
Frontiers in Sustainable Cities 01 frontiersin.org

Enhancing public transportation 
through user feedback: the case 
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Globally, transportation systems are under pressure to adopt and ensure more 
sustainable, inclusive, and efficient systems as cities become more complex 
and connected. Consequently, in the quest to develop a functional, sustainable, 
and inclusive transportation system, it is mandatory to first determine the key 
characteristics that set apart various public transportation options. Distinguishing 
between modes of transportation enables a detailed examination beyond 
superficial characteristics, resulting in better system optimization, evidence-
based, and better-informed decision-making. Moreover, accurate classification 
of public transportation data is essential for comprehending mobility trends, 
achieving more guided urban planning. In this paper, an SVM model was trained 
and evaluated for the classification of minibus taxis, buses, and ride-hailing 
using data collected from the survey, to find the main attributes that distinguish 
the two modes of transport from each other based on users’ evaluation of 
their performance. The overarching objective is to enable policymakers to 
identify best practices across modes. By understanding what works well in one 
transport mode, lessons can be drawn and adapted to improve the performance 
and integration of others. The SVM model achieved a high accuracy of 90% 
in validation, demonstrating the effectiveness of the adopted approach. The 
findings reveal underlying factors that influence mobility trends, patterns, and 
behaviours. Overall, the SVM informs a user-centered approach to transport 
policy, enabling the design of interventions that respond directly to the factors 
that matter most to commuters. Ultimately, the insights derived from the SVM 
model provide evidence-based recommendations for the development of 
future sustainable public transport in African cities. They also inform better 
practices that empower planners to design a customer-centric transportation 
system that is better suited to fulfil the desires and requirements of the community.
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1 Introduction

Public transport is critical in facilitating the functioning of cities (Hernandez, 2018; 
Kalaoane et al., 2024). The need for quality, effective, and efficient public transport systems 
gained traction toward the turn of the 21st century, thus the adoption and popularity of the 
sustainable public transport discourse that made its way into urban strategies and policies in 
African cities (Sam et al., 2018; Oqubay, 2025). Ochoa-Covarrubias et al. (2021) state that 
sustainable transport provision refers to “access to safe, affordable, accessible and sustainable 
transport systems for all, improving road safety, notably by expanding public transport, with 
special attention to the needs of those in vulnerable situations. The Sustainable Development 
Goals (SDGs) provide a global framework for addressing various challenges facing cities, 
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including inequality, poverty, and climate change (Tazzie et al., 2024). 
Transport classification often aids SDGs by monitoring and enhancing 
transportation systems, particularly Goal 11, which involves 
promoting sustainable cities and communities (Almulhim et  al., 
2024). Furthermore, the classification of transportation modes 
facilitates the creation of an intelligent, robust transportation 
infrastructure. Additionally, classification aids in climate monitoring 
and mitigation strategies that address Goal 13 on Climate Change 
(Owusu-Sekyere et al., 2024).

Nevertheless, the state of public transport services and 
infrastructure is seemingly declining across the African continent 
(Yankson, 2022), thus affecting people who depend solely on public 
transport to take part in economic life (Borker, 2022). The poor 
state of public transport systems undermines the strive for 
sustainable cities and communities. Díez-Mesa et al. (2018) and 
Stokenberga et al. (2025) acknowledge that existing mass transit is 
unable to give full user satisfaction. Consequently, in Johannesburg, 
the quality of transport services in Johannesburg is marked by both 
efforts at modernization and persistent systemic challenges. While 
services like Metrobus and the Rea Vaya Bus Rapid Transit (BRT) 
system have improved access and reduced carbon emissions 
(Matubatuba and De Meyer-Heydenrych, 2022; Almassawa et al., 
2025; Yildirim and Akin, 2025), more efficient vehicles, users still 
face significant issues such as long travel times, inconsistent service, 
and overcrowding. According to the 2019/20 Gauteng Household 
Travel Survey (GHTS), nearly 60% of households in Gauteng spent 
more than the recommended 10% of their income on public 
transport, up from 55% in 2014. This trend is particularly 
burdensome for lower-income households, who are 
disproportionately affected by rising transport costs. The survey 
highlights that transport continues to contribute significantly to the 
increased cost of living in Gauteng, with poorer households being 
the most impacted. These findings underscore the need for 
improved and affordable public transport options given the 
African context.

In this study, the objective of the classification model is to find the 
main attributes that distinguish two modes of transport from each 
other based on users’ evaluation of their performance. Ultimately, 
establish a user-centric transportation system that is sustainable, 
inclusive, adaptive, and data-driven for the creation of sustainable 
cities. The paper is structured as follows: Section 1 presents an 
introduction, and Section 2 discusses related works and contributions. 
In Section 3, methodological consideration is presented, including 
data acquisition process, in addition to the methodology for 
developing the classification algorithm, including the selection of 
relevant features and the implementation of SVM. In Section 4, the 
results obtained from evaluating the performance of the SVM 
algorithm are presented. Discussions and implications of the findings 
are discussed, and potential future directions are explored in Sections 
5 and 6, respectively. Finally, conclusions are presented in Section 7, 
and limitations of the study are discussed in Section 8.

2 Related works and contribution

The application of Machine Learning (ML) to transportation 
systems has been increasingly popular in recent years. ML models are 
becoming essential in transport analytics, from demand forecasting 

(Demissie et al., 2016; Profillidis and Botzoris, 2018; Nguyen et al., 
2020; Ghorbani et al., 2025) and mode detection to traffic prediction 
and route optimization (Nagy and Simon, 2018; Boukerche and Wang, 
2020; Liu et al., 2025; Priya and Francis, 2025). Subsequently, models 
such as SVM, Random Forests, Decision Trees, K-Nearest Neighbor 
(K-NN), and Neural Networks have been used in transportation mode 
classification (Kabiri et  al., 2023). The intricacy, data needs, 
interpretability, and generalizability of these models vary. For example, 
Fang et al. (2016) used SVM, Decision Trees, and K-Nearest Neighbor 
algorithms to classify transportation and vehicle modes using 
accelerometer, magnetometer, and gyroscope data from smartphones. 
SVM demonstrated the best accuracy compared to other ML models. 
In the context of developing countries, Tamirat et al. (2023) utilized 
SVM, which proved to be suited for complex rural–urban landscape 
change and pattern analysis.

In most of these studies, SVM demonstrates the most promising 
among these in the classification of transport modes, Roy et al. (2020) 
particularly in cases when the data is nonlinear, sparse, or derived 
from multiple sources. Kristiyanti et al. (2022) applied SVM in a study 
that collected data on Light Rail Transit and Mass Rapid Transit from 
tweets. SVM in this study achieved high accuracy and provided 
insights into public opinion, guiding improvement in service within 
the transportation mode. Similarly, AlKhereibi et al. (2022) utilized an 
SVM-based approach to urban and transport planners in forecasting 
transit demand and planning land use around metro stations, 
supporting Transit-Oriented Development (TOD) strategies in Qatar. 
SVM offers a comparative advantage over other classification 
algorithms in this study on the efficacy of SVM in categorizing public 
transportation modes.

Recent studies, such as Hagenauer and Helbich (2017) and 
Ghorbani et al. (2025), have demonstrated that classifiers like Random 
Forest, XGBoost, and CatBoost, frequently outperform other 
classification models across various domains. Although comparative 
evaluation across multiple algorithms is a valuable approach, the 
present study focused specifically on assessing the performance of 
Support Vector Machines (SVM) within the context of classification 
of different modes of public transport. SVM was ultimately selected 
based on both theoretical and empirical considerations. SVM is 
particularly well-suited for high-dimensional spaces and demonstrates 
strong generalization capabilities. In this study, SVM outperformed 
other models during the validation phase, achieving a high accuracy 
of 90%. This performance, combined with SVM’s robustness to 
overfitting and its effectiveness in handling non-linear decision 
boundaries, justified its selection as the optimal classifier for this 
study. This holistic approach allows a better understanding of the 
consumer’s perspective on the current public transport system.

3 Methodological considerations

A structured survey was conducted with 300 commuters from 
March to April 2023 using a cluster sampling technique. Cluster 
sampling divides the population of interest into groups and allows 
random selection from each cluster to represent the sample of the 
study. This can be done in two ways; single-stage (Wu et al., 2020) and 
multi-stage cluster sampling (Fawzy et al., 2021). This study followed 
a multi-stage sampling technique, which did not require a sampling 
frame (Sharma, 2017). When a thorough sampling frame is lacking or 
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challenging to establish, multi-stage sampling is a useful strategy 
because it allows a researcher to utilize locations or other groupings 
as the primary sampling units (Brown, 2010). Data was collected in 
Braamfontein, an inner-city educational and commercial precinct in 
the city of Johannesburg. In this study, all public transport stations and 
stops in Braamfontein were clustered, and participants were selected 
randomly from those clusters. According to Taherdoost et al. (2022), 
a sample size of 100 or greater is sufficient for SVM because the 
greatest significance lies in the data’s ability to generate impactful and 
robust results.

Consequently, this study utilized data from 300 surveys to ensure 
robustness. The purpose of the survey instrument was to collect 
detailed information from users regarding the quality of different 
modes of transport services. 300 surveys collected in this study 
reduced the risk of overfitting and improved the robustness and 
accuracy of the model, ensuring that the results were more 
representative. The survey consisted of the use of a Likert scale 
requesting respondents to gauge their satisfaction level from 1 
(dissatisfied) to 10 (extremely satisfied) for the level of services 
provided by different modes of public transport systems (see Table 1), 
and consent was sought from commuters before probing. In addition, 
Ethics approval was obtained from the Higher Education Ethics 
Committee to ensure the study adhered to ethical research standards. 
The survey was conducted with informed consent from all 
participants. Data were then analyzed using Support Vector Machine 
(SVM), a supervised machine learning method that can be applied to 
regression and classification (Jain et al., 2020).

3.1 Building a classification model

The analysis of the perception of public transport users on the 
mode of public transportation was further enhanced by classification 
analysis. In classification analysis, data is categorized into predefined 
classes or groups using classification analysis (Chen et  al., 2020), 
depending on specific features or attributes. To predict the class labels 
of new, unseen data, classification creates a model or algorithm that 
can recognize patterns in labeled training data (García-Mendoza et al., 
2020). It is a subset of supervised learning, which is more broadly 
defined as training an algorithm on a labeled dataset with known 
outcomes (Bi et al., 2019).

In this work, the classification model was performed to find the 
main attributes that distinguish two modes of transport from each 
other, based on users’ evaluation of their performance. Firstly, the 
features that characterize the quality of service in public transportation 
were selected (Table  1). Therefore, it was equally important to 
characterize the modes of public transport based on the user feedback. 
This is because user perspectives offer a clear, user-focused viewpoint 
on the effectiveness and performance of various public 
transport options.

3.1.1 Feature selection
Attributes selected for classification are presented in Table 1. In 

this analysis, the respondents were asked to rate, from 1 to 10, their 
level of satisfaction with minibus taxi, bus, and ride-hailing on the 
attributes listed in Table 1. These features were chosen based on their 
relevance to user satisfaction and their potential to distinguish 
between different modes of transport.

Based on the user-rated feedback on the listed attributes, the 
subsequent step was finding a classifier.

3.1.2 Algorithm
Given the classifier, it is imperative to find the minimum set of 

attributes that maximizes the accuracy of the classification. Overall, 
the SVM model was trained to identify the main attributes that 
distinguish public transport modes based on the evaluated attributes 
by the commuters from the survey. On the validation set, 
approximately 90% accuracy was achieved, indicating the model was 
performing well. The following steps are then followed to find a 
suitable algorithm:

Step 1: Let Ω be the set of optimal attributes and | Ω | its size.
Step 2: An is the n-th attributes, n = 1,2,…, N.
Step 3: F(∑) is the accuracy of the classification with the set of 

attributes ∑.
Step 4: Compute F (An), n = 1,2,…, N.
Step 5: Select the attribute that gives the maximum accuracy, add 

it to Ω.
Step 6: Compute F (ΩUAn).
Step 7: Select the attribute that gives the maximum accuracy, add 

it to Ω.
Step  8: Repeat the scheme until accuracy reaches the 

maximum value.
Step 9: Return Ω.
Step 10: Find a function f (x) that separates the two classes with 

Minimum error. In machine learning, a separation hyperplane 
(Figure 1) is a hyperplane that serves as a decision boundary or divider 
between classes in a dataset. It is frequently used in relation to Support 

TABLE 1 Evaluated attributes.

Attributes Interpretation

Driving style Obedience to traffic rules and regulations

Politeness of the driver
Attitude and treatment of the driver toward 

users

Safety Exposure to criminal activities, theft, 

harassment, accidents, etc.

Comfort The condition of the public transport system

Trip duration
Total time spent for the entire journey includes 

waiting time and travel delays.

Walking distance Time spent walking from a place of departure to 

stations or stops

Travel time
Time spent on the actual movement of the 

journey using public transport

Access to stops The ease to reach stations and stops (narrow 

roads, wheelchair-friendly walkways, 

streetlights, walking distance, etc.)

Affordability Fares (money paid for traveling)

Operating time Working hours

Availability Frequency of minibus taxis across the city

Timetable Scheduling

The convenience of the route Spatial coverage

Quality of infrastructure The condition of the roads, stations and stops

Speed Driving at an increased pace (speeding)

https://doi.org/10.3389/frsc.2025.1605594
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Kalaoane and Gumbo 10.3389/frsc.2025.1605594

Frontiers in Sustainable Cities 04 frontiersin.org

Vector Machines (SVM). Deciding which hyperplane best divides the 
feature space’s classes maximally is the main objective of an SVM 
(García-Mendoza et al., 2020).

3.1.3 Support vector machine
SVM learns from a trained data set to make predictions and 

generalizations on a novel set (Campbell and Ying, 2011). The tool has 
been used in various domains, including transportation. For example, 
SVMs can capture complex patterns in situations where traffic and 
weather conditions are non-linear (Bachu et al., 2021). Additionally, 
linear SVM attempts to categorize data by finding suitable hyperplane 
that maximally separates distinct classes in the feature space is found 
to yield the optimal classifier (Figure 2).

Linear SVMs are designed to find the separator (the separating 
hyperplane) that maximizes the margin. This is known as a “wide-
margin separator.” The ideal hyperplane is arranged to maximize the 
margin, which is the separation between the hyperplane and the 
closest data point from each class. Achieving the best possible 
classification performance on the given dataset requires selecting the 
optimal classifier, which is determined by the support vectors. In this 
case, the SVM seeks to determine the ideal hyperplane based on 
selected attributes or features that efficiently differentiates between 
various modes of transportation.

Consequently, the system’s response enabled models to learn what 
decision boundary separates various transport modes. The model with 
the highest accuracy for this data was the Support Vector Machine 
(SVM) Model. The SVM model was trained to identify the main 
attributes that distinguish public transport modes based on the 
evaluated attributes. On the validation set, approximately 90% 
accuracy was achieved, indicating the model was performing well.

4 Findings

Developing a well-functional, sustainable, and inclusive 
transportation system firstly requires to determining the key 
characteristics that set apart various public transportation options. 
Identifying a classify to distinguish between modes of transportation 
enables a detailed examination that goes beyond superficial 

characteristics, resulting in better system optimization and more 
informed decision-making. SVM was employed because it effectively 
classifies modes of public transport based on rated attributes by the 
users, with a strong accuracy rate.

4.1 Assessing SVM performance

The classification matrix and F1 score were computed to assess the 
performance of the SVM.

4.1.1 Confusion matrix
In the assessment of a classification model, the confusion matrix 

serves as an essential tool providing a complete and specific 
description of the model’s predictions (Xu et al., 2020). It categorizes 
instances into four essential components: True positives, true 
negatives, false positives, and false negatives. High true positive and 
true negative rates indicate good accuracy. Such granularity allows for 
a more detailed assessment of the model’s accuracy, delineating 
between correct and incorrect decisions made by it. Hence, within this 
study, the confusion matrix is summarized in.

Table  2 illustrates the effectiveness of the SVM model in 
distinguishing between taxis, buses, and ride-hailing services based 
on commuter evaluations.

To improve transparency and interpretability, both percentages 
and absolute numbers for each transport mode category are provided. 
Although there were 300 participants overall, some selected more than 
one mode, resulting in cumulative counts exceeding 100%. Specifically, 
150 participants (50.0%) selected bus, 191 (63.7%) selected ride-
hailing, and 220 (73.3%) selected minibus taxi. The SVM model 
employed in this study proved to be  very efficient in classifying 
transport modalities according to customer-rated attributes, yielding 
good performance indexes. This is based on its precision and accuracy.

4.1.2 Calculating the F1 score
The F1 score is used to measure the accuracy of a model (Yacouby 

and Axman, 2020). It provides a thorough evaluation of the 
performance of a model than accuracy alone. The F1 score is 
calculated using the following formula:

FIGURE 1

Separation hyperplanes.

FIGURE 2

Optimal classifier.
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 
= ∗ + 

1 2
Precision X Recall

F
Precision Recall

Precision: It is the ratio of correctly predicted positive observations 
to the total predicted positives. It is expressed as:

 
=

+
 Precision

  
True positives

True positives False positives

Recall: It is the ratio of correctly predicted positive observations 
to all actual positives. It is expressed as:

 
=

+
 Recall

  
True positives

True positives False negatives

Based on user evaluations, the model is good especially where 
minibus taxis are involved (Table 3).

Based on users’ assessments, the SVM model appears to 
be  generally effective at differentiating between various modes of 
transportation. The model is good in differentiating between the two 
modes of transportation; the Taxi vs. Ride-hailing comparison yields 
the highest F1 score. Taxi vs. Bus exhibits a commendable performance 
as well, albeit with a marginally lower F1 score. Out of the three pairs, 
Bus vs. Ride-hailing has the lowest F1 score, suggesting that the model 
may find it more difficult to distinguish between the two situations. 
This concludes that, in essence, F1 score comparison gives us an insight 
into how the SVM model works in differentiating between various 
modes of public transport. The scores are equally effective since they 
provide useful indicators of the different levels of complexity, which 
the model experiences when differentiating modes of public transport.

5 Discussion

5.1 Main attributes distinguishing public 
transport modes

The main attributes selected for evaluation are driving style, 
politeness of a driver, safety, comfort, trip duration, walking distance, 
travel time, access to stops, affordability, operating time, availability, 
the convenience of the route, quality of infrastructure and speed. The 
SVM results are presented in this section.

5.1.1 Minibus taxi vs. ride hailing
The main attributes distinguishing a minibus taxi from ride-

hailing services are comfort, affordability, politeness, access to stops, 
driving style, speed, and trip duration (Figure 3).

This study highlights comfort as a key factor, and the Support 
Vector Machine (SVM) has demonstrated its ability to discern 
differences in comfort levels between minibuses and ride-hailing 
services. Ride-hailing services, known for their comfortable rides and 
flexible availability, are generally considered more comfortable than 
minibus taxis, which often lack proper maintenance and can only 
access locations close to roads. Additionally, SVM was effective in 
distinguishing between minibuses and ride-hailing services based on 
pricing structures, with minibuses offering lower fares, enhancing 
affordability compared to ride-hailing options. Politeness emerged as 
another significant factor, particularly in terms of minibus drivers and 
operators’ behavior, including their attitudes toward users and their 
driving style, Tchanche (2018), often characterized by recklessness 
and speeding.

5.1.2 Minibus taxi vs. bus
The main attributes distinguishing a minibus taxi from a bus are 

schedule, politeness, travel time, safety, infrastructure, and availability 
(Figure 4).

The algorithm identified schedule flexibility as a key differentiator 
for minibus taxis, highlighting their more flexible schedule 
compliance. Furthermore, by designating politeness as a differentiating 
characteristic, the significance of user experiences and interpersonal 
interactions is emphasized, highlighting the influence of customer 
service on the impressions of drivers of minibus taxis who adhere to 
a particular code of conduct versus those who do not. The fact that 
travel time has been identified as a significant factor highlights the 
greater flexibility of minibuses over buses in terms of how trip 
duration affects classification.

The finding that safety is a differentiating factor highlights the 
influence of user preferences that are influenced by infrastructure 
safety features and safety perceptions. Furthermore, admitting 
infrastructure as a component emphasizes how the external 
environment affects how minibuses, which are frequently 
categorized as lacking infrastructure and buses are distinguished 
from one another. Lastly, recognizing availability emphasizes the 

TABLE 2 Classification matrix.

Taxi vs. ride-hailing Taxi vs. bus Bus vs. ride-hailing

Classified 
taxi

Classified 
ride-hailing

Classified 
taxi

Classified 
bus

Classified 
bus

Classified 
ride-hailing

True taxi 94% 6% True taxi 92% 8% True bus 83% 17%

True ride-hailing 8% 92%

True bus

12% 88% True ride-

hailing

14% 86%

TABLE 3 Calculating the F1 score.

Taxi vs. ride 
hailing

Taxi vs. 
bus

Bus vs. ride 
hailing

True positives (TP) 94% 92% 86%

False positives (FP) 8% 12% 17%

False negatives (FN) 6% 8% 14%

True negatives (TN) 92% 88% 83%

F1 score 0.93 0.90 0.86
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importance of accessibility and service frequency in the 
categorization process, with minibus taxis typically more available 
in terms of time and space, while buses are constrained to 
specific routes.

5.1.3 Bus vs. ride hailing
The main attributes distinguishing a minibus taxi from a bus 

are schedule, politeness, travel time, safety, infrastructure, and 
availability (Figure  5). The first important consideration is 
walking distance. Based on the closeness of stops or stations, 
unlike buses, ride-hailing services are advantageous because they 
do not have designated stops. It is implied by SVM’s recognition 
of walking distance that users value accessibility and departure 
times and ride-hailing services offer door-to-door service. In 
transportation planning, last-mile connectivity is crucial, and 
short walking distances can positively impact a 
mode’s classification.

Affordability is also identified as a classifying factor. This is 
consistent with the idea that mode selection is heavily influenced 
by cost considerations. Therefore, buses are more affordable than 
ride-hailing services. The third factor that was found provides 
insight into the temporal dimensions of transport services: 
operating time. SVM acknowledges operating time suggesting 
that users differentiate between modes according to when they 
are available, often ride-hailing service is frequently available. 
Overall, the SVM analysis emphasizes how crucial walking 
distance, cost, and operating time are in differentiating between 
different types of transportation.

6 Implications for policy and practice

The classification model serves as a valuable tool for 
identifying the key attributes that distinguish between two modes 
of transport; minibus taxis, buses and ride-hailing based on users’ 
evaluations of their performance. By highlighting the most 
influential factors that drive user preferences, the model provides 
evidence-based guidance for transport policy and planning. The 
primary attributes differentiating minibus taxis and ride-hailing 
are comfort, affordability, politeness, access to stops, driving 
styles, speed, and trip duration thus policymakers need to 
prioritize interventions, and investment should go toward the 
defining attributes. Upgrading minibus taxis and improving 
station environments can enhance its effectiveness. Moreover, 
another key attribute is driver behavior in determining the 
overall quality of services. Concerns regarding risky driving 
practices highlights the necessity of focused driver behavior 
training programs to advance safety on the roads. Although the 
study acknowledges South Africa’s attempts to transition certain 
minibus taxis to electric cars, it also points out that driver 
behavior and the underlying infrastructure have not yet kept pace 
with these developments including other factors. Lessons can 
be learnt to enhance the performance and integration of other 
modes of transportation by analyzing what functions well in one.

FIGURE 3

Minibus taxi vs. ride hailing.

FIGURE 4

Minibus taxi vs.

FIGURE 5

Bus vs. ride-hailing services.
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7 Conclusion and further research

Support Vector Machines are a strong and dependable technique 
for categorizing public transport modes based on travel behavior data, 
as this study has presented. Each mode of transport examined in the 
study presents unique strengths, however, the overarching objective is 
to enable policymakers to identify best practices across modes. By 
understanding what works well in one transport mode, lessons can 
be drawn and adapted to improve the performance and integration of 
others to respond better to consumer needs while maintaining the 
goal for sustainable transportation.

8 Limitations of the study

In this study, the sample size and study area may not have captured 
a sufficiently large or diverse sample of users, which could impact the 
generalizability of the findings. Additionally, the reliance on self-
reported data introduces potential bias, as respondents may not always 
accurately reflect their experiences or perceptions. For example, users 
might overestimate their satisfaction or reduce negative aspects of 
the service.
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