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Land use carbon emissions (LUCE) contribute significantly to global warming. 
Recognizing the influence of regional heterogeneity and geographical scale on 
socioeconomic development, studying LUCE at various scales is crucial for devising 
more effective emission reduction measures. However, previous studies have 
predominantly focused on a single scale. This study focuses on the Yangtze River 
Economic Belt (YREB), utilizing land use, nighttime light, and energy consumption 
data to compute LUCE at provincial, prefectural, and county scales, employing 
spatial autocorrelation, geographic detectors, and the Multiscale Geographically 
Weighted Regression (MGWR) model to analyze the spatiotemporal dynamics and 
impact factors of LUCE across different scales. Our results show: (1) Throughout 
the study period, LUCE in the YREB exhibited a steady increase, rising from 
28,434.32 × 104  t to 86,581.79 × 104  t. (2) Positive spatial autocorrelation was 
observed in LUCE at all three scales. Notably, spatial clustering intensified at the 
provincial and prefectural levels, while a diminishing trend in clustering was noted 
at the county scale. (3) Predominant clustering patterns at the prefectural and 
county scales included H–H and L–L types, with the county scale displaying more 
pronounced clustering characteristics. (4) Economic development emerged as 
the primary influencing factor on LUCE at both the prefectural and county scales. 
Nevertheless, the intensity of impact from carbon emission intensity, industrial 
structure, population size, government intervention, and land use degree differs 
between the two levels. This research underscores the high sensitivity of LUCE 
to administrative scales, emphasizing the necessity of considering these scales 
when formulating emission reduction strategies.
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1 Introduction

In the 21st century, one of the most pressing issues facing humanity is global warming, and 
how to prepare for climate change is a major global concern (Shehzad, 2023; Yuan et  al., 
2024;Yang et  al., 2025). Human activities related to land use changes were responsible for 
approximately 33% of carbon emissions between 1850 and 1990 (Houghton and Hackler, 1999), 
and according to the Global Carbon Project 2020, from 1850 to 2019, land use change resulted 
in a cumulative amount of around 265 Gt of carbon dioxide (Friedlingstein et al., 2020). LUCE 
is a major contributor to global warming (Houghton, 2002; Lau et al., 2021; Yan et al., 2022). 
China is now the biggest carbon emitter in the world, surpassing the combined emissions of the 
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US and the EU (Yu et al., 2022). In September 2020, China declared 
ambitious goals to reach maximum emissions of carbon by 2030 and 
zero emissions of carbon by 2060. To achieve China’s carbon neutrality 
target and encourage high-quality economic development, the national 
carbon peak plan must be  implemented more quickly (Quan and 
Zhenghao, 2025). The Yangtze River Economic Belt (YREB) is one of 
the two principal axes of China’s territorial development and economic 
layout (Lu, 2018), as well as a key region for advancing ecological 
conservation and green development (Hu et al., 2025). The Chinese 
government unveiled a strategy for the YREB in November 2018 that 
prioritizes sustainable development, dissuades massive expansion, 
supports green ecosystem projects, and unifies operations in the 
upstream, middle, and downstream sectors of the area. However, many 
challenges remain in creating ecological development and paths of 
green growth in the YREB. Rapid economic growth has resulted in 
significant carbon emissions, a rise in construction, and a rapid decline 
in ecological and high-quality arable areas. Thus, research on LUCE in 
the YREB is essential for promoting low-carbon economic growth by 
informing policies and practices that enable sustainable and low-carbon 
land use in China.

Scholars have studied LUCE extensively, including carbon emission 
mechanisms, spatial distribution characteristics, impact factors, and 
carbon emissions accounting. Land use structure, population increase, 
and economic output are all major variables in increasing LUCE 
(Darwish et al., 2023). The bookkeeping model (van Marle et al., 2022), 
the plot inventory approach (Winkler et  al., 2023), and the IPCC’s 
approach to emission coefficients (Feng et al., 2024; Garofalo et al., 
2022) are currently the primary carbon emission accounting methods. 
Scholars commonly utilize IPCC criteria to calculate LUCE for country 
greenhouse gas inventories (McGlynn et  al., 2022). However, this 
method utilizes diverse energy consumption data. At larger 
administrative scales, data completeness is higher, whereas, at smaller 
scales, data availability is limited. For instance, there are significant gaps 
in China’s energy consumption statistics at the prefectural and county 
scales (Lv et  al., 2020), although the data at the province scale is 
comparatively full (Bu et  al., 2022). Energy consumption data are 
frequently used as the primary foundation for calculating carbon 
emissions from construction land that are indirect. Therefore, past 
research has mostly concentrated on the national (Lai et al., 2016) and 
provincial scale (Rong et al., 2022), with few studies undertaken at the 
prefectural and county scales and much fewer multiscale studies. The 
intensity of nighttime light and carbon emissions from energy use have 
been found to be significantly correlated as remote sensing technology 
develops (Raupach et  al., 2010). Scholars have increasingly utilized 
nighttime light data to explore LUCE at prefectural (Zheng et al., 2024) 
and county (Liu et al., 2024a) levels. However, research on LUCE has 
predominantly focused on single administrative scales. Given that 
socioeconomic development is significantly influenced by regional 
heterogeneity and geographical scale (Deng et al., 2022), a systematic 
investigation of LUCE across multiple administrative levels is essential 
for devising more reasonable and effective emission reduction strategies. 
Consequently, adopting a multi-scale perspective to study LUCE is of 
great importance in supporting the formulation of targeted and efficient 
emission reduction policies for governments at various administrative 
levels in YREB.

Prior research has used a number of techniques to examine the 
variables impacting carbon emissions, such as the STIRPAT model 
(Aziz and Chowdhury, 2023), the IPAT model (Haberl et al., 2023), 

and the logarithmic mean Divisia index (LDMI) (Khan and Majeed, 
2023). However, these investigations predominantly rely on traditional 
econometric approaches for factor decomposition, often neglecting 
the spatial dimension’s influence on carbon emission factors and 
failing to address potential spatial deviations that could affect the 
results. Furthermore, Moreover, the cumulative effect of numerous 
influencing factors on carbon emissions is not considered. 
Geographically weighted regression (GWR) is a traditional local 
regression model that takes into account both the spatial properties of 
the data and the geographic location of effect variables. Compared to 
the classical global regression model, GWR effectively addresses 
geographical heterogeneity (Pribadi and Pauleit, 2016). However, 
GWR employs a single bandwidth, leading to homogeneous regression 
features and a lack of multiscale consideration in studying the impact 
elements of LUCE. Different factors show varying scale effects on 
LUCE, and the MGWR model overcomes the limitations of GWR by 
allowing each factor to possess a unique bandwidth. This exclusive 
bandwidth reflects its spatial scale and mitigates estimation bias 
(Fotheringham et al., 2017). MGWR was introduced in 2017 and has 
seen gradual refinement and practical application since (Yu et al., 
2020). Currently, there is limited research utilizing MGWR, primarily 
focusing on multiscale impact analysis related to environmental 
pollution and ecological resources. Few academics have applied this 
approach to studying the impact variables of LUCE. Meanwhile, the 
geographical detector effectively analyzes the interactions between 
different influencing factors (Wang and Yang, 2024), distinguishing 
between individual effects and interactive effects, demonstrating 
strong applicability. However, the integration of the geographical 
detector with the MGWR model for an in-depth investigation of the 
effect factors of LUCE remains limited.

Based on this, this paper focuses on the YREB to investigate the 
spatiotemporal characteristics and influencing factors of 
LUCE. Using land use data, energy consumption data, and 
nighttime light data, LUCE is calculated at the provincial, 
prefectural, and county levels. Subsequently, a multi-scale analysis 
is conducted to systematically examine the spatiotemporal features 
of LUCE and its impact factors through spatial autocorrelation 
analysis, the Geographic Detector, and the MGWR model. The 
study aims to provide a scientific foundation for governmental 
authorities at various administrative levels within the YREB to 
develop tailored emission reduction strategies.

2 Materials and methods

2.1 Summary of the research area

The YREB (Figure  1) is one of China’s key economic zones, 
playing a significant role in the country’s overall development (Song 
et al., 2022). It spans China’s eastern, central, and western regions, 
serving as a vital link between these areas. The YREB, which makes up 
over 20% of China’s geographical area and accounts for 45% of the 
country’s GDP, is essential to economic growth. The YREB is divided 
into three regions (Dong et al., 2020): the lower reaches (Shanghai, 
Zhejiang, Jiangsu, and Anhui), covering 17.1% of the belt 
(353,300 km2); the middle reaches (Jiangxi, Hubei, and Hunan), 
covering 27.5% of the belt (564,600 km2); and the upstream region 
(Chongqing, Guizhou, Sichuan, and Yunnan), covering 55.4% of the 
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belt (1,137,400 km2). The region is rich in resources of natural origin 
and has significant growth potential.

2.2 Sources of data

The land use data were sourced from Resource and Environmental 
Science Data Platform.1 This dataset covers five time periods: 2000, 
2005, 2010, 2015, and 2020. To meet the research needs, the original 
30 m resolution data is resampled to 300 m. In the study area, the land 
was divided into six primary varieties, including grassland, woodlands, 
cropland, water, construction land, and unused land. The nighttime 
light data came from the corrected Chinese long-term dataset 
spanning 2000–2020 (Zhong et al., 2022), whereas the energy data 
came from the China Energy Statistical Yearbook (2001–2021). 
Socioeconomic data primarily originated from the China County 
Statistical Yearbook and district/county reports on national economic 
and social development statistics (2001–2021). Population data were 
retrieved from the World Population database.2 Prefectural scale 
economic data were obtained through conversions from 
corresponding county scale data to ensure consistency and accuracy, 
thereby eliminating errors arising from statistical discrepancies.

2.3 Selection of influencing factors

Economic development (X1), government intervention (X2), 
population size (X3), industrial structure (X4), carbon emission 
intensity (X5), and land use degree (X6) were chosen for this article 
based on available literature and relevant studies (Li et  al., 2021; 
Rahaman et al., 2022;Cai and Li, 2024; Fan et al., 2024; Wang et al., 

1 https://www.resdc.cn/

2 https://landscan.ornl.gov/

2024). Carbon dioxide emissions are greatly influenced by economic 
development; fast economic expansion frequently results in higher 
energy consumption and, consequently, higher carbon dioxide 
emissions, as measured by GDP (Shi et  al., 2019). Government 
intervention is a pivotal factor in impacting economic growth, 
industrial composition, and technological advancement and, 
consequently, carbon emissions. The ratio of fiscal expenditure to GDP 
is frequently used to evaluate the degree of government intervention 
(Ma and Liu, 2021). The industrial sector is a major source of CO2 
emissions, and changes in industrial structure can have a large 
influence on carbon emissions (Shi et  al., 2019). Population has a 
considerable impact on carbon dioxide emissions, as there is a tight 
link between the two. The continuing rise of the population not only 
directly contributes to increasing energy consumption but also to 
higher carbon dioxide emissions (Li et  al., 2017). The industrial 
structure is assessed by calculating the ratio of the output value of the 
tertiary industry to that of the secondary industry (Li et al., 2023). It is 
anticipated that carbon emission intensity will continue to decline as 
technology develops, which is essential for reducing total CO2 
emissions (Li et al., 2021). The quantity of carbon emissions for each 
unit of economic production is shown by the carbon intensity decrease, 
which is computed as the ratio of total carbon emissions to GDP. A 
higher land use degree usually leads to larger construction land areas 
and greater carbon emissions. However, efficient and economical 
construction land use can reduce carbon dioxide emissions. The 
percentage of construction land to the entire land area is one metric 
used to evaluate the extent of land utilization (Song et al., 2022).

2.4 Research approach

2.4.1 Method of calculating carbon emissions
Direct carbon emission calculation method:

 κ δΕ = ∑ = ∑ ×Ei Ti i (1)

FIGURE 1

The YREB’s location map.
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where Ek is direct carbon emission; Ei represents the amount of 
carbon emissions produced in type i land; Ti stands for the total land 
area of type i; and δi signifies the coefficient representing carbon 
emissions or absorption for land use type i. Based on prior research 
findings, the carbon emission (absorption) coefficients for different 
land use types were established as follows: cropland (0.422 t/ha2.a) 
(Sun et al., 2015; Zhang et al., 2022), woodland (−0.644 t/ha2.a) (Sun 
et al., 2015; Zhang et al., 2022), grassland (−0.021 t/ha2.a) (Sun et al., 
2015; Zhang et al., 2022), water (−0.253 t/ha2.a) (Sun et al., 2015; 
Zhang et al., 2022), and unused land (−0.005 t/ha2.a) (Sun et al., 2015; 
Zhang et al., 2022).

2.4.1.1 Indirect carbon emission calculation method
Energy consumption data and nighttime light data were utilized 

to indirectly estimate the carbon emissions from construction land in 
the provinces, prefecture-level cities, and counties of the YREB (Liu 
et al., 2024b). The comprehensive calculation process is provided in 
Supplementary Appendix.

2.4.2 Global spatial autocorrelation analysis
The following is the formula:
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where I is the global Moran’s value; n stands for the quantity of 
study subjects; xi and xj are the desired genus traits’ values that were 
observed in the objects of study i and j; wij is the adjacent weight of 
objects i and j; and x  represents the mean value of the attribute of the 
research object.

2.4.3 Local spatial autocorrelation analysis
The following is the expression:

 =
= ∑' '

1

n

i j
j
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(3)

where Ii is the local Moran index; x’i and x’j are unit observations 
that are standardized; and wij is the weight.

2.4.4 Geographical detector
This study primarily utilizes two methods from the Geographical 

Detector: factor detection and interaction detection. The exact 
equation is as follows (Wang and Xu, 2017):
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Where q represents the explanatory power of the impact factor on 
LUCE; h = 1,…, L represents the categorization or zoning of LUCE 
impact factor X; Nh and N are the sample sizes for layer h and the study 

area; and the variances of Y values for layer h and the entire area are 
denoted as. The value of q ranges from [0,1], with larger values 
indicating stronger explanatory power of the influencing factor 
on LUCE.

The interaction detector is used to identify the interactions 
between different influencing factors, i.e., to assess whether the joint 
effect of two factors enhances or weakens the explanatory power of 
LUCE. The relationships between two factors include five types: 
nonlinear weakening, single-factor nonlinear weakening, two-factor 
enhancement, independence, and nonlinear enhancement.

2.4.5 MGWR
The MGWR model is expressed as:

 
( ) ( )β β ε

=
= + +∑ 10 , ,k

jyi ui vi bwj ui vi xij i
 

(5)

where yi is the explained variable of research area i, (ui, vi) 
represents the central coordinate of position i, xij stands for the value 
of the jth impact factor in study area i, β0 is the intercept term, εi is the 
error term, βbwj (ui, vi) is the local regression coefficient of the jth 
impact factor in study region i, and bwj stands for the bandwidth used 
by the regression coefficient of the jth impact factor.

3 Results

3.1 Land use change analysis

Significant variance was seen in land use types and change 
patterns over the whole YREB from 2000 to 2020. The most common 
land use categories were grassland, cropland, and woodland 
(Figure 2a). In general, cropland with grassland consistently decreased, 
while woodlands, water bodies, construction land, and unused land 
exhibited upward trends. Notably, among these changes, the shifts in 
cropland and construction land were particularly noteworthy. 
Cropland decreased from 638,558.68 to 607,027.86 km2, marking a 
total reduction of 31,530.83 km2. Conversely, construction land 
expanded from 52,107.04 to 84,604.74 km2, representing a gain of 
32,497.7 km2. Woodlands, water, and unused land increased by 
661.14, 2,142.44, and 269.34 km2, respectively, while the grassland 
area remained under 4,039.80 km2. According to Sankey’s diagram 
(Figure 2b) illustrating land use transitions over different periods, 
cropland, primarily converted into construction land, emerged as the 
most significant land use transformation. This implies that a significant 
loss of cropland resources resulted from the YREB’s fast urbanization.

3.2 Spatiotemporal evolution 
characteristics of the LUCE in the YREB

3.2.1 Time evolution characteristics
The overall LUCE (sum of the carbon sources and carbon 

sinks) in the YREB increased by nearly 3.04 times between 2000 
and 2020 (Figure 3c), from 28434.32 × 104 t to 86,581.79 × 104 t. 
Figure 3a illustrates the variations in the carbon source structure 
of various land types. It is evident that the carbon source from 
construction land is much greater, surpassing 92%, while the 
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carbon source from cropland is very low, making up less than 8%. 
While the YREB’s construction land area grew between 2000 and 
2020, the cropland area continued to decline. This shift led to a 
steady decrease in the percentage of carbon emissions from 
cropland, while the percentage from construction land 
progressively increased (Figure 3a). Carbon sinks serve a crucial 

function in carbon sequestration and regional carbon emissions. 
The YREB (Figure 3b) witnessed minimal variations in carbon 
sinks over the research period, with woodlands contributing to 
approximately 96% of the region’s carbon sink capacity. 
Conversely, the combined amount of the other three land types 
accounted for around 4% of the carbon sink capacity of the area.

FIGURE 2

Land use change in the YREB.
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3.2.2 Characteristics of spatial evolution
From 2000 to 2020 (Figures 4–6), the LUCE in the YREB showed 

different characteristics of regional change. In general, they have “high 
downstream and low upstream” characteristics. At the provincial scale 
(Figure 4), Jiangsu and Zhejiang consistently ranked highest in terms 
of LUCE within the YREB. Notably, these two provinces are also 
prominent developed regions in China. Their rapid economic growth 
has been accompanied by an expansion of construction land and 
significant energy consumption, resulting in substantial carbon 
emissions. Consequently, Jiangsu and Zhejiang Provinces should 
be the YREB’s primary emission reduction provinces. On the other 
hand, Yunnan, Jiangxi, and Guizhou reported the lowest LUCE. These 
provinces are less developed within China and are characterized by 
relatively underdeveloped economies and extensive woodland and 
grassland areas, which contribute to their lower LUCE.

At the prefecture scale (Figure  5), cities with high LUCE are 
primarily located in Jiangsu, Zhejiang, Shanghai, and Chongqing. 
Conversely, cities with lower LUCE scales are primarily located in 
Sichuan and Yunnan. Specifically, Shanghai, Chongqing, Suzhou, and 
Wuhan have the highest LUCE values, followed by Wuxi, Hangzhou, 
Ningbo, Changsha, Chengdu, Nanjing, Nantong, and Hefei. These 
cities should be the central focus of carbon emission reduction efforts 
within the YREB. When compared to the provincial scale, Jiangsu and 
Zhejiang have the highest LUCE values. The prefectural cities with the 
highest LUCE generally follow provincial trends but also show some 
variations within the same province.

At the county scale (Figure 6), there is a noticeable increase in 
areas with high LUCE values within the YREB. These areas are 
primarily concentrated in Zhejiang and Jiangsu Provinces, along with 

major cities such as Shanghai, Suzhou, Wuxi, Nantong, and others. 
These counties with higher LUCE scales are focal points for carbon 
emissions reduction within the YREB’s county scale. The distribution 
of LUCE characteristics at the county scale in the YREB is similar to 
that at the provincial and prefectural scales, although there are notable 
internal differences.

3.3 Spatial correlation examination

From 2000 to 2020, the LUCE’s global Moran’s I values at the 
three administrative scales in the YREB are continuously positive 
(Table 1). The Z-value exceeds 1.96, except for the provincial scales 
in 2005, 2010, and 2015, with the p-value at the 5% level being 
significant. These findings suggest a significant positive spatial 
correlation in the LUCE at all three administrative scales in the 
YREB. Between 2000 and 2020, there were significant fluctuations 
in the global Moran’s I values for LUCE across different 
administrative scales. Specifically, at the provincial scale, the global 
Moran’s I grew from 0.201 to 0.211, indicating a clear upward trend. 
Similarly, at the prefectural scale, the global Moran’s I also showed 
an increasing trend, rising from 0.136 in 2000 to 0.161 in 2020. It is 
noteworthy that the increase in Moran’s I at the provincial scale was 
more pronounced than that at the prefectural scale. Conversely, at 
the county scale, the global Moran’s I showed a decreasing trend, 
declining from 0.561 in 2000 to 0.522 in 2020. This phenomenon 
may be attributed to the diversification of land use patterns among 
counties and the differences in policy implementation and 
development positioning. Some counties have significantly reduced 

FIGURE 3

Changes in the LUCE in the YREB.
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carbon emissions due to the promotion of ecological protection and 
restoration projects, while others have experienced increased carbon 
emissions driven by urbanization and the expansion of construction 
land. This heterogeneity has weakened the spatial agglomeration at 
the county level. Meanwhile, during rapid urbanization, the 
relatively slower growth of carbon emissions in economically 
underdeveloped counties further diminishes the agglomeration 
effect. In contrast, the increase in the global Moran’s index at the 
provincial and prefectural levels reflects the uniformity of macro-
level policies and the convergence of industrial planning. At these 
scales, the development of low-carbon industries and regional 
coordination planning significantly enhance the spatial correlation 
of carbon emissions. Larger spatial units effectively smooth out local 
differences, resulting in a stronger spatial aggregation effect over 
broader areas. Overall, the spatiotemporal characteristics of land use 
carbon emissions exhibit significant scale effects, with the county 
level highlighting local heterogeneity more prominently.

Concerning local spatial autocorrelation, it is observed that at the 
provincial scale, the LUCE in the YREB lacks spatial agglomeration 
features. At the prefectural scale, there is no significant alteration in 
the spatial clustering pattern of the LUCE in the YREB (Figure 7). This 
pattern is characterized by High–High (H–H) and Low–Low (L–L) 
regional clustering, along with sporadic occurrences in High–Low 
(H–L) and Low–High (L–H) regions. In general, the H–H 
agglomeration regions are concentrated in the lower Yangtze River 
region, encompassing Shanghai, Jiangsu, and Zhejiang provinces. L–L 
agglomeration regions are primarily situated in Sichuan and Yunnan 
Provinces. L–H regions are mostly located in Huzhou, Zhoushan, and 
Ziyang. These cities are mainly concentrated around cities with high 
LUCE, indicating that their LUCE is low but affected by the positive 
spillover effect of high-carbon areas. The main regions with H–L 
characteristics are Chengdu and Chongqing, clustered predominantly 
around L–L agglomeration areas, leading to significant carbon 
emissions that spill over into the low-value regions. The prefectural 

FIGURE 4

Spatial distribution of provincial LUCE in the YREB.
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scale LUCE displays more pronounced regional agglomeration and 
spatial heterogeneity compared to the provincial level.

At the county level (Figure  8), the spatial clustering of the 
LUCE in the YREB exhibits no significant variation. They are 
characterized by H–H and L–L regional agglomeration, with 
sporadic instances of H–L and L–H distribution. From 2000 to 
2020, regions with H–H agglomeration were mostly concentrated 
in Zhejiang, Jiangsu, and Shanghai, and their numbers continued 
to grow. H–H agglomeration regions were detected in the districts 
and counties of Wuhan, Changsha, Chongqing, and Chengdu. L–L 
agglomeration areas were mostly found in Jiangxi, Yunnan, and 
Sichuan. Additionally, they were sparsely distributed in the central 
parts of Hubei and Hunan, with occasional appearances in the 
lower Yangtze River portions of Zhejiang. L–H agglomeration 
regions are characterized by low LUCE values, although they are 
impacted by the favorable spillover effects of high-carbon areas. 
H–L agglomeration regions are located around the L–L 

agglomeration regions in the central reaches of Hunan, Hubei, and 
Jiangxi Provinces, and the upstream regions of Sichuan and 
Yunnan Provinces. Their high LUCE scales have a spillover impact 
on the L–L agglomeration regions to some extent. The findings of 
the global Moran’s I analysis are consistent with this, indicating 
that the spatial correlation of LUCE at the county level decreased 
throughout this time. In summary, the county level exhibits greater 
spatial heterogeneity and regional agglomeration characteristics 
compared to the prefectural scale.

3.4 Research on impact factors

Due to data availability and the limited number of provincial-scale 
samples, this study focuses exclusively on examining the factors 
influencing LUCE at the prefectural and county scales within the 
YREB for the years 2000, 2005, 2010, 2015, and 2020.

FIGURE 5

Spatial distribution of prefecture LUCE in the YREB.
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3.4.1 Geographical detector analysis results

3.4.1.1 Single factor detection characteristics at the 
prefectural scale

Using the GD package in R, the natural break classification 
method was applied to categorize the LUCE impact factors at the 

prefectural scale in the YREB for the years 2000, 2005, 2010, 2015, and 
2020. The q-values of these factors were calculated, and the spatial 
scale with the optimal q-value was selected as the parameter for the 
geographic detector analysis. The significance test was passed by every 
detection factor, as seen in Figure 9a. In the results of the single-factor 
q-values for the LUCE influencing factors at the prefectural scale for 

FIGURE 6

Spatial distribution of county-scale LUCE in the YREB.

TABLE 1 Global correlation analysis results.

2000 year 2005 year 2010 year 2015 year 2020 year

Provincial scale
Moran’s I 0.201 0.102 0.067 0.165 0.211

z 1.979 1.377 1.038 1.955 2.155

Prefectural scale
Moran’s I 0.136 0.145 0.114 0.142 0.161

z 3.237 3.375 3.102 3.863 3.941

County scale
Moran’s I 0.561 0.553 0.545 0.531 0.522

z 34.024 33.151 32.929 32.188 30.373

Z > 1.96 indicates that the test has passed the 95% confidence level; Z > 2.58 indicates that the test has passed the 99% confidence level.
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the five periods in the YREB, economic development (X1) consistently 
had the highest q-values, ranging from 0.8128 to 0.9273, indicating 
that economic development is the most significant influencing factor 
with the greatest explanatory power over LUCE. Population (X3) had 
the second-highest q-values, from 0.6032 to 0.7579, with a relatively 
stable trend of initially decreasing and then increasing, suggesting that 
population size also has a strong explanatory power over LUCE at the 
prefecture level, with a certain level of stability. Government 
intervention (X2) showed a continuous increase in its q-values, from 
0.1263 in 2000 to 0.2465 in 2020. Its explanatory power increased 
from 6th place in 2000 to 4th in 2005, where it remained at 4th 
position throughout the research period. Industrial structure (X4) had 
q-values ranging from 0.1300 to 0.1862, maintaining 5th or 6th place 
in terms of explanatory power, indicating that while industrial 
structure’s explanatory power is relatively low compared to other 
factors, it remains stable over time. Carbon emission intensity (X5) 
exhibited a downward trend, with q-values ranging from 0.1246 to 

0.2243, decreasing from 0.2243  in 2000 to 0.1336  in 2020. Its 
explanatory power dropped from 3rd place in 2000 to 5th in 2005 and 
2010, and further declined to 6th place in 2015 and 2020, suggesting 
significant fluctuations and relative instability in its explanatory power 
compared to other factors. Land use degree (X6) showed a continuous 
increase in its q-values, ranging from 0.2005 to 0.4571, indicating that 
the explanatory power of land use degree on LUCE increased over the 
research period.

From the perspective of the magnitude of each influencing factor 
in different periods, the q-values for the influencing factors in 2000 
were ranked as follows: economic development (X1) > population 
(X3) > carbon emission intensity (X5) > land use degree 
(X6) > industrial structure (X4) > government intervention (X2). In 
2005, the q-values were ranked as: economic development 
(X1) > population (X3) > land use degree (X6) > government 
intervention (X2) > carbon emission intensity (X5) > industrial 
structure (X4). In 2010, the ranking was: economic development 

FIGURE 7

LISA aggregation map of prefectural LUCE in the YREB.
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FIGURE 8

LISA aggregation map of county-scale LUCE in the YREB.

FIGURE 9

Single-factor q-values of LUCE at different scales in the YREB.
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(X1) > population (X3) > land use degree (X6) > government 
intervention (X2) > carbon emission intensity (X5) > industrial 
structure (X4). In 2015, the ranking was: economic development 
(X1) > population (X3) > land use degree (X6) > government 
intervention (X2) > industrial structure (X4) > carbon emission 
intensity (X5). In 2020, the ranking was: economic development 
(X1) > population (X3) > land use degree (X6) > government 
intervention (X2) > industrial structure (X4) > carbon emission 
intensity (X5). The average strength of the influencing factors over the 
five periods is ranked as follows: economic development 
(X1) > population (X3) > land use degree (X6) > government 
intervention (X2) > carbon emission intensity (X5) > industrial 
structure (X4).

3.4.1.2 Single-factor detection characteristics at the 
county scale

All detection factors passed the significance test (Figure 9b). In 
the results of single-factor q-values for LUCE detection at the county 
scale in the YREB across five periods, economic development (X1) 
consistently had the highest q-values, ranging from 0.4318 to 0.6689. 
The q-value of economic development (X1) initially increased and 
then decreased, with a clear overall trend upward, arising from 
0.4318  in 2000 to 0.6328  in 2020. This indicates that economic 
development (X1) has a high and continually increasing explanatory 
power for LUCE at the county scale in the YREB. The q-values of 
government intervention (X2) followed a trend similar to that of 
economic development (X1), with a pattern of initially increasing and 
then decreasing, but overall showing a significant rise from 0.1300 in 
2000 to 0.2442  in 2020. The explanatory power of government 
intervention (X2) also increased during the study period, with its 
ranking rising from 5th in 2000 to 4th in 2010 and maintaining that 
ranking thereafter. The q-values of the population (X3) showed 
continuous growth during the study period, increasing from 0.2324 in 
2000 to 0.4977 in 2020. The explanatory power of population (X3) also 
rose in ranking, from 4th in 2000 to 3rd in 2005, and further to 2nd 
in 2015. This indicates that the explanatory power of population on 
LUCE at the county scale significantly increased. The q-values of 
industrial structure (X4) ranged from 0.1016 to 0.1706, with the 
explanatory power consistently ranked 6th throughout the study 
period. This indicates that the industrial structure has relatively low 
but stable explanatory power for LUCE compared to other factors. The 
q-values of carbon emission intensity (X5) ranged from 0.1813 to 
0.2833, exhibiting an overall downward trend. It decreased from 
0.2243 in 2000 to 0.1966 in 2020. Its explanatory power also decreased 
from 3rd in 2000 to 4th in 2005 and continued to decline, ranking 6th 
in 2010, 2015, and 2020. This suggests that the explanatory power of 
carbon emission intensity for LUCE is diminishing relative to other 
factors. The q-values of land use intensity (X6) ranged from 0.3932 to 
0.4127, with relatively stable changes, and the explanatory power 
ranked consistently between 2nd and 3rd. This indicates that land use 
intensity (X6) has a strong and stable explanatory power for LUCE.

In 2000, the q-values of the factors were ranked as: economic 
development (X1) > land use intensity (X6) > carbon emission 
intensity (X5) > population (X3) > government intervention 
(X2) > industrial structure (X4). In 2005, the q-values were ranked as: 
economic development (X1) > land use intensity (X6) > population 
(X3) > carbon emission intensity (X5) > government intervention 
(X2) > industrial structure (X4). In 2010, the q-values were ranked as: 

economic development (X1) > land use intensity (X6) > population 
(X3) > government intervention (X2) > carbon emission intensity 
(X5) > industrial structure (X4). In 2015, the q-values were ranked as: 
economic development (X1) > population (X3) > land use intensity 
(X6) > government intervention (X2) > carbon emission intensity 
(X5) > industrial structure (X4). In 2020, the ranking of the 
influencing factors remained the same as in 2015. The average q-values 
of the influencing factors over the five periods were ranked as: 
economic development (X1) > land use intensity (X6) > population 
(X3) > carbon emission intensity (X5) > government intervention 
(X2) > industrial structure (X4).

3.4.1.3 The dual-factor interaction results of LUCE at the 
prefectural scale

The types of interactions among the factors only included dual-
factor enhancement and nonlinear enhancement. Throughout the 
study period, dual-factor enhancement was predominant, with 
relatively stable changes (Figure 10a). Overall, the interaction effect of 
dual factors was larger than the individual effects of the factors. The 
research results indicate that LUCE at the prefecture-level city scale in 
the YREB is not caused by a single factor but by the combined effects 
of multiple factors. During the study period, the interaction strength 
of economic development (X1) and population (X3) with other factors 
was greater than 0.5, suggesting that economic development (X1) and 
population (X3) are the main influencing factors of LUCE at the 
prefecture-level city scale in the YREB. Additionally, we found that the 
interaction between economic development (X1) and carbon emission 
intensity (X5) was the strongest. Therefore, it is crucial to completely 
take into account how economic development and technology 
advancement interact when creating emission reduction plans, since 
this may help ensure that these plans are implemented effectively.

3.4.1.4 The dual-factor interaction results of LUCE at the 
county scale

The types of factor interactions were limited to dual-factor 
enhancement and nonlinear enhancement, consistent with the results 
at the municipal scale. Throughout the study period, dual-factor 
enhancement predominated, showing relatively stable variation 
(Figure  10b). Overall, the interaction effects of dual factors were 
greater than the individual effects of single factors. In line with the 
findings at the prefectural scale, the results show that the variables 
affecting LUCE at the county scale in the YREB are not caused by a 
single factor but rather by the combined impacts of several factors. 
During the study period, the interaction strength between economic 
development (X1) and other factors was greater than 0.5, significantly 
exceeding the interactions between other factors, suggesting that 
economic development (X1) is the primary driver of LUCE at the 
county scale. Additionally, it was found that the interaction between 
economic development (X1) and carbon emission intensity (X5) was 
the most powerful, and in all five periods, this interaction exhibited a 
nonlinear enhancement type.

3.4.2 MGWR analysis results
Although the use of the Geodetector model determined the main 

impact factors of LUCE at the municipal and county scales in the YREB, 
the results are global and do not account for spatial location factors. 
Therefore, the MGWR model was further established to examine the 
local features of the influence of impact factors on LUCE. Significant 
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factors were used as explanatory variables, and local spatial regression 
analysis of the impact factors for the year 2020 at both the prefectural 
and county administrative scales in the YREB was carried out to 
examine the spatial differences of the different impact factors.

3.4.2.1 Prefectural scale
All the factors under investigation have been tested for 

multicollinearity. To further assess the accuracy of the MGWR model, 
this study also established Ordinary Least Squares (OLS) and GWR 

FIGURE 10

Dual-factor interaction detection of LUCE in the YREB.
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models for comparative analysis with the MGWR model. The adjusted 
R2 of the standard OLS model is 0.965, the adjusted R2 of the GWR 
model is 0.975, and the adjusted R2 of the MGWR model is 0.987, as 
indicated by the findings in Table 2. The MGWR model offers a better 
match than the other two models, as seen by its higher adjusted R2 
value. The reason for selecting the adjusted R2 for comparison lies in 
its ability to more accurately reflect the goodness-of-fit of the model 
compared to the original R2. Specifically, when the number of variables 
differs among models, the adjusted R2 effectively mitigates the artificial 
inflation of R2 caused by the inclusion of additional variables. This 
ensures a more objective evaluation of the model’s performance. 
According to the AICc criterion, the AICc value of the MGWR model 
is smaller. The reason for using AICc lies in its ability to assess the 
goodness-of-fit of the model while incorporating a penalty term for 
model complexity, effectively mitigating the risk of overfitting. 
Compared to the traditional AIC, AICc is more suitable for small 
sample sizes, as its correction term better accounts for the influence 
of sample size on model selection. Therefore, adopting AICc as an 
evaluation criterion provides a more comprehensive balance between 
model fit and complexity, thereby enhancing the reliability of the 
results. This further indicates that the MGWR model demonstrates a 
certain level of robustness (Zhao et al., 2015).

The geographical heterogeneity of the impact factor’s effect 
decreases with increasing bandwidth and vice versa (Yang and Li, 
2022). By comparing the sizes of different bandwidths, this study 
found that, at the prefectural scale in 2020, the bandwidths for 
economic development, industrial structure, government intervention, 
population size, land use intensity, and carbon emission intensity were 
43, 43, 129, 43, 67, and 43, respectively. The spatial heterogeneity of 
each influencing factor at the prefectural scale is ranked from largest 
to smallest as follows: economic development = industrial 
structure = population = carbon emission intensity > land use 

intensity > government intervention. Among these, government 
intervention exhibits a global scale effect with almost no spatial 
heterogeneity (Table 2). These results suggest that at the prefectural 
scale, factors such as economic development, industrial structure, 
population size, and carbon emission intensity have strong spatial 
heterogeneity. This is because there are significant differences in the 
economic, industrial, and population characteristics among cities, 
leading to notable spatial variation. The bandwidth for land use 
intensity is 67, which is relatively large, indicating weaker spatial 
heterogeneity. This can be as a result of the minimal variations in land 
use among cities and the comparatively uniform land use rules and 
planning at the prefectural scale. The bandwidth for government 
intervention is the largest at 129, showing almost no spatial 
heterogeneity. This suggests that at the prefectural scale, government 
policies and interventions are more uniform, and there is generally a 
lack of significant spatial differences.

The following are the spatial distribution features of each impact 
factor’s regression coefficients (Figure 11). The regression coefficients 
for economic development (0.591–0.985) are consistently positive, 
indicating a positive influence on the LUCE. The regions with high 
regression coefficients are predominantly located in Jiangsu, Anhui, 
Hubei, Zhejiang, and Shanghai, while those with low regression 
coefficients are situated in Sichuan, Yunnan, and Guizhou. The degree 
of economic development is closely correlated with this trend. The 
industrial structure regression coefficients (−0.174 to −0.011) are all 
negative, demonstrating that industry structure has an inhibitory 
influence on LUCE at the prefectural scale. Cities located in Jiangsu 
Province, Shanghai, and Zhejiang, show a strong negative correlation, 
suggesting their relatively advanced economic development and 
successful transition from a “231” to a “321” industrial structure. In 
contrast, regions with weaker negative correlations are primarily 
found in cities in Sichuan and Yunnan. This might be attributed to the 
relatively underdeveloped urban economies in these areas, lower 
resource allocation efficiency, and slower growth of the tertiary sector, 
which hinders the maximization of carbon reduction benefits from 
industrial upgrading. The regression coefficients of government 
intervention (−0.07 to −0.061) are all negative, and their variation 
range is small, indicating that government intervention has an 
inhibitory effect on LUCE at the prefectural scale and that the effect is 
relatively consistent. The population factor regression coefficients 
(0.113–0.290) are positive, demonstrating that the population has a 
positive influence on LUCE. The regions with high coefficients are 
mainly located in Jiangsu, Anhui, Hubei, and Chongqing, whereas the 
regions with low coefficients are primarily located in Jiangxi, Hunan, 
Sichuan, and Yunnan, which is essentially aligned with the distribution 
characteristics of the population. The regression coefficients for land 
use degree (0.009–0.124) are positive, indicating that the expansion of 
construction land promotes carbon emissions from land use. Spatially, 
the expansion shows a general pattern of higher values in the central 
region and lower values on both sides. This is possibly due to the 
downstream areas being economically developed, where efficient and 
intensive land use practices have reduced carbon emissions. 
Meanwhile, the central region has further absorbed traditional 
industries from the upstream areas, leading to more construction land 
and higher carbon emissions. In contrast, the upstream regions have 
a less developed economy, limited construction land, and lower overall 
carbon emissions. Regions with higher regression coefficients are 
primarily located in Hunan, Jiangxi, and Hubei, while regions with 

TABLE 2 Comparison of OLS, GWR, and MGWR regression results at the 
prefectural scale.

Year 2020

Model OLS GWR MGWR

AIC −60.526 −145.927 −168.267

AICc −57.336 −125.546 −147.484

R2 0.967 0.978 0.99

Adj. R2 0.965 0.975 0.987

Variable 

bandwidth

Economic 

development

– 55

43

Population 43

Government 

intervention
129

Industrial 

structure
43

Carbon 

emission 

intensity

43

Land use 

intensity
67

Constant term 44
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lower coefficients are primarily found in Sichuan and Guizhou. 
Carbon emission intensity regression coefficients (0.052–0.446) are all 
positive, showing that carbon emission intensity promotes the LUCE, 
and the overall performance is high in the east and low in the west. 
Potential explanations for this include the fact that although the 
eastern region’s economy is advanced and technical advancements 
have continued to lower carbon intensity, the region’s high energy 
consumption means that overall carbon emissions remain high. This 
situation compensates for the reduced impact of lower carbon 
emission intensity. Central and western regions, in comparison, 
exhibit lower economic development, a relatively uniform industrial 
structure, and limited technological advancement, leading to 
increased carbon emission intensity. However, due to lower total 
carbon emissions in these regions, the influence of carbon emission 
intensity on overall carbon emissions is less pronounced compared to 
the eastern region on the whole, economic development, population 
size, land use degree, and carbon emission intensity can promote 
LUCE. while industrial structure and government intervention can 
inhibit LUCE.

3.4.2.2 County scale
The results at the county scale show that in 2020, the bandwidths 

for economic development, industrial structure, government 

intervention, population, land use degree, and carbon emission 
intensity were 43, 271, 68, 61, 71, and 47, respectively. At the county 
level, the spatial heterogeneity of various influencing factors in the 
YREB, from large to small, is as follows: economic development > 
carbon emission intensity > population > government intervention > 
land use degree > industrial structure (Table  3). Due to notable 
variations in economic development levels among various county 
units, which directly affect carbon emissions, economic development 
exhibits the greatest geographical heterogeneity. Carbon emission 
intensity ranks second, exhibiting substantial spatial heterogeneity due 
to multiple factors such as energy efficiency and technological level.

The spatial distribution features of each impact factor’s regression 
coefficients are as follows (Figure  12): the economic development 
regression coefficients (0.197–1.362) are all positive, demonstrating that 
economic growth promotes LUCE at the county scale. The provinces 
with the highest regression coefficients are Anhui, Hubei, and Hunan, 
whereas the provinces with the lowest regression coefficients are Jiangxi, 
Guizhou, and Sichuan. Most districts and counties in Zhejiang, 
Shanghai, and Jiangsu have lower economic regression coefficients than 
the prefectural scale, indicating that economic green growth is simpler 
to achieve at the county scale. The regression coefficient of industrial 
structure (−0.22 to 0.057) is positive and negative, indicating a negative 
correlation in general. The negative zone is mainly located in the 

FIGURE 11

Spatial distribution of regression coefficients of impact factor at the prefectural scale in 2020.
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provinces of the Yangtze River’s upper and middle reaches, while the 
positive zone is primarily situated in Yunnan, Sichuan, and Guizhou. 
Compared to the prefectural scale, the impact of industrial structure on 
carbon emissions may show a longer delay at the county scale. 
Government intervention has a positive and negative regression 
coefficient (−1.376 to 0.064), and total performance has a negative 
correlation, showing that government involvement has an inhibitory 
influence on LUCE. The positive values observed in a few districts and 
counties could be  explained by the orientation of government 
intervention in fiscal budget expenditure. This orientation may lead to 
the clustering of similar enterprises and even duplication of 
construction, resulting in increased carbon emissions. This suggests that 
government intervention is more likely to have a negative effect at the 
county scale. The regression coefficients for population factors (ranging 
from 0.001 to 0.511) were consistently positive, with high-value areas 
concentrated primarily in upstream Jiangsu, Shanghai, Zhejiang, Hubei, 
and Sichuan. The regression coefficient of land use degree (−0.257 to 
0.563) was positive, and the negative area was mainly concentrated in 
upstream Jiangsu, Anhui, Shanghai, Zhejiang, and downstream Sichuan. 
Compared with the prefectural scale, the inhibitory effect of intensive 
LUCE was better reflected at the county scale. The carbon emission 
intensity regression coefficients (0.004–2.422) are all positive, and 
overall performance is high in the east and low in the west, which is 
similar to the prefectural scale distribution. Overall, economic growth, 
population, land use degree, and carbon emission intensity promote 
LUCE, but the industrial structure and government intervention limit 
LUCE, consistent with the prefectural scale.

4 Discussion

China’s administrative divisions are hierarchical, comprising 
provinces with numerous prefectural cities and prefectural units 

encompassing multiple county-scale entities (Liao and Shi, 2022). 
Research has indicated that a single administrative scale cannot 
effectively represent spatial patterns at other scales (Ma et al., 2016). 
Thus, it is essential to study the temporal and spatial characteristics, 
along with the impact factors, of the LUCE at various administrative 
scales. Based on this, our study focuses on the YREB as our research 
area. We investigate the spatiotemporal characteristics of LUCE across 
three administrative scales: province, prefectural city, and county. To 
explore the impact factors at the prefectural and county scales.

4.1 Spatiotemporal evolution of the LUCE 
in the YREB at different scales

The YREB’s considerable increase in LUCE from 2000 to 2020 was 
mostly caused by the expansion of construction land that contributes 
to carbon emissions. The period between 2000 and 2010 saw rapid 
growth (Figure 3), fueled by an extensive development model and the 
expansion of construction land. However, growth slowed from 2010 
to 2020, influenced by the 2012 ecological civilization construction 
plan and subsequent sustainable development policies (Lin, 2018). 
Despite the slowdown, urbanization and construction land expansion 
persist, leading to a continued rise in LUCE.

The spatial distribution of the LUCE in the YREB can 
be summarized as higher in the lower reaches and lower in the upper 
reaches. The downstream provinces in the YREB, such as Zhejiang, 
Jiangsu, and Shanghai, are economically developed and experience 
rapid infrastructure development, accompanied by significant human 
activity, substantial energy consumption, and the ongoing growth of 
construction land (Wang and Shao, 2023). Simultaneously, the 
ongoing reduction in cropland, woodlands, and grasslands leads to the 
LUCE’s growth. In contrast, the upstream region, with slower 
urbanization and larger woodlands, grasslands, and carbon 
sequestration capacity (Luo et  al., 2022), exhibits lower 
LUCE. However, the middle and upper reaches experience increasing 
LUCE, attributed to “Western development,” “One Belt, One Road” 
initiatives, and the relocation of high-emission enterprises (Tian 
et al., 2019).

County-scale LUCE in the YREB demonstrates stronger spatial 
autocorrelation, indicating that smaller administrative units are prone 
to prominent spatial clustering patterns for LUCE (Shi et al., 2019). 
Local spatial autocorrelation analysis indicates that the provincial 
administrative scale lacks significant spatial agglomeration, possibly 
due to a limited number of samples. The prefectural scale exhibits 
positive spatial agglomeration, while the county administrative scale 
shows even more significant positive spatial agglomeration than the 
prefectural scale. Overall, the county scale in the YREB demonstrates 
stronger spatial heterogeneity and regional agglomeration features 
compared to the other two administrative scales. The primary reasons 
for the observed results lie in the differences in spatial unit division 
and socio-economic driving factors across various administrative 
scales. At the provincial scale, the relatively large administrative unit 
size often conceals internal variations in land use. The prefectural 
scale, situated between the provincial and county scales, provides a 
better representation of land use differences and their connections to 
regional economic activities, while also revealing heterogeneity that 
remains undetected at the provincial scale. In contrast, the county 
scale focuses on smaller spatial units, capturing local characteristics 

TABLE 3 Comparison of OLS, GWR, and MGWR regression results at the 
county scale.

Year 2020

Modle OLS GWR MGWR

AIC 1386.669 118.391 36.31

AICc 1388.805 212.511 203.223

R2 0.789 0.955 0.963

Adj. R2 0.787 0.945 0.951

Variable 

bandwidth

Economic 

development

– 58

43

population 61

Government 

intervention
68

Industrial 

structure
271

Carbon 

emission 

intensity

47

Land use degree 71

Constant term 106
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of land use changes, population distribution, and economic activities 
more comprehensively. This allows for a more pronounced observation 
of spatial heterogeneity and agglomeration effects. Consequently, land 
use carbon emissions exhibit distinct spatial heterogeneity across 
different administrative scales.

4.2 Impact factors of the LUCE in the YREB 
at different scales

Economic development is the primary determinant of LUCE at 
the prefectural and county levels in the YREB, according to the 
findings of the geographic detector study. This result is in line with 
previous studies showing that the main driver of the rise in carbon 
emissions in Chinese cities has always been economic development 
(Guan et al., 2018; Zheng et al., 2020). The main cause for this result 
is that rapid local economic growth mainly stems from infrastructure 
construction and industrial upgrading. Meanwhile, infrastructure 
development and industrial upgrading also affect regional energy 
consumption and carbon emissions. With the advancement of 
urbanization, the urban agglomeration effect further strengthens the 
driving force behind local economic development, creating a virtuous 
cycle. This cyclical mechanism leads to the continuous interaction 

between economic development, industrial upgrading, and 
urbanization, promoting rapid regional economic growth. However, 
as economic activities increase, carbon emissions also show a 
noticeable accumulation trend, particularly in regions with rapid 
economic development, where the growth in carbon emissions is 
especially prominent.

Apart from economic development, other influencing factors also 
show different characteristics at different administrative scales. 
Specifically, at the prefectural scale, the importance of influencing 
factors is ranked as follows: population, land use degree, government 
intervention, industrial structure, and carbon emission intensity. At 
the county scale, the ranking is: land use degree, population, carbon 
emission intensity, government intervention, and industrial structure. 
The differences in the intensity ranking of influencing factors across 
scales highlight the impact of scale effects on carbon emissions. The 
differences in the ranking of carbon emission influencing factors 
across administrative scales essentially reflect the scale effect, meaning 
that the importance of these factors varies with scale due to differences 
in spatial and social contexts. This effect highlights the regional 
heterogeneity and the necessity of tailoring policies to local conditions, 
indicating that emission reduction strategies should be  precisely 
designed according to the specific circumstances of each region. An 
examination of the two-factor interaction reveals that it takes the form 

FIGURE 12

Spatial distribution of regression coefficients of each impact factor at the county scale in 2020.
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of two-factor enhancement and nonlinear enhancement at both scales. 
This implies that the combined activity of several factors influences 
LUCE, with the two-factor interaction having a greater effect than the 
effects of the individual elements. A thorough analysis of the interplay 
between variables should be  taken into account while developing 
emission reduction strategies.

The MGWR model is utilized to investigate the influencing 
variables of LUCE at the prefectural and county scales in the YREB in 
2020 in order to better assess the local characteristics of the influencing 
factors on LUCE while taking spatial aspects into account. Applying 
the MGWR model in 2020 at the prefectural and county scales, 
economic development, population size, industrial structure, and 
carbon emission intensity exhibit similar bandwidths with pronounced 
spatial heterogeneity. Land use intensity followed, while government 
intervention manifested as a global feature, with minimal spatial 
heterogeneity. However, at the county scale, the bandwidths of impact 
factors demonstrated certain spatial heterogeneity, with no single 
dominant global factor. The degree of spatial heterogeneity decreased 
in the order of economic development > carbon intensity > population 
size > government intervention > land use intensity > industrial 
structure. This indicates that different impact factors show different 
spatial heterogeneity on the same research scale, and the same impact 
factors would also show different spatial heterogeneity due to different 
research scales. Comparing impact factor coefficient ranges between 
prefectural and county scales reveals that the county scale exhibits 
greater variability, emphasizing its stronger spatial heterogeneity in 
contrast with the prefectural scale. Comparing the coefficient ranges 
of the same impact factors between the prefectural and county scales, 
we  found that the county scale showed larger variations than the 
prefectural scale. This is mainly because, in comparison to the 
prefectural scale, different counties have significant geographic, 
economic, and social differences, which, at the county scale, lead to a 
noticeable regional variability in the LUCE affecting factors.

4.3 Policy implications

The study’s findings are critical for the government in developing 
more accurate emission reduction plans and measures for the 
YREB. Based on this, the following three recommendations are made 
in this study. First, county-scale carbon emission management: 
because the spatial heterogeneity of factors affecting LUCE at the 
county scale is high, the government should prioritize county-scale 
carbon emission control. To address the carbon emission challenges 
effectively, tailored policies and measures must be developed, taking 
into account the unique characteristics and issues specific to various 
county-scale regions. This may involve the implementation of 
strategies like promoting low-carbon agriculture, enhancing ecological 
preservation efforts, and advancing renewable energy initiatives in 
high-carbon emission counties. Additionally, providing 
comprehensive support through carbon emission monitoring and 
technological assistance is essential. Second, urban planning and 
carbon emission reduction should be integrated. As economic growth 
drives LUCE, the government must integrate carbon emission 
reduction into urban planning. This requires adopting low-carbon 
urban planning, setting carbon reduction targets, and fostering 
economic development while coordinating carbon emissions 
effectively. This might involve encouraging the use of clean energy, 

encouraging sustainable mobility, enhancing urban land planning, 
and enhancing the monitoring and control of carbon emissions. By 
combining urban planning and carbon emission management, a 
win-win scenario of economic expansion and carbon emission 
reduction may be realized. Finally, interregional cooperation should 
be strengthened. LUCE at different scales in the YREB have differing 
spatial heterogeneity, implying that interregional differences must 
be  addressed and resolved. To jointly address carbon emission 
challenges, governments can promote interregional collaboration and 
cooperation as well as share experience and technology through cross-
regional cooperation mechanisms. Additionally, the government can 
enhance interregional policy coordination and formulate integrated 
carbon emission management policies. This will facilitate coordinated 
development and optimize carbon emission reduction across diverse 
YREB regions.

4.4 Limitations and future research

In this paper, we examined the spatiotemporal traits of LUCE in 
YREB provinces, prefectural cities, and counties. We also evaluated the 
LUCE-affecting elements at the county and prefectural levels, which led 
to important findings. Nevertheless, the following restrictions are 
present: (1) Because most energy data at the prefectural and county 
scales are unavailable, the energy carbon emission data estimated at the 
prefectural and county scales must be checked and examined further. 
(2) As impact factors, only economic development, industrial structure, 
government interference, population size, land use degree, and carbon 
emission intensity are examined. However, because LUCE is a 
complicated process with numerous impact components, other driving 
forces and internal processes need to be studied further.

5 Conclusion

This study marks the inaugural assessment of LUCE in the YREB 
at the provincial, prefectural, and county scales. It delves into the 
spatiotemporal evolution variations of LUCE at these administrative 
scales and employs the MGWR model to scrutinize impact factors at 
the prefectural and county scales. The following are the 
resulting conclusions:

LUCE grew in the YREB from 2000 to 2020, growing at a greater 
pace from 2000 to 2010 and then noticeably slowing down between 
2010 and 2020. The change in the administrative scale affects the 
spatiotemporal change in the LUCE. At different administrative scales 
within the YREB, there was a notable positive spatial correlation. The 
global Moran’s I displayed varying trends, with LUCE in the YREB 
showing a greater concentration at the provincial and prefectural scales 
while becoming more dispersed at the county scale. Based on local 
spatial autocorrelation analysis, the LUCE in the YREB did not exhibit 
significant spatial clustering at the provincial administrative scale. 
However, they did demonstrate spatial clustering at the prefectural and 
county scales. Specifically, the H-H and L-L types were the primary 
clustering patterns at the prefectural and county scales, with the county 
scale showing stronger clustering characteristics and spatial 
heterogeneity. Impact factors exhibited varying effects on spatial 
patterns at both the prefecture and county scales. Economic growth 
had the greatest influence on LUCE in both tiers. However, the impacts 
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of industrial structure, population size, government intervention, and 
land use degree diverged between these administrative scales.
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