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Introduction: Concrete is widely used in coastal construction, tetrapod armour 
units as the top layer of breakwaters, which protect rear-side developments 
by dissipating wave energy. However, concrete poses environmental impacts 
across its life cycle. There is a remarkable gap in the literature on the Life Cycle 
Assessment (LCA) of concrete armour units, despite their widespread usage 
in coastal engineering. To address this, this study evaluates the environmental 
impact of tetrapod armour over its life cycle.

Methods: An LCA is undertaken using SimaPro software, applying a cradle-to-
gate approach that focuses on production, transportation, and placement stages 
of tetrapods, concrete and steel for casting. The functional unit (FU) is “5-meter 
of breakwater.” Due to limited data in the literature, the Life Cycle Inventory (LCI) 
is mainly obtained from the ecoinvent database available on SimaPro. Energy data 
for the unit processes is gathered from literature and manufacturers. The Life 
Cycle Impact Assessment (LCIA) is undertaken using a mid-point approach in the 
CML-IA method. Additionally, the non-renewable fossil impact category under 
the Cumulative Energy Demand (CED) method is evaluated, since non-renewable 
resources are major contributors in tetrapod production.

Results: The CML-IA results show that cast production emerged as the predominant 
contributor, comprising over 80% of the total impacts across all categories. Notably, 
cast production has the highest influence on non-renewable fossil impacts under 
CED, with a value of 2.62E+06 MJ per FU. This highlights the significant energy 
burden of steel in tetrapods and underscores the importance of decision-making 
during the production stage. Additionally, sensitivity analysis revealed that the system 
has low sensitivity to changes in transportation distance.

Discussion: The study confirms cast production dominates the total 
environmental impacts and fossil energy use. Further research is needed to 
analyze large quarry rocks use for the armour layers, while accounting for 
regional variables to obtain more reliable results. The findings emphasize 
the need to explore alternative materials and production methods to reduce 
the environmental footprint of tetrapods while maintaining their protective 
effectiveness in coastal construction.
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1 Introduction

Concrete is one of the most widely used building materials around the world, as reflected in 
numerous previous studies (Diaferio and Varona, 2024; Wang et al., 2023; Van den Berghe and 
Verhagen, 2021). Huge environmental concerns are arising from the utilization of concrete in the 
construction sector (Glanz et al., 2023). In particular, cement production for concrete manufacture 
generates a high carbon footprint that affects a substantial amount of global CO2 emissions (York, 
2021). Consequently, challenges to overcome greenhouse gas emissions and energy consumption 
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in the concrete life cycle are being thoroughly investigated in recent 
research (Zhang et al., 2018; Xu et al., 2024). Therefore, the aim of this 
paper is to contribute to the existing literature by carrying out an LCA on 
concrete armour units, which are extensively used in breakwater 
applications. On the other hand, concrete has a variety of uses and offers 
multiple unique functions. One of its uses is the construction of 
unreinforced concrete armour units for breakwaters to serve as a coastal 
defense structure (Fookes and Poole, 1981). Breakwaters are marine 
structures that help break waves and protect against strong waves and 
currents (Nordstrom, 2014). As shown in Figure 1, a breakwater is made 
up of five components, including three essential layers: armour, 
underlayer, and core layers.

The top layer is called the armour layer. While the core and the 
underlayer are commonly made from relatively smaller rocks, the 
armour layer can be  made up of large rocks from quarries or 
unreinforced concrete units. Rocks are typically the first option for the 
armour layer. A breakwater made solely of rocks is called a rubble-
mound breakwater. However, when the required rock size is too large, 
the alternative solution of utilizing a concrete armour unit may 
be more appropriate (CIRIA, CUR, and CETMEF, 2007). Concrete 
armour units are unreinforced concrete blocks used primarily for 
protection against wave action (Park et  al., 2019). They come in 
different shapes and sizes. They can be shaped into concrete cubes, 
accropodes, stabits, tetrapods, dolos, etc. (Muttray and Reedijk, 2009). 
Tetrapod is the first irregular shape made for concrete armour units 
(Natakusumah et al., 2024). It was created in France in the 1950s 
(Moreau and Gand, 2022). Tetrapods offer a very rough facing for the 
breakwater as they have high porosity due to 50% voids when 
staggered (Daniel and Greslou, 1962). This greatly helps dissipate the 
wave energy. Tetrapods are typically placed as interlocking-type units 
used in a double layer (CIRIA, CUR, and CETMEF, 2007). They are 
also capable of standing at a steep slope of 1:3/4 or 1:1.5 (Bakker et al., 
2003; Daniel and Greslou, 1962), which may be considered too steep 
and may be unstable for large quarry rocks. Steep slopes help with 
shortening the footprint of the breakwater extension. Tetrapods may 
come in various weights that range from 1.5 to 25 tons (Fibo Intercon, 
n.d.). They are cast in steel moulds. They can be pre-cast or cast on-site 
if there is adequate space for casting and storing (Winters, 2024).

A significant amount of concrete is used in a typical tetrapod 
concrete armour unit. For this reason, considering the new focus on 
sustainable development and green construction, it is important to 
consider the sustainability impact of such concrete units over the course 

of their life cycle. It has been noted from previous and current literature 
that the usage of LCA helps in identifying environmental impacts 
associated with a product, from the phase of extraction of raw material 
to the disposal of the product (Kheiralipour et al., 2024; Finnveden 
et al., 2009). Although numerous LCA studies have been conducted on 
other concrete products, such as waste rubber concrete, concrete 
containing ferrochrome slag and fly ash, recycled e-waste concrete, etc. 
(Tang et al., 2024; Das et al., 2022; Goh et al., 2022), limited work has 
been done within the concrete armour units, particularly tetrapods. For 
instance, a study applied LCA to compare the environmental impact of 
natural stone and tetrapod breakwaters. All phases during construction 
were considered. The functional unit considered is 10 m of breakwater, 
and impact categories are used according to the CML method. Gabi 6 
software was used to carry out LCA. The results obtained indicated that 
concrete production has more impact than natural stone production 
according to multiple impact categories. For example, a tetrapod 
breakwater GWP value of 81,700 kg CO2-eq. is more than the natural 
stone breakwater GWP value of 10,000 kg CO2-eq. In addition, more 
energy consumption is observed during tetrapod construction than 
natural stone (Valiyev, 2015). Another study was conducted in Brazil to 
evaluate the environmental performance of three different types of walls 
commonly used: ceramic bricks, concrete bricks and cast-in-place 
reinforced concrete exterior walls. The results were analyzed using 
SimaPro 7.3 software. The analysis showed that ceramic brick walls have 
less impact than concrete walls on resource depletion and greenhouse 
gas emissions (De Souza et al., 2016). Similarly, an LCA of rubble-
mound breakwaters with concrete armour units and caisson breakwaters 
showed that caissons had a smaller carbon footprint, with reinforced 
concrete being a major contributor to emissions (Broekens et al., 2012). 
Furthermore, a separate LCA study was performed using SimaPro 7.3 
to evaluate alkali-activated blast furnace slag as an alternative binder in 
concrete mix designs for breakwater structures. Results indicated that 
sodium silicate-activated slag is a feasible option with low GWP but 
higher impacts in other categories (Silva et al., 2018).

The literature has covered a wide range of LCAs on concrete-based 
materials, including tetrapod armour units. However, due to limited 
studies mainly focusing on tetrapods, the literature is left with major 
gaps that need to be assessed. For instance, Valiyev (2015) proposed a 
well-structured LCA methodology for tetrapods, contributing 
significantly to a clearer understanding of the associated challenges. 
However, the study lacked a comprehensive assessment of key phases 
of LCA, such as casting, transport, and placement; limited modelling 

FIGURE 1

Typical breakwater cross section (CIRIA, CUR, and CETMEF, 2007).
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was implemented to thoroughly cover these phases. Also, mid-point 
indicators like CML-IA and CED were excluded from the study. 
Furthermore, the existing research relies on outdated data, 
underscoring the need for updated studies that incorporate advanced 
methodologies and current databases. Therefore, this research paper is 
set to cover several gaps from the literature, providing a robust 
interpretation of tetrapods’ LCA by adopting a cradle-to-gate approach, 
focusing on production, transportation and placement stages, while 
excluding the use and disposal phases due to their negligible 
environmental impact and unpredictable nature (Yadav and Samadder, 
2018; Biswas et al., 2017). Thus, delivering a deep understanding to 
decision-makers. These gaps are filled by conducting casting, transport, 
and placement modelling together with CML-IA and CED indicators. 
Moreover, this paper is focused on using an up-to-date database to 
provide a reliable analysis of the tetrapod LCA. As a result, the 
ecoinvent v3.8 database, which was recently updated in 2023 (Ecoinvent 
Association, 2023) is utilized. Additionally, the modelling is performed 
using SimaPro software, which was adopted due to its high capability 
to model detailed life cycle stages, advanced integration with ecoinvent 
database, and support for a wide range of impact assessment methods, 
as outlined by Su et al. (2020). In this study, the selected unit is a 5 
tonne tetrapod with a volume of 2.08 m3, and the casting of this unit is 
typically made of steel, weighing 1 tonne (Fibo Intercon, n.d.).

2 Materials and methods

This study employs a standard Life Cycle Assessment approach to 
assess the potential environmental impacts associated with the life 
cycle of a concrete coastal armour unit known as a tetrapod. LCA is a 
thorough assessment method that examines a product’s entire life 
cycle and incorporates various environmental impacts. These 
distinctive aspects of LCA help prevent shifting problems from one 
life cycle stage to another or from one type of environmental impact 
to another (Finnveden and Potting, 2014). Based on the ISO 14044 
standards, which were most recently updated in 2020 (ISO, 2020), the 
LCA methodology is divided into four phases: the goal and scope 
definition, the Life Cycle Inventory (LCI) analysis, the Life Cycle 
Impact Assessment (LCIA) and the interpretation (Pennington et al., 
2004). These four phases are illustrated in Figure 2, representing the 
sequence and interconnections of the steps in the LCA process.

The goal of this study is to quantify the environmental impacts of 
the production, transportation, and placement of tetrapod concrete 
armour units. The intended purpose of this study is to inform decision-
makers, such as contractors, designers, and developers, about the 
impacts and emissions so they can make decisions on alternatives to 
be used for coastal protection. This is important as rocks are commonly 
used for the armour layer. Understanding the impacts of tetrapods 
may indicate which alternative would be best to use. This study may 
also aid in policy-making decisions related to casting and transporting 
concrete for the production of concrete armour units. The functional 
unit and system boundary are defined in the sub-section below.

2.1 Functional unit and system boundary

The functional unit is necessary for LCA studies to form a 
reference for the impacts, where the amount of function is quantified 

and achieved. The functional unit of this study is “5 m of breakwater.” 
Calculations are made in order to quantify the amount of tetrapod 
units, volume, and weight within the 5 meters of the breakwater. 
Several assumptions were made based on available literature and 
standard engineering practice. Accordingly, the breakwater section is 
assumed to have a two-layer tetrapod armour unit with a thickness of 
2.6 m, as presented by Valiyev (2015). Moreover, the bed level and the 
top level are taken as −6.0 m and +4.0 m, respectively (Shinde et al., 
2017), with a slope ratio of 1:1.5 (Hald et al., 2015).

Table  1 provides a concise overview of every calculation step 
carried out throughout the analysis. Based on previously mentioned 
assumptions, the cross-sectional area derived from AutoCAD 
calculations is approximated to be 50.2 m2 (1–5), and when extended 
over a 5 m length of breakwater, the calculated volume is 251 m3 (6). 
Considering a porosity of 50% (Suwannarat et al., 2020), the volume 
is reduced to 126 m3 (7). As a result, the number of 5 tonne tetrapods 
with a volume of 2.08 m3 is 61 (8). Finally, the weight of the concrete 
in 5 m when using 61 tetrapods is 305 tonnes (9).

The assessment covers the tetrapod life span from raw materials 
(concrete and steel cast needed to mould tetrapods) and going up to the 
placement phase, as depicted in Figure 3. The use and disposal phases are 
excluded from this LCA. In other words, the study adopts a “cradle to 
gate” approach, evaluating the stages up to the point where the tetrapods 
are completed and ready for deployment in coastal projects. This approach 
was selected to concentrate on the steps with the greatest environmental 
impacts: production, transportation, and placement. Adding the use and 
disposal phases would need more parameters that could be  highly 
sensitive to the application of disposal, which are beyond the reach of this 
research. Hence, this approach provides a thorough understanding of the 
environmental impacts up to the placement phase.

2.2 Life cycle inventory (LCI)

Conducting a representative LCA requires collecting material and 
energy inputs for each defined unit process within the system 
boundary. However, given that very few papers have examined the LCA 
of tetrapods, there is limited data available in the literature. 
Consequently, this study relied heavily on the ecoinvent database 

FIGURE 2

Phases of an LCA (Lee and Inaba, 2004).
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available in SimaPro. Ecoinvent is the world’s leading LCI database, 
widely regarded as credible, and provides extensive, reliable data on 
various topics, including building materials, metals, electricity, 
manufacturing processes, transportation, construction processes, waste 
management, and water supply (Frischknecht et  al., 2005). To 
determine the amounts of energy or materials needed for each unit 
process, data were retrieved either from relevant studies in the literature 
(Valiyev, 2015) or from the manufacturer’s websites (Betonblock®, 2006).

For the concrete production unit process, as with all other 
material processes included in this study, the data was directly taken 
from the ecoinvent v3.8 database (Ecoinvent Association, 2023) 
available in SimaPro 8 (SimaPro, n.d.). This process encompasses the 
entire manufacturing cycle for producing ready-mixed concrete, 
including internal processes such as material handling, mixing, and 
infrastructure. Specifically, the “Concrete, normal {RoW}| production” 
dataset describes a ready-mix concrete composed of Portland cement, 
sand, gravel, and water, corresponding to EN 206 grade C 25/30 and 
exhibiting a compressive strength range of 20–35 MPa (Moreno Ruiz 
et al., 2021). Regarding the cast production unit process, three main 
elements were considered: the steel used as the raw material for the 
cast, the metalworking process for shaping the cast, and the electricity 
required for welding.

To transport these raw materials to the site, a lorry with a capacity 
of over 32 metric tons was used. Although, in reality, concrete should 
be transported using a specialized truck to prevent segregation, the 
ecoinvent database does not include a specific transport process for 
concrete. Therefore, the same transport process was applied for both 
the cast and concrete transportation to the site. A distance of 20 km 
was applied in both cases, based on typical distances between concrete 
batching plants and construction sites.

Following the transport of the materials to the site, the tetrapod is 
assembled or produced on-site. The energy required for pumping the 

concrete from the truck to the site, the energy needed for vibrating the 
concrete to remove air spaces between the layers of freshly poured 
concrete, the water required for curing, as well as the energy needed 
for water pumping were all taken into account for the tetrapod 
production process. Lastly, the tetrapods are placed in their designated 
location using a crane, and the diesel required by the crane is also 
considered in the inventory. Table  2 shows the detailed life cycle 
inventory data used in this study, sourced from the Ecoinvent v3.8 
database (Ecoinvent Association, 2023):

The design assumes that each tetrapod weighs 5 tonnes, and each 
will require 2.1 m3 of concrete for construction. Also, the steel cast for 
a tetrapod of this weight is produced from one tone of the steel. These 
parameters define the raw materials for the production of the 
tetrapods for construction purposes.

2.3 Life cycle impact assessment (LCIA)

In this study, all impact categories were assessed using the CML-IA 
method, a midpoint approach that includes 11 impact categories. The 
midpoint characterization approach is preferred over the endpoint 
characterization because it provides a more detailed and accurate 
evaluation of the environmental impacts associated with a product or 
process, helping decision-makers better understand the environmental 
performance of the studied system (Bare et al., 2000).

In addition to the CML-IA impact assessment method, the CED 
method was also considered, which estimates the primary energy 
consumed to produce a unit of a given product. The results of this 
impact assessment method are divided into five categories: 1. 
non-renewable, fossil, 2. Non-renewable, nuclear, 3. Renewable, 
biomass, 4. Renewable, wind, solar, geothermal, and 5. Renewable 
water. Given that non-renewable resources contribute significantly to 

TABLE 1 Summary of tetrapods calculations.

Description Equation used Variable Calculation Step No.

Thickness of tetrapods (m) = ×t N ttp lyr lyr

=  t Tetrapod thicknesstp
=   N Number of layerslyr

=   t Thickness of layerslyr

× =2 1.3m 2.6m (1)

Width of crest (m) = ×3W tc lyr =  W Crest widthc × =3 1.3m 3.9m (2)

Crest area (m2) = ×A W tc c tp =  A Crest areac × =3.9 2.6 10.14m2 (3)

Interface area (m2) +
= ×

2int
L L

A t
top bot

tp

=  intA Interface area

=L Top lengthtop
=  L Bottom lengthbot

= + =10 15 182 2L mtop
+

× =
18 12.8

2.6 40.04m
2

2
(4)

Cross-sectional area (m2) = + intA A Acs c = −  A Cross sectional areacs + ≈10.14m 40.04m 50.2m2 2 2 (5)

Volume (m3) = ×V A Lcs
=V Volume

=L Length × =50.2m 5m 251m2 3 (6)

Adjusted volume (50% porosity) = ×V V PFnew
=  V Adjusted volumenew
=  PF Porosity factor

× ≈251m 0.5 126m3 3 (7)

Number of tetrapods required
=

2.08
V

N new = #  N of tetrapods
≈

126m
61tetrapods

2.08m

3

3
(8)

Weight of concrete (tons) = × 5W N =W Weight × =61 5 tonnes 305 tonnes (9)
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the materials used in many of the unit processes included in this study, 
only the results of the non-renewable fossil category will be included. 
Table 3 shows the impact categories used in this study.

2.4 Sensitivity analysis setup

When performing an LCA, it is essential to factor in uncertainty 
to maintain the credibility of the findings. Overlooking uncertainty 
can compromise the assessment’s validity. Therefore, integrating 
sensitivity analysis during the interpretation phase is crucial 
(Barahmand and Eikeland, 2022). This analysis examines the stability 
of the results by identifying key environmental factors. Adjusting 
input parameters and observing the resulting changes can help 
pinpoint the most significant influences on environmental 
performance, aiding in prioritizing actions and investments.

Given that the transportation distance adopted in this study (20 
km) was estimated and that it had negligible impact on environmental 

performance, a sensitivity analysis was performed to examine the 
impact of varying this distance. The analysis employed a one-factor-
at-a-time (OAT) method, where a single parameter is altered while 
monitoring changes in the response variable (Groen et al., 2014). In 
this case, the distance was increased by factors of 2 and 3, resulting in 
distances of 40 km and 60 km, respectively.

3 Results and discussion

3.1 CML-IA results

Following the analysis of the CML-IA results, Figure 4 shows that 
cast production accounted for over 80% of total impacts across all 
categories. The substantially higher impact of cast production 
compared to concrete production is due to the energy-intensive nature 
of steel manufacturing, particularly smelting, refining, and mould 
fabrication, which requires more resources and generate higher 

FIGURE 3

System boundary from cradle to gate.

TABLE 2 Life cycle inventory.

LCA Phase Input (process/ 
materials)

Ecoinvent process/ materials Unit Value Database 
reference

Concrete 

production
Concrete Concrete, normal {RoW}| production | Alloc Def, S m3 128 Ecoinvent v3.8

Cast production Tetrapod cast

Steel, low-alloyed {GLO}| market for | Alloc Def, S kg 61,000 Ecoinvent v3.8

Metal working, average for steel product manufacturing {GLO}| 

market for | Alloc Def, S
kg 61,000 Ecoinvent v3.8

Electricity, medium voltage {RoW}| market for | Alloc Def, S MJ 16,104 Ecoinvent v3.8

Transportation

Transport of concrete to 

site

Transport, freight, lorry >32 metric ton, EURO4 {GLO}| market 

for | Alloc Def, S
tKm 6,100 Ecoinvent v3.8

Transport of cast to site
Transport, freight, lorry >32 metric ton, EURO4 {GLO}| market 

for | Alloc Def, S
tKm 1,220 Ecoinvent v3.8

Tetrapod 

production

Energy (concrete 

pumping-diesel)
Diesel {RoW}| market for | Alloc Def, S kg 142 Ecoinvent v3.8

Energy (vibration-

electricity)
Electricity, medium voltage {RoW}| market for | Alloc Def, S MJ 92 Ecoinvent v3.8

Water for curing Tap water, at user {RoW}| market for | Alloc Def, S kg 40,992 Ecoinvent v3.8

Energy (water pumping-

electricity)
Electricity, medium voltage {RoW}| market for | Alloc Def, S MJ 1.4 Ecoinvent v3.8

Tetrapod placement Energy (diesel) for crane Diesel {RoW}| market for | Alloc Def, S kg 5,539 Ecoinvent v3.8
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FIGURE 4

Contribution of unit processes to different impact categories under CML-IA.

greenhouse gas emissions compared to concrete production (Conejo 
et al., 2020; Matarrese et al., 2017), which represents 16% of total 
impacts, attributed mainly to cement manufacturing, a major source 
of CO2 emissions from the combustion of fossil fuels and calcium 
carbonate decomposition (Cerchione et al., 2023; Colangelo et al., 
2018). These results align with the LCA literature, which consistently 
identifies material production as a principal environmental hotspot. 
Table 4 summarizes key LCA findings for relevant materials used 
around the world:

CO2 emissions and energy consumption from resource depletion, 
such as fossil fuels and water, are the costs of the energy needed for 
cast production. Fuel extraction and electricity generation require 
massive quantities of freshwater, and energy production is largely 
dependent on freshwater (Spang et  al., 2014). Apart from CO2 
emissions, the production of casting also emits NOx, VOCs, dioxins, 
and furans, which pollute the air and cause environmental concerns 
(Conejo et al., 2020). Additionally, the contribution of the tetrapod 
placement process to impacts within the ozone depletion category is 
about 11% due to diesel use. NOx emitted from diesel engines reacts 
with VOCs under sunlight to yield ground-level ozone, contributing 
indirectly to the destruction of the ozone layer (Hata and Tonokura, 
2020). Regarding the transportation and the tetrapod production 
processes, both had very minimal impacts on the environmental 
performance of the system studied. Concrete and cast production are 
the most relevant environmental hotspots. Thus, investigating 
alternative options for cast production, such as 3D printing with resin 
materials or the use of sustainable cement substitutes in concrete, can 
provide promising pathways toward reducing the environmental 
footprint of tetrapods without compromising their effectiveness in 
coastal protection.

3.2 CED results

The CED results, shown in Figure  5, confirm the CML-IA 
findings, indicating that cast production consumes the greatest 
amount of energy at 2.62E+06  MJ per FU, followed by concrete 

TABLE 3 Impact categories assessed in this study.

Impact category Unit

Abiotic depletion kg Sb eq

Abiotic depletion (fossil fuels) MJ

Global warming (GWP100a) kg CO2 eq

Ozone layer depletion (ODP) kg CFC-11 eq

Human toxicity kg 1,4-DB eq

Fresh water aquatic ecotox. kg 1,4-DB eq

Marine aquatic ecotoxicity kg 1,4-DB eq

Terrestrial ecotoxicity kg 1,4-DB eq

Photochemical oxidation kg C2H4 eq

Acidification kg SO2 eq

Eutrophication kg PO4--- eq

Non-renewable, fossil MJ
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production at 2.73E+05 MJ per FU, this demonstrates that processes 
with a notable contribution in the global warming impact category 
also had the greatest impact in the CED category. This aligns with the 
findings of (Wang and Azam, 2024), which highlight a significant 
correlation between fossil fuel energy consumption, total greenhouse 
gas emissions, and the scarcity of natural resources. Fossil fuels 
significantly contribute to greenhouse gases, increasing global 
temperatures, and negatively affecting natural resources.

Since cast production dominated CED, a network diagram was 
used to show the contribution of each process. Figure 6 shows that 
metalworking represents approximately 55% of the total CED, which 
is in agreement with the 65% found by Mohsen and Akash (1998). 
Better environmental performance is possible through the reduction 
of energy use, increased energy recovery, as well as the substitution of 
oil and natural gas with renewable energy sources such as biomass, 
wind, or hydroelectric energy.

3.3 Sensitivity analysis results

Following the analysis using the CML-IA impact assessment 
method, varying the transport distance from 20 km to 40 km and 60 km 
showed a change in the environmental impacts related to the 
transportation process in both cases. However, these changes were not 
substantial enough to cause a change in the total environmental impacts, 
as shown in Table 5. Thus, indicating that the uncertainty in transport 
distance has minimal impact on the analyzed impact categories.

Additionally, Figure 7 presents the transportation-related impacts 
resulting from changes in increasing the transport distance. The bar 
chart compares the three selected scenarios of 20 km, 40 km, and 60 
km, highlighting the specific effects on transportation emissions. As 
shown, there are minor differences in the majority of the impact 
categories, which reflects the results presenting low sensitivity to 
change in this parameter.

TABLE 4 Studies identifying production as highest LCA impact.

Material studied Study region LCA stage with highest impact Reference

Integrated steel Mill Germany Production Backes et al. (2021)

High-speed rail France Production De Bortoli et al. (2020)

Portland cement concrete Lebanon Production Semaan et al. (2017)

Concrete through air pollutant emissions Iran Production Gheibi et al. (2018)

Ordinary portland cement South Africa Production Akintayo et al. (2024)

Bio-cementitious materials Malaysia Production Al-Gheethi et al. (2022)

FIGURE 5

Contribution of unit processes to non-renewable, fossil impacts under CED.
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TABLE 5 Sensitivity analysis results.

Transportation distance 20 km 40 km 60 km

Impact 
category

Unit Total 
impacts

Transportation Total 
impacts

Transportation Total 
impacts

Transportation

Abiotic depletion kg Sb eq 2.04E+00 5.14E-03 2.04E+00 5.14E-03 2.04E+00 7.70E-03

Abiotic depletion 

(fossil fuels)
MJ 3.82E+06 2.49E+04 3.83E+06 2.49E+04 3.84E+06 3.73E+04

Global warming 

(GWP100a)
kg CO2 eq 3.11E+05 1.62E+03 3.11E+05 1.62E+03 3.12E+05 2.43E+03

Ozone layer depletion 

(ODP)
kg CFC-11 eq 1.23E-02 1.17E-04 1.24E-02 1.17E-04 1.24E-02 1.76E-04

Human toxicity kg 1,4-DB eq 4.85E+05 1.63E+02 4.85E+05 1.63E+02 4.85E+05 2.44E+02

Fresh water aquatic 

ecotox.
kg 1,4-DB eq 2.99E+03 6.43E+00 3.00E+03 6.43E+00 3.00E+03 9.64E+00

Marine aquatic 

ecotoxicity
kg 1,4-DB eq 1.34E+08 3.22E+05 1.34E+08 3.22E+05 1.35E+08 4.83E+05

Terrestrial ecotoxicity kg 1,4-DB eq 6.94E+02 3.97E-01 6.95E+02 3.97E-01 6.95E+02 5.96E-01

Photochemical 

oxidation
kg C2H4 eq 1.17E+02 2.39E-01 1.17E+02 2.39E-01 1.17E+02 3.58E-01

Acidification kg SO2 eq 1.60E+03 6.81E+00 1.61E+03 6.81E+00 1.61E+03 1.02E+01

Eutrophication kg PO4--- eq 2.06E+02 1.25E+00 2.06E+02 1.25E+00 2.07E+02 1.87E+00

Furthermore, Figure 8 illustrates the total environmental impacts 
corresponding to the same set of transport distances. The bar chart 
again compares the 20 km, 40 km, and 60 km scenarios. The result 

confirms small differences in all types of impacts, again validating the 
finding that variation in transport distance barely contributes in 
altering the overall environmental performance.

FIGURE 6

Network diagram showing the contribution of different processes to cast production under CED.
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3.4 Regional variations

In this study, the ecoinvent database was used to reflect the 
global averages. The ecoinvent process includes specific notations 
such as {RoW} (rest of the world) and {GLO} (global scope), 
indicating that the emissions data used is based on global averages 
rather than data specific to a particular country or region. However, 
when conducting an LCA for concrete tetrapods, regional variations 
can play a major role in manipulating results. Although the 
methodology remains consistent, differences in materials availability, 
labor efficiency, and other variables are capable of changing the 
environmental impacts at different stages of the LCA, leading to 
varied results in each region.

Particularly, the extraction of concrete ingredients and steel 
differs from one region to another. Countries with rich quarries will 
produce lower emissions than countries relying on imported 
materials. Additionally, developed countries implementing high 
material extraction regulations force environmentally friendly 
practices, hence reducing impacts compared to third-world 
countries (Sun and Hasi, 2024; Hunter, 2014). Moreover, the usage 
of electricity during cement production is a vital variation that must 
be considered (Nie et al., 2022). Countries relying on coal-based 
power to produce electricity generate much more emissions than 
countries using renewable energy sources (Afkhami et al., 2015). 
On the other hand, stages such as transportation and placement 
have minimal regional variations. As previously discussed in the 

sensitivity analysis, an increment in transportation distance 
produces negligible emissions, reducing the need to focus on the 
transportation stage for regional variability. Lastly, the placement 
stage primarily relies on crane operations, which are widely used 
around the world, making this stage consistent across various 
regions (Wen et al., 2017), unless the material utilized is significantly 
heavy, requiring a huge engine size, thus increasing environmental 
impact (Khan, 2018).

4 Conclusion and recommendations

In this study, LCA is conducted for tetrapods using SimaPro 
software. The assessment considered the production, 
transportation, and placement stages of tetrapods, concrete, and 
steel for casting. The functional unit for the assessment is 
“5-meter of breakwater.” The inventory data in this study relied 
heavily on the ecoinvent database available in SimaPro due to 
limited data availability in the literature. The environmental 
impacts were assessed using the CML-IA method, a midpoint 
approach that includes 11 impact categories. Furthermore, CED 
was also considered, and results showed that cast production 
accounted for over 80% of the total impacts in all the impact 
categories. In addition to cast production, concrete production 
contributed 16% to total impacts, with cement manufacturing 
being a key driver of CO2 emissions and global warming 

FIGURE 7

Sensitivity analysis—transportation impact comparison.

https://doi.org/10.3389/frsc.2025.1592987
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Mikhail et al. 10.3389/frsc.2025.1592987

Frontiers in Sustainable Cities 10 frontiersin.org

FIGURE 8

Sensitivity analysis—total impact comparison.

potential. Similarly, placement activities such as crane usage had 
a notable influence on ozone layer depletion due to diesel 
consumption. Moreover, cast production also had the greatest 
contribution to the non-renewable fossil impacts under CED, 
showing a value of 2.62E+06 MJ per FU. On the other hand, the 
results of the sensitivity analysis indicate that the studied system 
was not sensitive to variations in transportation distance.

The results of this study can be used to aid the stakeholders 
involved in construction using tetrapods in defining mitigation 
measures to combat the negative environmental impacts resulting 
from the usage of tetrapods. It can also help policymakers define 
rules and laws to limit those negative impacts.

In order to further advance the research, it is recommended 
to consider regional variations when carrying out LCA on 
concrete tetrapods. Future research should account for variations 
in material extraction and cement production, as these factors 
can significantly influence results across different regions. In 
contrast, transportation and placement may be neglected due to 
their minimal influence on regional variation. Furthermore, 
undertaking an LCA on utilizing large quarry rocks for the 
armour layer is capable of providing meaningful comparisons of 
the impacts that can be made between tetrapods and rocks, which 
would facilitate the selection of a more environmentally 
friendly option.
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