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As urban areas expand and the global focus on sustainability intensifies, integrating 
solar energy into urban systems has become a critical area of research and 
application. According to the United Nation Dept. of Economics and Social 
Affairs, in 2022, more than half of the world’s population already resided in 
urban areas, increasing the global electricity demand to approximately 30,000 
terawatt-hours (TWh). At the same time, predictions indicate that by 2050, 
about 2/3-rd of the global population will live in urban areas, adding there 
around 2.5 billion people. In this light, providing a sustainable and reliable 
electric power supply is becoming a major challenge for city planning bodies, 
governments, and power utility companies. Utilization of architectural surfaces 
and components of urban infrastructure for renewable energy generation is 
becoming an often-considered potential solution. Furthermore, pairing PV 
systems with advanced energy storage solutions, including batteries, stabilizes 
supply–demand fluctuations, while digital tools such as Internet of Things (IoT), 
Artificial Intelligence (AI), and digital twins enhance system efficiency and grid 
management. These approaches are adding a variety of power generation 
systems, electrical control and energy storage components, and hardware, 
directly, to buildings and, on a broader scale, to urban districts. Community 
solar projects provide access to renewable energy in densely populated areas, 
particularly where rooftop space is limited. Additionally, integrating solar 
technologies with electric vehicle charging stations, green roofs, and urban 
agriculture systems demonstrates the multifunctionality of PV systems. This 
article explores strategies for urban solar expansion, emphasizing urban energy 
planning, advanced energy storage, digital tools, community solar projects, and 
integration with other urban systems. The potential of solar energy technologies 
in urban environments is discussed, from the perspective of supporting the 
transition to sustainable, energy-efficient cities while addressing technical, 
economic, and policy challenges.

KEYWORDS

renewable energy integration, sustainable infrastructure, energy storage, 
photovoltaics, BIPV

1 Introduction

Global population projections indicate significant growth in the coming decades, 
with implications for urban density and energy demand. According to United Nations 
(2024) World Population Prospects, the global population is expected to increase from 
8.2 billion in 2024 to approximately 10.3 billion by the mid-2080s (United Nations, 
2024). In the United States, the population is projected to grow from 340 million in 2023 
to approximately 375 million by 2050 (United States Census Bureau, 2023). Urbanization 
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is expected to continue globally, with the urban population 
projected to increase from 4.2 billion in 2018 to 6.7 billion by 
2050. In the U.S., urban areas are anticipated to experience 
continued growth, with urban population density expected to 
increase. One of the positive outcomes of this process is that this 
densification can lead to the reduced per capita energy 
consumption due to factors such as decreased reliance on 
personal vehicles and more efficient building energy use 
(University of Michigan, 2023). However, the overall energy 
demand in urban areas is expected to rise due to the increasing 
total urban population and economic activities (Güneralp 
et al., 2017).

With the current shifts in international demographics, 
balancing electricity supply and demand in power grids is 
becoming increasingly challenging. Increasing the share of 
renewable technologies in the international power supply 
landscape is beneficial. However, it is important to remember that 
the significant growth of solar power inputs also presents 
challenges (Allouhi et al., 2022; Choudhary and Kumar Srivastava, 
2019; Kapilan et al., 2022; Shafiullah et al., 2022). According to 
Masson et al. (2022), over 600 GW of new PV systems were 
commissioned in 2024, resulting in the global cumulative PV 
capacity of over 2.2 TW at the end of 2024. This is a significant 
growth from the 1.6 TW value at the end of 2023. China 
contributed nearly 60% (357.3 GW) of this global capacity. Europe 
also demonstrated continual growth, installing about 71.4 GW, led 
by Germany (16.7 GW). The USA, Brazil, India also demonstrated 
significant PV installation growth of about 47.1 GW, 14.3 GW, and 
31.9 GW of new PV installations, respectively. As depicted in 
Figure 1, there is a midday dip in net demand for grid electricity 
due to high solar generation, followed by a steep evening spike 
when solar power declines. When plotted as a curve, the shape 
resembles the silhouette of a duck thus the name “Duck Curve” 
(Al-Sunni et al., 2022). The Duck Curve was originally published 

by California ISO in 2013.1 It shows how solar energy can cause the 
net load on the power grid to fluctuate throughout the day. The 
curve explains the need for solutions. Solutions include deploying 
energy storage systems, demand response strategies, flexible power 
plants, and modernizing the grid to better integrate 
renewable energy.

Solar energy will also need to fulfill new roles regarding water 
economy: sustainable cities integrate water collection, wastewater 
recovery, and even desalination into urban energy systems by utilizing 
the surplus solar energy during peak generation periods, addressing 
the duck curve, and reducing reliance on conventional power. The 
potential of solar energy to recovery water from humid air using 
desiccant materials was modeled by Mohamed et  al. (2017) for 
different Egyptian weather and reported that a total of 3.02 L/ (day.m2) 
could be recovered in Alexendria during Spring. This technology has 
been practically demonstrated by Hamed et al. (2011) in Saudi Arabia, 
and their results show that about 1.0 L per m2 can be regenerated in 
the location of Tarif. Furthermore, it has been already demonstrated 
that solar-powered desalination and wastewater recovery enhance 
water security while lowering energy footprints (Garrido-Baserba 
et al., 2024). Solar energy can also be used in water heating systems to 
enhance building efficiency. Meena et al. (2022), reports that a clear 
glazing flat plate collector area of about 1.83 m × 1.22 m × 0.1 m with 
a 0.5 mm thick black copper collector which received an average 
irradiation of 700 W/m2, can supply about 60  L of water at 
temperatures from 15 to 45 degree Celsius for about 70 min. Coupling 
water treatment with energy storage supports decentralized urban 
solutions. Improving the lifecycle, sustainability and resource 

1 https://www.caiso.com/documents/flexibleresourceshelprenewables_

fastfacts.pdf

FIGURE 1

Duck curve based on U.S. Energy Information Administration data from California, March 31st 2019–2024 (EIA, 2025).
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efficiency, these approaches contribute to a resilient and circular, 
urban energy approach.

2 Future PV technology developments 
for urban contexts

As the demand for sustainable energy solutions intensifies, the 
application of solar power and different PV technologies in urban 
landscapes such as in building integrated PVs are evolving. In the 
urban context there is a focus on land availability, efficiency, aesthetics, 
adaptability, and sustainability. Ground mounted PV and rooftop PVs 
installation are made up of either mono/polycrystalline silicon panels, 
or thin film technologies like Cadmium Telluride (CdTe). Solar PVs 
can also be either integrated or attached to buildings. The integration 
and utilization of PV modules into building structures as either 
Building-Integrated Photovoltaic (BIPV) systems or Building Applied 
Photovoltaics (BAPVs) are most common in urban areas (Zhao et al., 
2023; Constantinou et  al., 2024). They combine efficient energy 
generation with architectural designs. Differences between PV 
installation/integration approaches are presented in Figure 2.

In BAPVs, photovoltaics are installed on building structures 
without substituting any existing component as in the case of BIPVs. 
Building-Integrated Photovoltaics (BIPVs) and Building-Applied 
Photovoltaics (BAPVs), based on PV technology, can be made from 
various solar cell types. Silicon-based options include monocrystalline 
and polycrystalline solar cells, commonly incorporated into facades 
(Biyik et al., 2017). Thin-film solar cells, such as Cadmium Telluride 
(CdTe) and Copper Indium Gallium Selenide (CIGS), offer flexible 
integration possibilities (KoŚny et  al., 2012; Kumar et  al., 2019; 
BiPVco, 2025). More recently, due to their ease of fabrication (Zhu 
et al., 2020) and their high-power conversion efficiency (Chan et al., 
2019; Yavari et al., 2018), perovskites solar cells are considered as a 
promising technology for BIBVs and have been revolutionizing the 
field. Perovskite solar cells, particularly metal halides, stand out due 
to their semi-transparent properties, high efficiency, flexibility, and 
lightweight potential, making them ideal for portable devices and 
curved urban surfaces like glazing (Batmunkh et al., 2020; Bing et al., 

2022). Organic solar cells provide new possibilities for BIPVs, thanks 
to their diverse color options, lightweight nature, mechanical 
flexibility, and customizable shapes (Landerer et  al., 2019). 
Additionally, Dye-Sensitized Solar Cells (DSSCs) are particularly 
effective in low-light conditions, and can be easily integrated into 
building fenestrations (Mirabi et al., 2021), further expanding the 
potential applications of BIPVs in urban environments. Furthermore, 
photovoltaic blinds, overhangs and ownings are examples of 
architectural applications of solar BIPVs. Other urban PV technology 
includes bifacial mono crystalline PV technologies which capture 
solar radiation on both sides of the panel (Pisigan and Jiang, 2014). 
This technology is particularly suitable where solar radiation is 
reflected by urban surfaces like buildings (Huang et  al., 2004). 
Transparent and semitransparent photovoltaic (PV) technologies 
enable direct integration with building envelopes and other urban 
infrastructures, enhancing their versatility and acceptance in urban 
planning. For example, transparent PVs are being utilized in windows 
and facades, allowing natural light transmission while simultaneously 
generating electricity, thus improving energy efficiency in buildings 
(Wu et  al., 2024). Solar roof tiles and facades are another BIPV 
application replacing traditional roofing materials with aesthetically 
pleasing energy-generating tiles. Similarly, semitransparent BIPVs are 
attracting interest from several researchers, due to their combination 
of efficiencies and improved visual performance (Martellotta et al., 
2017). Semitransparent PV facades enable energy generation without 
sacrificing the visual appeal of buildings, making them a key feature 
in sustainable urban development (Ferreira et  al., 2018). Wall-
mounted PVs, which is the installation of solar panels on walls have 
also been regarded as a promising option of PV installation in urban 
areas due to land constraints (Al-Rashidy et  al., 2024). In wall-
mounted PVs, solar panels, mostly crystalline and thin film solar 
panels, can be mounted on exterior walls, fences (Masna et al., 2023), 
or even within yards. Ruan et al. (2025) evaluated the potential of 
wall-mounted PV in high-latitudes such as in Sweden, through a PV 
power generation model and reported that the output of the PV 
installation was significantly greater in the snow periods from October 
to March, despite a lower power generation of about 5% in other 
seasons. Nagaoka et al. (2021) also reported higher power output 

FIGURE 2

Examples of different PV installation techniques on window, wall, and slope roof. (a) BIPV: transparent PV modules that replace skylight windows. 
Source: Picture from https://www.freepik.com/. (b) Example of BAPV: PV modules that are applied to the façade of a building. Source: Image by 
Christiane M. from Pixabay. (c) Roof installation of lightweight adhered PV modules recorded during the final project demonstration of the Fraunhofer 
Plug-and-Play project. Source: Reproduced from Hoepfner (2016), with permission.
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during the winter periods, hence, positioning wall mounted PVs as 
viable options for offsetting building energy.

In addition to traditional flat applications, these PV technologies 
have enabled integration into a variety of architectural or urban 
infrastructure components, such as overhangs, awnings, and shading 
devices, enhancing their functionality while contributing to renewable 
energy generation. Rollable and bendable solar films expand their use 
on complex surfaces, such as curved roofs, vehicle exteriors, and 
uneven urban landscapes. These advancements allow PV systems to 
support architectural designs and improve their adoption in urban 
areas (Traverse et al., 2017).

Flexible PV materials are low-cost, high-performance, and easy 
to install (Dallaev et al., 2023). Flexible PV technologies reduce the 
cost through the elimination of high-energy manufacturing 
processes as compared to silicon based solar module technologies. 
Their high performance in low-light conditions, their lightweight 
and flexible nature allow low-cost and fast-to-install metal building 
applications and complex architectural facades, as well as the 
integration into non-traditional surfaces like for example 
infrastructure components, or roofs on different types of vehicles. 
These systems are advantageous for retrofitting older buildings (El 
Gindi et  al., 2017), where traditional PV systems may not 
be feasible due to their weight, installation hardware requirements, 
and lack of flexibility.

Integrating photovoltaic (PV) technology into urban surfaces 
enables innovative solutions for sustainable energy generation. 
Applications include PV-integrated roads and parking lots. These 
surfaces harness solar energy by embedding durable solar panels 
capable of withstanding vehicle loads, thereby converting vast urban 
areas into decentralized power generators. For instance, solar roads 
replace traditional asphalt with specially designed solar panels, 
generating electricity from sunlight while supporting vehicle traffic 
(8MSolar, 2024). Several studies have evaluated the efficiency of solar 
roads, yielding mixed results. For instance, the Solar Road project in 
the Netherlands, which involved a 70-meter solar bike path, reported 

an energy yield of 78 kWh per square meter per year during its initial 
phase, measured in 2015 (Shekhar et al., 2018). Beyond roadways, PV 
integration extends to park benches, lighting poles, and noise barriers. 
Incorporating solar panels into these structures can power streetlights, 
signage, or provide charging stations for electronic devices, enhancing 
urban infrastructure’s functionality and sustainability (US DOE, 
2024). Another significance of solar PV integration in urban areas lies 
within the context of Positive Energy Districts (PEDs). PEDs are 
designed to facilitate energy transition and advance climate neutrality 
by promoting energy efficiency and achieving a net zero energy 
balance. Lindholm et al. (2021) defined PEDs as energy efficient and 
energy-flexible urban areas or clusters of interconnected buildings 
that achieve net zero greenhouse gas emissions and actively manages 
an annual surplus of locally or regionally produced renewable energy. 
As outlined by Derkenbaeva et al. (2022), four defining elements of a 
PED include: a clearly defined geographical boundary; integration 
with the grid; a designated method of energy supply and a balancing 
period. PED emphasizes achieving Net-zero emissions through energy 
generation, hence, highlighting the critical role of integrating clean 
energy generating sources. Though not all renewable energy resources 
are applicable for PEDs due to high population density in urban areas, 
solar PV and batteries are more suitable for an urban environment and 
can be  installed in all types of PEDs (Lindholm et  al., 2021). 
Furthermore, solar PV’s synergy with energy storage like batteries can 
help in achieving an energy balance. Other benefits include 
decentralized energy production, optimized use of idle spaces, and the 
support of energy efficient technologies such as LED street lighting all 
contribute to the advancement of the PED concept (Table 1).

In addition, hybrid systems combine PV cells with other types of 
solar technologies. For example, solar-thermal hybrid systems (PVT) 
merge photovoltaic cells with thermal collectors, simultaneously 
producing electricity and heat from the same surface area, thereby 
maximizing energy output. Integrating PV into green walls or roofs 
can improve building insulation, reduce urban heat island effects, and 
support biodiversity (Cheng et al., 2021).

TABLE 1 Efficiencies of the most common solar PV technologies.

PV 
technologies

Types Demonstrated efficiency (%) References

Crystalline Si-based 

solar cells

Mono crystalline 26.3 Yoshikawa et al. (2017)

Poly crystalline 20.4 Green et al. (2020)

Bifacial solar cells PERC - Typical applications include power plants and BIPVs

- Demonstrated Efficiency: 25%

Dullweber et al. (2018)

Thin film solar cells Cadmium telluride (CdTe) - Application in solar power plants, commercial and industrial rooftop installations

- Demonstrated Efficiency: 21.5%

Zhu et al. (2022)

Cupper Indium Gallium 

Selenide (CIGS)

- Application in BIPVs, metal buildings, architectural components, mobile applications, 

transportation infrastructure

- Demonstrated Efficiency: 23.6%

Keller et al., (2024)

Third generation PV Organic PV - Applications in BIPVs, portable consumer electronics, IoT smart sensors, smart 

textiles, advertising signs, etc.

- Demonstrated Efficiency: 18.7%

Cui et al. (2021)

Perovskite solar - Expected future applications in BIPV, mobile applications, transportation technologies

- Demonstrated Efficiency 24.9%

Ren et al. (2024)

Dye sensitized solar cells - Applications in smart windows (BIPVs), IoT smart sensors.

- Demonstrated Efficiency: 12%

Vodapally and Ali (2022)
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3 Challenges with urban-scale 
expansion

To ensure the local energy production, and not only 
consumption by urban areas/cities, the early integration of solar 
energy consideration into urban design/planning is crucial 
(Akrofi and Okitasari, 2022). Urban solar implementation faces 
challenges that require innovative solutions. Space constraints are 
a primary issue (Kammen and Sunter, 2016), as densely populated 
areas often have limited roof space and competition for land with 
other urban needs such as housing, services, and green spaces. In 
a study by Mohajeri et  al. (2016), they assessed the effects of 
various urban compactness indicators on solar potential for about 
16 neighborhoods (11,418 buildings) in Geneva (Switzerland) for 
various PV installation technologies include BIPV, Solar thermal 
collectors (STC) and direct gain passive solar systems, and their 
results demonstrated that solar irradiance decreases with increase 
compactness. The BIPV potential on facades decreased from 20% 
in disperse neighborhood to 3% in compact neighborhood, the 
passive solar heating decreased from 21 to 4%, the STC potential 
decreased from 85 to 49%, the BIPV potential on roofs decreased 
from 94 to 79%, and finally the STC potential on roofs from 100 
to 95%. Glare from reflective solar panels can impact nearby 
buildings, transportation infrastructure, and aesthetics (Etukudoh 
et  al., 2024; Labib et  al., 2016; Sreenath et  al., 2021), while 
shadowing caused by high-rise buildings and trees can 
significantly reduce solar panel efficiency (Wang, 2025; Yang 
et  al., 2019). Integrating solar systems into urban architecture 
presents aesthetic and design challenges, with public resistance 
often stemming from concerns about visual impacts. Additionally, 
urban grids may not be equipped to handle the distributed energy 
inputs from solar systems, necessitating upgrades and 
modernization, while energy storage solutions are needed to 

balance supply and demand, especially during nighttime 
(Etukudoh et al., 2024).

In PV applications only about 1/4 of energy is converted into electric 
power with similar amount transformed into heat (Prakash et al., 2023). 
The associated urban heat island effect, which raises ambient air 
temperatures, can further reduce solar panel efficiency (Adeh et al., 
2019). Novel ventilation strategies and PV-Thermal applications may 
need to be considered in such situations. Maintenance and accessibility 
are also significant concerns, as urban solar installations on rooftops and 
facades often incur higher costs and logistical challenges (Shukla et al., 
2018). Regulatory and policy barriers, such as inconsistent guidelines 
and lengthy permitting processes, complicated implementation, while 
high upfront costs and financing difficulties deter widespread adoption 
(Kammen and Sunter, 2016; Shukla et al., 2018).

Lifecycle and sustainability is another concern, particularly the 
recycling and disposal of solar panels at the end of their life (Ndalloka 
et al., 2024), alongside addressing their embodied carbon footprint. 
Finally, integrating solar systems with other urban infrastructures, 
such as EV charging stations and water management systems, can 
be challenging due to space and infrastructure limitations (Shafiullah 
et  al., 2022). These issues highlight the need for comprehensive 
planning, innovative technologies, and supportive policies to 
effectively harness solar energy in urban environments. Figure  3 
summarizes the challenges faced by solar PV integration in 
urban areas.

4 Cost and maintenance

Building-Integrated Photovoltaic (BIPV) systems offer the 
advantage of serving as both building materials and energy 
generators, contributing to sustainable architecture. However, there 
are often higher initial costs and maintenance challenges. While 

FIGURE 3

Challenges faced by solar PV integration in urban areas.
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BIPV systems typically have a significant upfront investment 
compared to traditional building materials and standard 
photovoltaic installations, due to installation complexities 
(Shahverdian et al., 2025), their overall benefits including aesthetic, 
economic, environmental, societal, make them a cost-effective 
option (Gholami et  al., 2020; Sorgato et  al., 2018). To help in 
understanding potential economic advantages of BIPV systems and 
to illustrate a scale of cost reductions accomplished by the authors, 
the original experimental solar roof configuration, from their past 
project, is presented on Figure 2C (Hoepfner, 2016; Shukla et al., 
2017). The Fraunhofer Center for Sustainable Energy Systems (CSE) 
developed a Plug and Play Photovoltaic (PV) system designed to 
simplify and reduce the costs of residential solar installations. The 
goal was to make solar installations as straightforward as setting up 
a home appliance, enabling homeowners to install the system 
themselves or with minimal assistance. In residential installations, 
PV modules, inverters, mounting hardware, and electrical 
components account for about 20% of the total cost. Soft costs 
(including design, permitting, and installation labor) constitute the 
remaining portion, The Plug and Play initiative aimed to lower the 
installed cost of residential solar systems to $1.50 per watt, a 
significant reduction from the average $3–$4 per watt in the U.S. at 
the time of the project’s inception in 2013. The additional benefit of 
the application of this technology was the great speed of installation. 
As shown on the shared video, it took less than 2 h to install, 
connect to the power grid, and commission the 3-kWh roof 
system—Fraunhofer Plug and Play PV Systems—System Installation 
and Commissioning November 2014—YouTube.

This is due to the integration of energy-generating components 
into building elements, which often require specialized materials 
and installation techniques. The increased complexity in design and 
construction contributes to these elevated costs (Zou et al., 2024). 
Maintenance of BIPV systems, especially in hard-to-reach locations, 
like high-rise buildings, have challenges. Accessing these systems 
for maintenance on high-rise buildings often necessitates 
specialized equipment and safety measures, leading to increased 
operational costs (Shi and Zhu, 2023). Advancements in materials 
and installation techniques are essential to make BIPV systems 
more economically viable and practical for widespread adoption in 
urban environments.

5 Strategies for urban expansion: 
enabling sustainable energy solutions

As urban populations grow, innovative strategies are required 
to integrate renewable energy systems into city planning, ensuring 
optimized resource use, and minimal environmental impact. The 
insufficiency of urban power grids is a major barrier to large-scale 
PV adoption, as many grids were designed for a given capacity 
and for one-directional power flow and cannot efficiently handle 
bidirectional energy inputs (Singh et  al., 2015). Aging 
infrastructure, lack of smart inverters, and limited grid capacity 
lead to issues like voltage instability, solar curtailment, and power 
surges during peak solar generation. Dynamic load fluctuations 
complicate integration, as solar energy production is intermittent, 
requiring flexible storage and grid balancing mechanisms 
(Shafiullah et  al., 2022). Smart grids, battery storage, and 

AI-driven energy management systems stabilize supply–demand 
mismatches (Kataray et al., 2023). The Advanced Energy Economy 
Institute reported the successful integration of renewable energy 
resources at penetration levels of 10–20%, and sometimes even up 
to 50% in two major states (Texas and Colorado) in the 
United  States (Weiss et  al., 2015). Some of their methods and 
technologies for grid integration include the use of large-scale 
storage, expansion of the transmission lines improved flexibility 
of fast ramping gas-fired generation resources and enhanced 
forecasting of renewable energy production.

Designating solar zones or districts in city planning is one 
approach. This involves large-scale installations on city-owned 
land or prioritizing solar development in underutilized spaces, 
like for example, industrial rooftops. Mandating PV integration in 
new developments ensures that solar energy generation is 
embedded into urban structures. Policies requiring solar-ready 
designs or PV systems on new buildings, as implemented in cities 
like San Francisco and Tokyo, have demonstrated the effectiveness 
of such mandates in achieving urban sustainability goals 
(Spector, 2017).

Advanced energy storage systems are necessary for stabilizing 
supply–demand fluctuations inherent in solar energy production. 
Pairing urban PV systems with batteries or other storage 
technologies, such as thermal, thermos-chemical, or flywheel 
storage, enables energy captured during the day to be used during 
peak demand periods, such as evenings (Barzegkar-Ntovom 
et al., 2020).

The integration of IoT, AI, and digital twins in urban energy 
systems have the potential to revolutionize urban energy 
distribution. IoT-enabled sensors monitor the performance of PV 
installations in real time, while AI algorithms optimize energy 
generation and consumption patterns based on weather forecasts 
and user behaviors. Digital twins—virtual replicas of physical 
assets—are increasingly used to model and optimize energy systems 
in urban environments and provide support in decision making. 
These tools enhance grid management by balancing distributed 
energy inputs and facilitating demand response programs, creating 
resilient and efficient energy systems (Zhao et al., 2016).

Community solar projects such as balcony mounted PV, 
addresses the challenge of limited roof space in densely populated 
urban areas by installing shared solar resources with energy sharing 
mechanisms (Yang et  al., 2021). Residents and businesses in a 
community can purchase or lease a portion of the solar installation 
and receive credit for the electricity generated. These projects allow 
access to renewable energy, reduce energy costs, and enhance public 
buy-in for solar initiatives (Gai et al., 2021). To address the capital 
investment of distributed energy resources particularly faced by low 
to moderate income households, and enhance urban energy 
resilience and self-sufficiency (Abdelbary et al., 2024), proposed 
and energy sharing mechanism called Community Energy Cells 
(CECs). Controlled by a Cell Aggregator (CA) as a single 
controllable entity, CECs consist of a group of distributed energy 
resources that can operate autonomously during grid disruptions 
and can equally implement other value streams such as selling in 
the wholesale energy market. CECs can further benefit from tax 
incentives and play a vital role in enhancing energy justice in urban 
areas. Renewable energy communities can be encouraged through 
effective urban planning and provide a viable solution to reduce 
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energy poverty in urban areas and advance the transition to carbon 
neutrality (Gerundo and Marra, 2022).

Integrating PV with other systems such as electric vehicle (EV) 
charging stations, for instance, supports the transition to sustainable 
transportation. Coupling PV with green roofs enhances building 
insulation while generating power and integrating PV with urban 
agriculture systems allows food production and renewable energy 
generation on the same land. These synergies optimize space use 
and contribute to urban resilience, aligning energy systems with 
broader sustainability goals (Bastida-Molina et al., 2021).

6 Conclusion

The integration of photovoltaic (PV) technology into urban 
landscapes is key to meeting rising energy demands while reducing 
environmental impacts. Innovations in high-efficiency solar cells, 
transparent PVs, flexible materials, and BIPV systems are enabling 
solar integration into city infrastructure. These advancements, 
including solar roof tiles, energy-generating facades, and hybrid 
PV-thermal systems, enhance urban energy resilience and promote 
decentralized clean energy generation.

However, urban-scale PV expansion, in addition to 
architectural design issues, faces significant challenges, including 
space constraints, grid limitations, and regulatory hurdles. 
Existing power grids lack the capacity for bidirectional energy 
flows, requiring upgrades like smart grids, battery storage, and 
AI-driven energy management to optimize PV performance. High 
upfront costs and maintenance challenges, especially for BIPV in 
high-rise structures, remain barriers. Emerging solutions such as 
remote monitoring, and improved PV technologies are helping 
lower long-term costs and increase adoption.

Strategic urban energy planning and supportive incentives 
and policies are crucial to overcoming these challenges. 
Mandatory PV integration, community solar initiatives, and 
digital energy management tools can enhance grid stability and 
increase access to solar power. Pairing PV with EV charging, green 
roofs, and urban agriculture creates multifunctional 
energy solutions.

By addressing grid capacity, costs, and space limitations, cities 
can leverage PV technology to become sustainable, energy-
independent urban environments. With continued advancements 
and strategic planning, solar-powered cities can serve as global 
models of sustainability and resilience.
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