue dots indicate

that the trial ends on an “abstention” to act when the blue dot is on

the top series and the bottom series. Each series is separated into

50 columns and 2 rows. The top row represents the beliefs about

the context (i.e., o is better, or o is not better), which—depending

on the T-maze at hand—will match the true context “1” or the true

context “2”.

For instance, for the bottom T-maze representing the price

rule (r1), it is better not to warm up when in context 1, whereas

for the top T-maze representing the temperature rule (r2), it is

better to warm up in context 1. Note that the background at

each column presents a black-white gradient (white = 1, black

= 0). This gradient corresponds to the beliefs of the OCST

concerning the context [P(s0)]. The numbers 1 and 2 at the

bottom of the plot correspond to the true context. The OCST’s

beliefs about the context update to track the pattern of true

fluctuations in the energetic context. For instance, in condition 1

simulation 1, we can see that with a regular pattern of change in

energetic context that gives the agent the time to adjust, the model

gradually adjust its beliefs about the current context; the gradient

starting with a sharp black and white distinction, and smoothly

transitioning to alternating shades of gray tracking the true change

in energetic context.

The 3 simulations under condition 2 show how our model also

allows for robust OCST response, though, by overriding the order

of priority of the price rule (r1) over the need rule (r2), without

having to change the order of priority itself. This represents the fact

that under uncertain climatic conditions, in condition 2, our OCST

prefers to maintain the house temperature at the desired level, over

respecting the price rule.

To foreground the inversion of priority order—that emerges

under active inference—we measured the number of correct

decisions, or “hits” (i.e., when o returned 0, given the true

context at hand), the number of incorrect decisions, or “miss”

(i.e., when o returned 1, given the true context at hand), the

number of time the T-maze representing r1 deferred to the

T-maze representing r2, and the number of abstentions, or

number of times both T-mazes went to the “cue” position. The

noticeable results—when comparing conditions 1 and 2—are the

hit results and the deferring results. The percentages of hits

slightly decreased under condition 2, with a significant decrease

only under simulation 3, yet remaining well above chance. This

means that the behavior of the OCST remained robust even under

environmental uncertainty. The main difference is at the level

of the number of times the OCST deferred to r2, or inverted

the order of priority. As expected, when facing environmental

uncertainty, the OCST defers to prioritize the temperature

rule (r2).

4 Discussion

We have shown that active inference facilitates intelligent

energy management, optimizing resource expenditure, while

considering various norms reflecting personal, social and

economic factors. The holistic nature of this approach makes

sustainability not just a byproduct but a core consideration

of OCST decisions. Although the approach presented in this

paper focused on the issue of AI and sustainability, with the

case of Occupant Control Smart Thermostat, our approach

could easily generalize to any complex case of “normative”

autonomous decision making. Normative decision making is

complex when having to make decisions based on norms that

conflict, and whose conflict is dependent on the environmental

context. More generally, our approach could be viewed as

an approach to rule-following allowing us to embed the

capability for flexible adaptive normative compliance into

AI systems.

Our proposed approach to rule-following introduces a novel

way to embed the capability for adaptive legal compliance
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into AI systems, balancing adherence to laws with necessary

context sensitivity and flexibility. We used active inference to

extend the Rule-book approach, such that AI can dynamically

navigate competing norms in real time, much like we do.

This capacity for norm-shifting is essential because the world

is not static, nor is it simple; especially under volatile or

uncertain conditions, AI agents need to make contextually

relevant decisions. A context sensitive approach contrasts

with more rigid rule-based systems that lack adaptability,

aligning instead with human-like decision-making, where

trade-offs and situational awareness underwrite our appraisal

of appropriate choices. This ensures that AI agents are rule-

compliant but can also reason about the context and implications

of their choices, making them versatile partners in legal and

ethical domains.

One could argue that incorporating active inference into

AI design paves the way for a robust governance framework

suited to future AI advancements. Current AI governance

strategies often focus on ex-ante obligations that regulate AI

development and deployment before it reaches the market.

However, integrating active inference introduces an ongoing,

self-regulatory mechanism that complements ex-post controls

and fosters continuous compliance with ethical and legal norms.

This shift moves toward “agent governance,” where AI systems

autonomously manage their decision-making processes, while

ensuring that these processes remain explainable and transparent.

The generative models underpinning these systems can elucidate

how decisions are made and adjusted over time, enhancing trust

and facilitating collaborative legal justifications. This transparency

may in time foster a cooperative relationship between human

decision-makers and AI, supporting a shared understanding

and alignment.

Active inference inherently supports explainability. It plays a

crucial role in AI deployment within regulated spaces. Because

we model decision-making through Bayesian belief updating, the

systems are transparently—and can report how they navigate

and comply with various regulatory requirements, and most

importantly why (in terms of the epistemic and utilitarian

motivations). This feature means that AI agents reason through

legal frameworks and norms explicitly. We thus offer a clear audit

trail for their choices. Consequently, in principle, such systems

adhere to established rules and can justify their behavior in a

manner that aligns with human expectations for accountability.

This capacity to operate with embedded legal justifications

opens pathways for more seamless human-AI collaboration,

where AI is an active, explainable agent in the decision-

making processes.
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