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The increasing complexity of smart urban environments demands governance 
systems capable of autonomous decision-making, secure validation, and 
transparent traceability. This work presents the design and functional validation 
of a decentralized computational architecture for urban governance, focusing 
exclusively on its technical feasibility without involving real-world policy 
implementations. The proposed system integrates Internet of Things (IoT) 
devices, lightweight embedded Artificial Intelligence (AI) models, and 
blockchain-based smart contracts to enable automated, auditable, and 
fault-tolerant decision-making. The evaluation is carried out in a controlled 
environment equipped with Raspberry Pi boards, physical sensors, and 
actuators representing key urban infrastructure. Governance actions–such 
as adaptive lighting and traffic signal control–are inferred locally through 
embedded AI, validated through blockchain smart contracts, and executed 
only when validation logic is satisfied. Five operational scenarios of increasing 
complexity were conducted. The system consistently achieves response times 
between 230–360 ms, AI inference accuracy from 95% to 81%, and blockchain 
validation rates above 83%. It also recovers from hardware or connectivity 
failures in under 10 s. This study confirms the technical viability of distributed 
governance architectures powered by embedded intelligence and decentralized 
validation mechanisms. 

KEYWORDS 

decentralized urban governance, embedded artificial intelligence, blockchain-based 
validation, resilient IoT infrastructure, artificial intelligence 

1 Introduction 

The current dynamics of smart cities require governance mechanisms capable of 
processing large volumes of sensory information in real time, making autonomous 
decisions tailored to the context, and ensuring the traceability and validity of each action 
taken (Grossi and Welinder, 2024). Expanding connected devices in urban environments, 
such as environmental sensors, mobility systems, lighting control, and surveillance, 
has generated a dense and distributed cyber-physical infrastructure, whose effective 
management requires architectures beyond traditional centralized models. However, 
most currently implemented solutions rely on top-down approaches with single points 
of failure, hierarchical dependencies, and no formal mechanisms for autonomous and 
auditable decision validation. This technical limitation compromises smart urban systems’ 
scalability, operational reliability, and transparency. 
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In this scenario, the convergence of three key technologies, 
the Internet of Things (IoT), distributed Artificial Intelligence 
(AI), and Blockchain, offers a unique opportunity to redefine 
urban governance based on principles of autonomy, resilience, 
and decentralization (Mahbub, 2021). The coordinated integration 
of these technologies enables edge devices to collect data and 
make real-time decisions, validate their consistency using 
contractual logic in blockchain environments, and act on the 
environment without requiring direct human intervention. 
However, this integration poses multiple technical challenges: 
synchronization between distributed nodes, energy consumption 
under computational constraints, tolerance to sensory or 
connectivity faults, and secure and efficient validation of decisions 
inferred by learning algorithms. 

This study presents the design, implementation, and evaluation 
of a decentralized urban governance system based on the 
operational integration of physical IoT nodes, embedded artificial 
intelligence models, and smart contracts in a functional blockchain 
network (Montakhabi et al., 2023). Unlike previous proposals 
that explore these technologies in isolation or under virtual 
simulations, this study implements a physical experimental 
environment using Raspberry Pi devices connected to absolute 
sensors and actuators, integrated with a local inference module, 
and validated using smart contracts deployed on the Ethereum 
testnet. This implementation enables accurate operational testing 
of intelligent urban infrastructure behavior of an intelligent 
urban infrastructure under heterogeneous operating conditions 
and induced faults. The developed system is evaluated in 
five more complex scenarios, simulating an urban intersection 
with environmental variability, pedestrian flow, artificial weather 
conditions, and controlled failures. Each scenario generates a 
set of sensory events interpreted by adaptive inference models, 
whose output triggers autonomous decisions such as turning 
on lighting, controlling traffic lights, or activating energy-saving 
modes. These decisions are immediately validated by smart 
contracts that evaluate criteria of context, temporal consistency, 
and compliance with programmed policies. If the decision meets 
the contractual conditions, it is executed and recorded on the 
blockchain; otherwise, it is discarded or deferred until contextual 
validation is achieved. 

The results obtained confirm the viability of this approach. In 
the most controlled scenario (Scenario 1), the system maintains an 
average response time of 230 milliseconds, an AI model accuracy 
of 95%, and a blockchain validation rate of 97%. As operational 
complexity increases (up to Scenario 5), the system continues to 
operate with average response times of 360 ms, an accuracy of 
81%, and a validation rate of 83%, without compromising structural 
stability or functional consistency. In terms of resilience, the 
system recovers from critical failures, such as sensor loss, network 
interruption, or inference node failure, with recovery times between 
4.5 and 10 s, implementing automatic compensation strategies such 
as logical fallback, state persistence, distributed inference, and lazy 
validation. 

Furthermore, the system maintains controlled total power 
consumption, ranging between 61 and 86 mAh, even in the 
highest load and operational stress scenarios. This energy 
efficiency is achieved by implementing optimized inference models, 

asynchronous contract execution, and dynamic context-aware 
actuator control. 

Compared to proposals that implement only partial 
components of this architecture, such as those that integrate AI-
based inference in centralized environments without distributed 
auditing mechanisms, as described by (Miglani and Kumar, 
2021), or those that rely exclusively on digital simulations 
without verification in physical environments, as in the work 
of Liu et al. (2019). The system proposed here demonstrates 
complete operational integration. It has been validated in a 
controlled physical environment, incorporates edge inference 
and distributed consensus mechanisms using blockchain, and 
guarantees traceability and resilience to changing conditions. 
Governance is decentralized, computationally verifiable, and 
auditable, which represents an advance over previous fragmented 
solutions. 

The structure of the article is as follows. Section 2 presents a 
literature review, analyzing recent work addressing the integration 
of distributed technologies in urban contexts and identifying the 
operational and technical gaps that motivate this research. Section 
3 describes the system architecture, the materials used, the physical 
implementation environment, the embedded artificial intelligence 
model, the blockchain validation logic, the urban simulation 
scenario, and the experimental procedure. Section 4 presents 
the results obtained regarding performance, accuracy, energy 
consumption, distributed validation, and operational resilience 
metrics, including a comparative analysis with representative 
proposals from the literature. Section 5 discusses the findings, their 
technical implications, the system’s unique contributions, and the 
limitations affecting its scalability and applicability. Finally, Section 
6 presents the study’s conclusions and proposes specific lines of 
future work. 

2 Literature review 

A literature review was conducted based on studies published in 
high-relevance, open-access scientific databases, applying inclusion 
criteria such as: (i) the articulation between emerging technologies 
applied to urban environments, (ii) proposals for decentralized 
planning or governance models, and (iii) evidence of practical or 
simulated implementation. 

The selected studies have been reorganized into two thematic 
blocks: (1) governance architectures and their technological 
enablers, and (2) practical deployments and validated scenarios. 
This organization responds to the need to clarify the structure, 
reduce fragmentation, and highlight the practical relevance of the 
works considered. 

2.1 Governance architectures and enabling 
technologies 

The evolution of smart cities has prompted a reconfiguration 
of traditional governance paradigms. Lustenberger et al. 
(2025) propose a model based on Decentralized Autonomous 
Organizations (DAOs), combining local-global structures with 

Frontiers in Sustainable Cities 02 frontiersin.org 

https://doi.org/10.3389/frsc.2025.1623412
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Villegas-Ch et al. 10.3389/frsc.2025.1623412 

TABLE 1 Classified review of studies by category and contribution. 

Reference Category Technologies Main contribution 

Sharma et al. (2021) Practical deployment AI, IoT, blockchain Decentralized architecture on Raspberry Pi 

Zakaie Far et al. (2025) Architecture AI (Reinf.), blockchain, IoT Collaborative multi-agent learning system 

Lustenberger et al. (2025) Governance model Blockchain, DAO Polycentric urban governance with voting mechanisms 

Rasoulzadeh Aghdam et al. (2024) Participatory design AI, Blockchain Bibliometric study on civic participation 

Gracias et al. (2023) Conceptual framework Cross-platform Structured model of digital governance systems 

Cai and Hong (2024) Sustainability Blockchain, Neural nets Autonomous management of digital economic impacts 

Tan and Taeihagh (2020) Impact assessment Governance, ethics Framework focused on transparency, inclusion, and algorithmic 
legitimacy 

Mrabet and Sliti (2024) Energy management AI (contrastive nets), IoT Urban energy demand forecasting and optimization 

Lubis et al. (2025) Bibliometric gap AI, Blockchain Identifies lack of empirical studies combining AI and blockchain 
for governance 

Montori et al. (2023) Industrial IoT Toolchains, IoT Architecture for condition monitoring and integration of legacy 
systems 

Adreani et al. (2024) Smart city platform Digital Twins, ML, 3D IoT Real-time 3D urban modeling integrated in Snap4City platform 

smart contracts and holographic voting to redistribute power in 
public space management. This organizational and technological 
decentralization forms a conceptual baseline for distributed 
decision-making systems. 

In a complementary approach, Rasoulzadeh Aghdam et al. 
(2024) conduct a bibliometric review of participatory governance, 
revealing the growing use of blockchain for traceable decisions and 
AI for algorithmic assistance. Gracias et al. (2023) contribute a 
theoretical synthesis of digital governance based on interdependent 
systems connecting institutions, citizens, and data platforms. 

Zakaie Far et al. (2025) extend this notion by integrating 
reinforcement learning with blockchain to develop multi-agent 
systems that optimize urban resources autonomously. Cai and 
Hong (2024) highlight the relevance of explainable and auditable 
mechanisms using neural networks and blockchain for sustainable 
digital economies. 

Adding a macro-perspective, Lubis et al. (2025) identify 
through bibliometric analysis the limited empirical deployment of 
integrated AI and blockchain architectures in governance. This 
work reinforces the research gap our system seeks to fill, namely, 
the lack of physical implementations and the operationalization of 
such models. 

2.2 Practical deployments and urban 
experimentation 

Sharma et al. (2021) demonstrate a distributed architecture 
that integrates IoT, AI, and blockchain on Raspberry Pi devices, 
although under simulated conditions. Mrabet and Sliti (2024) focus 
on predictive energy demand modeling using contrastive neural 
networks, targeting optimization in smart infrastructures. 

Montori et al. (2023) present a condition monitoring toolchain 
based on abstraction layers and modular engineering pipelines, 
implemented and validated in the Arrowhead Tools project. 

The architecture simplifies management of heterogeneous IoT 
infrastructures, a critical factor for replicable and scalable systems. 

Adreani et al. (2024) apply integrated digital twins and 3D 
modeling within the Snap4City platform, incorporating thousands 
of real-time IoT sources in the city of Florence. Their validation 
in operational environments shows the potential for data-driven 
decision-making supported by visual and algorithmic interfaces. 

These studies provide essential precedents of technical 
feasibility and deployment strategies. While our system differs 
in its decentralized validation and embedded AI logic, it shares 
their commitment to operational realism, automation, and multi-
source integration. 

Table 1 summarizes the articles by thematic category, 
technologies, and primary contributions. 

Despite progress in integrating technologies for urban 
governance, gaps remain regarding (i) empirical validation, (ii) 
seamless interoperability, and (iii) ethical-operational traceability. 
This work addresses these gaps with a fully functional prototype 
based on AI, IoT, and blockchain, under realistic urban dynamics 
in a controlled experimental setting. The system incorporates 
explainability through lightweight AI models, auditability via smart 
contracts, and local autonomy aligned with governance principles. 

3 Materials and methods 

The proposed system is grounded in a multi-level conceptual 
framework derived from the literature reviewed, which combines 
organizational, technological, and evaluative components. At the 
managerial level, the system assumes a decentralized governance 
paradigm where nodes (devices, institutions, or citizens) interact 
through autonomous decision-making protocols. Technologically, 
it integrates distributed IoT devices, local AI-based control 
mechanisms, and blockchain validation layers to ensure traceability 
and resilience. Evaluatively, the system is designed to measure 
operational performance (latency, autonomy, energy efficiency) 
and governance-aligned properties (transparency, auditability, 
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FIGURE 1 

Multi-level conceptual framework integrating IoT sensing, 
embedded AI decision-making, and blockchain-based governance, 
connected to the urban environment. 

and fairness). This architecture is not merely theoretical but 
materialized through a laboratory-scale deployment that emulates 
realistic urban scenarios. Thus, the methodology bridges 
conceptual principles and empirical implementation, directly 
addressing the gaps identified in the literature. 

Figure 1 illustrates the multi-level conceptual framework 
that integrates the organizational, technological, and evaluative 
components of the proposed system. This figure synthesizes the 
layered architecture by showing how IoT data sources, edge 
AI inference, and blockchain-based validation interact within a 
decentralized governance paradigm, ultimately connected to the 
urban environment where decisions are executed. 

3.1 General description of the proposed 
system 

The architecture developed in this study implements a 
decentralized system for smart urban governance by integrating 
physical IoT nodes, embedded artificial intelligence modules, 
and a blockchain-based validation and auditing mechanism 
(Singh et al., 2020). The system was deployed and tested in 
a controlled experimental environment equipped with physical 
devices, enabling real-time execution of decision-making processes 
applicable to critical urban services such as traffic management, 
adaptive lighting, and energy distribution. 

The system starts by acquiring contextual data through 
a network of physical IoT nodes consisting of sensors and 
actuators. These components capture real-time information from 
the test environment, including temperature, light intensity, and 
vibration levels. Sensory data is transmitted using lightweight 
communication protocols, specifically MQTT, enabling reliable, 
low-latency communication to the edge processing node (Alasmari 
and Alhogail, 2024). This node consolidates incoming data 
streams and connects to the embedded intelligence layer. During 

processing, it executes a lightweight AI model pre-trained for 
adaptive decision-making based on the input data. The model, 
optimized for resource-constrained devices, was trained on a 
synthetic dataset reflecting diverse urban scenarios. The resulting 
decisions include activating actuators, such as switching lights or 
modifying traffic signals. 

After inference, the decision, contextual sensory data, and 
a timestamp are transmitted to a blockchain platform for 
decentralized validation. This step is executed using smart contracts 
deployed on the Ethereum testnet, which verify that the decision 
complies with pre-established governance rules (Ravikumar et al., 
2022). Validated actions are recorded immutably on the blockchain 
ledger, ensuring traceability and transparency of system behavior. 
This validation layer prevents unauthorized manipulation and 
reinforces system integrity. Validated actions also interact with the 
physical actuators, closing the operational loop between sensing, 
inference, validation, and action. Simultaneously, the blockchain 
record serves as a persistent audit trail to support performance 
assessment, anomaly tracking, and policy evaluation. 

Figure 2 illustrates the complete system architecture, detailing 
the data flow from sensory acquisition to blockchain validation 
and feedback. Color-coded modules represent each subsystem, 
while arrows indicate the logical sequence and data exchange 
between components. 

3.2 Environment and equipment 

The system was deployed and evaluated in a controlled 
experimental environment designed to reflect real-time urban 
operating conditions. This setup enabled the validation of a 
decentralized governance architecture composed of physical 
IoT nodes, embedded AI modules, and a blockchain-based 
auditing mechanism. The environment was configured 
according to criteria such as energy efficiency, interoperability 
of heterogeneous technologies, and support for real-time 
traceability. The implementation included both physical 
hardware and software components, selected based on a technical 
comparative analysis. 

At the sensing and actuation layer, Arduino UNO R3 
microcontrollers were used as terminal nodes to capture 
environmental data. The system included DHT22 sensors for 
temperature and humidity, LDRs for ambient light detection, and 
PIR modules for motion sensing. These signals served as contextual 
inputs for autonomous decision-making. Actuation was performed 
via solid-state relays, LED arrays, and SG90 microservos, enabling 
the system to replicate behaviors of urban infrastructure such 
as adaptive lighting and traffic control. Nodes were physically 
connected to edge processors and communicated asynchronously 
using the MQTT protocol. 

Raspberry Pi 4 Model B boards with 4 GB RAM served as 
edge nodes, executing optimized AI models using TensorFlow Lite. 
These devices consolidated sensor data, applied contextual logic, 
and generated actions based on the operational conditions. The 
units ran Raspbian OS with a customized stack including SSH, 
NTP synchronization, and relevant libraries such as Web3.py and 
paho-mqtt (Lee, 2023; Pawar et al., 2023). 
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FIGURE 2 

Functional architecture of the decentralized urban governance system with integration of IoT, AI, and blockchain. 

TABLE 2 Technical comparison of candidate technologies and justification for selection. 

A B C D E 

Microcontroller Raspberry Pi 4, Jetson nano, 
ESP32 

Computing power, AI 
compatibility, power use, 
integration 

Raspberry Pi 4 (4 
GB) 

Balanced processing power, low power use, 
TensorFlow Lite support, and direct blockchain 
connectivity 

Sensor gateway Arduino UNO, ESP32, 
STM32 

Accuracy, sensor 
compatibility, programming 

Arduino UNO R3 High compatibility with standard sensors, low cost, 
and easy integration via USB/I2C 

IoT protocol MQTT, CoAP, HTTP, 
AMQP 

Protocol weight, latency, 
overhead, embedded support 

MQTT (mosquitto) Lightweight, asynchronous, publish/subscribe ready, 
and widely embedded-compatible 

Blockchain platform Ethereum testnet, 
hyperledger fabric, tezos 

Deployment, smart contracts, 
tools, transparency 

Ethereum Sepolia Supports Web3.py, MetaMask, large community, 
realistic simulation environment 

Logic validation Solidity, go, Michelson Language maturity, tooling, 
platform support 

Solidity Native to ethereum, supported by Remix/truffle, 
extensive audit-friendly documentation 

AI framework TensorFlow lite, PyTorch 
mobile, edge impulse, 
ONNX runtime 

Compatibility, inference 
speed, conversion tools 

TensorFlow Lite Optimized for low-power real-time inference on 
Raspberry Pi, minimal accuracy loss 

Visual orchestrator Node-RED, ThingsBoard, 
Blynk 

GUI integration, device 
control, customization 

Node-RED Enables rapid prototyping, MQTT-ready, and 
supports custom flows for test automation 

A: Component; B: Evaluated alternatives; C: Comparative criteria; D: Selected Technology; E: Technical Justification. 

Communications among system components occurred over a 
private Wi-Fi network with static IP addressing and a centralized 
MQTT broker (Mosquitto) running on one Raspberry Pi. This 
ensured low latency and efficient message routing. 

The auditing and validation layer was implemented on the 
Ethereum Sepolia testnet. Smart contracts written in Solidity 
were used to validate AI-generated decisions against predefined 
governance logic (Tavakoli et al., 2024). Each decision, along 
with its sensor input and timestamp, was recorded immutably 
on the blockchain. Tools such as Remix IDE, MetaMask, and 
automated scripts in Web3.py (Kaur et al., 2024) supported 
contract deployment and validation. 

Node-RED was initially used for orchestration and debugging, 
enabling real-time visualization of data flow. Once validated, the 
system was fully migrated to native Python code.Table 2 presents 
a structured comparison of evaluated technologies, justifying the 
final selections implemented in the operational architecture. 

The selection of these components responds to a 
design strategy geared toward operational efficiency and 
scientific replicability. The resulting system combines 
algorithmic autonomy, decentralized traceability, and 
distributed sensing, validating its applicability in simulated 
urban contexts as a preliminary step toward deployment in 
real-world scenarios. 
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FIGURE 3 

Data acquisition, processing, and integration flow in the decentralized urban governance system. 

3.3 Data source and processing 

The system integrates data from both public datasets and 
physical sensors deployed in the experimental environment, 
enabling the validation of decision-making processes under 
conditions that combine real-time inputs with historical urban 
patterns. This hybrid data strategy enhances the generalization 
capacity of the embedded AI model and ensures contextual 
relevance across evaluation scenarios. 

The public datasets used for training and fine-tuning include: 

• UCI Air quality dataset, which provides real-world 
environmental readings such as temperature, humidity, 
and pollutant concentrations from electronic sensors in urban 
areas (Kumar et al., 2023). 

• City pulse dataset, which offers data on traffic, pollution, 
and citizen behavior across European smart cities (Daneshvar 
et al., 2023). 

• TAPAS cologne dataset, a high-resolution synthetic dataset 
simulating urban vehicular traffic, including density, speed, 
and intersection occupancy metrics (Zhu et al., 2018). 

These datasets supported the training of the lightweight 
AI model implemented in the system, providing representative 
patterns used to optimize its decision-making under diverse 
urban conditions. 

Complementarily, the experimental setup continuously 
generates real-time data through physical sensors integrated with 
Arduino UNO microcontrollers. These include temperature and 
humidity (DHT22), ambient light (LDR), and motion detection 

(PIR). Sensor readings are transmitted via MQTT to an edge 
processing node (Raspberry Pi 4), where the data is locally stored 
and preprocessed. 

The preprocessing pipeline includes: 

• Structural validation to verify record completeness and detect 
malformed entries. 

• Data cleaning using interquartile range (IQR) analysis and 
outlier removal based on historical distributions. 

• Min-max normalization adapted to the scale of each 
sensory variable. 

• Feature engineering to derive new variables such as rate of 
change or composite environmental indices. 

The processed data feeds a TensorFlow Lite model deployed 
on the edge node, which performs real-time inference to determine 
adaptive actions. Each inference result, along with its input context, 
is encoded into a structured transaction and submitted to the 
Ethereum testnet, where a smart contract verifies compliance 
with predefined governance rules. Upon approval, the decision is 
immutably recorded on the blockchain. 

Figure 3 illustrates the end-to-end data flow, from acquisition 
through inference and validation. It highlights the convergence of 
two primary data sources: open datasets used for model training 
and real-time physical sensor data used during system execution. 
The processing chain includes validation, normalization, inference, 
and decentralized auditing, ensuring operational transparency and 
reinforcing the system’s integrity. 

Subsequently, the validated data is normalized and enriched 
using scaling techniques and derived variable generation, which 
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allows for uniform scales across sensors and optimizes the input for 
the inference models. The next stage corresponds to local inference 
using AI, in which a lightweight TensorFlow Lite model determines 
the optimal action to execute. The inferred decision branches into 
two paths: one to the adaptive environment control module (e.g., 
activating actuators or changing the state of the simulated system) 
and another to decentralized validation through smart contracts 
deployed on the Ethereum testnet (Tsuyuguchi and Wang, 2024). 
The decision is converted into a structured transaction that 
is evaluated by the smart contract. If approved, the action is 
immutably recorded in the blockchain ledger, guaranteeing its 
traceability and reinforcing the principle of transparent auditing in 
the system architecture. 

3.4 Implemented artificial intelligence 
model 

The AI module implemented in the system is responsible 
for automating decisions within the decentralized governance 
architecture. This section details the neural network architecture 
deployed, the input variables used during inference, the training 
methodology, and its integration with the smart contract 
validation layer. 

3.4.1 Model type 
Given the computational limitations of embedded hardware 

and the need for low-latency inference, a lightweight Multilayer 
Perceptron (MLP) model was selected, trained, and optimized 
offline. The finalized model was exported to TensorFlow Lite 
format and deployed directly on the Raspberry Pi edge nodes. 

The model addresses a multi-class classification problem, 
predicting the optimal governance action based on contextual 
sensor inputs. The network consists of two fully connected hidden 
layers with ReLU activation functions, followed by an output layer 
using softmax activation. The inference function is defined as: 

ŷ = softmax 
 
W2 · φ(W1 · X + b1) + b2 

 
(1) 

Here, φ denotes the ReLU activation, X ∈ R
5 represents 

the input vector comprising sensory variables, and ˆ y ∈ R c 

is the resulting probability distribution over the action classes. 
Parameters Wi and bi correspond to the weights and biases learned 
during training. 

The deployed model operates directly on the edge nodes and 
produces decision outputs in real time, which are subsequently 
evaluated through the blockchain-based smart contract layer to 
ensure compliance with governance policies before execution. 

3.4.2 Input variables 
The input to the AI model consists of five contextual features 

extracted from real-time sensor readings and derived from system-
level processing during operation. These variables were selected to 
represent relevant aspects of the urban environment and support 
reliable decision-making under varying conditions. 

The input vector X includes the following components: 

• x1: Normalized ambient temperature [◦C] 
• x2: Relative illumination level [%] 
• x3: Presence detection (binary) [0,1] 
• x4: Time of day encoded as sin(θt) to preserve periodicity 
• x5: Urban occupancy index, derived from aggregated 

sensor signals 

The complete input vector is defined as: 

X = [x1, x2, x3, x4, x5] (2) 

Before inference, each feature was subjected to structural 
validation and Min-Max normalization based on expected 
operational ranges. Derived features, such as the circular time 
representation and occupancy index, were computed to enhance 
the model’s ability to capture both temporal and spatial dynamics. 
These input variables were consistently used across training, 
validation, and deployment phases of the system. 

3.4.3 Model training 
The AI model was trained offline using a hybrid dataset 

composed of synthetic records from open sources (UCI, City Pulse, 
TAPAS) and real-world data acquired from the physical testbed. A 
balanced and labeled dataset was constructed to reflect expected 
urban responses under diverse sensory conditions. 

Training was performed using the categorical cross-entropy 
loss function and the Adam optimizer, with a learning rate of 
0.001. To ensure model generalization, L2 regularization and 
cross-validation techniques were applied, mitigating the risk 
of overfitting. After training, the model was converted into 
TensorFlow Lite (.tflite) format using post-training quantization. 
This process significantly reduced model size while preserving 
accuracy, enabling deployment on ARM-based devices with limited 
computational resources. 

3.4.4 Model output and integration 
The output of the model is a probability vector ŷ, where each 

element ŷi represents the predicted likelihood for each governance 
action. The optimal decision is selected using the following rule: 

actionopt = arg max 
i 

ŷi (3) 

The output classes correspond to predefined policy actions in 
the urban control framework: 

• Class 0: turn off public lighting 
• Class 1: activate low-intensity lighting 
• Class 2: activate high-intensity lighting 
• Class 3: change the traffic light to red 
• Class 4: change the traffic light to green 
• Class 5: trigger energy-saving mode 
• Class 6: maintain current state 
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Each decision inferred by the AI model is packaged into 
a structured transaction that includes the selected action, the 
associated sensory context, and the digital signature of the 
originating node. This transaction is transmitted to the blockchain 
validation layer, where a smart contract verifies its consistency and 
compliance with predefined governance rules. Upon approval, the 
action is executed within the controlled experimental environment 
and immutably recorded on the blockchain, ensuring transparency 
and traceability. 

3.5 Integration with the blockchain 
platform 

The AI-driven decisions generated by the system are 
subjected to decentralized validation and auditing through 
direct integration with a blockchain platform. This mechanism 
enforces transparency, ensures the immutability of actions, 
and supports computational trust within the distributed urban 
governance architecture. The integration encompasses the design 
and deployment of smart contracts, the interaction logic between 
IoT nodes and the Ethereum testnet, and the technical structure of 
validated transactions. 

3.5.1 Smart contract design 
A smart contract was developed in Solidity and deployed on 

the Ethereum Sepolia testnet. Its role is to validate whether the 
decisions inferred by the AI model meet the conditions defined 
in the governance policies. The contract encodes logical rules that 
govern the legitimacy of each action, based on contextual input and 
operational constraints. 

Each transaction submitted to the smart contract includes 
the selected action, the corresponding sensory input vector X, a  
unique node identifier, and a timestamp. The contract evaluates this 
input using a logical function that enforces predefined governance 
conditions. The validation process is defined as follows: 

Validation(X, a, t) = 

 
true if a ∈ P ∧ X ∈ R ∧ t ∈  

false otherwise 
(4) 

Where: 

• a is the proposed action, 
• P is the set of permitted actions under the governance logic, 
• X ∈ R

n represents the sensory input vector, 
• R denotes the valid operational ranges for each input, 
• t is the action timestamp, 
•  defines the valid execution time window. 

The deployed contract maintains a historical registry of all 
validated decisions, prevents duplication, and includes filtering 
mechanisms to ensure critical operational constraints such as 
power usage thresholds are respected. For instance, it blocks 
attempts to activate high-intensity lighting during daytime hours. 
This logic was tested during the evaluation scenarios and 
proved effective in enforcing the defined governance policies in 
real-time conditions. 

3.5.2 Interaction between the IoT node and the 
blockchain 

Once the AI model produces an inference, each coordinator 
node constructs a structured transaction containing the selected 
action, the corresponding sensory input vector, and the node’s 
digital signature. This process is implemented using a Python 
interface built on the Web3.py library, which connects to 
an Ethereum RPC node and signs transactions using ECDSA 
cryptography (Puthiyidam et al., 2024). 

The transaction payload includes the target smart contract 
address, node identifier, sensor data encoded in JSON format, and 
a cryptographic signature to ensure authenticity. The transaction is 
signed locally with the node’s private key and sent via an RPC client 
configured with MetaMask in testnet mode. 

Algorithm 1 - pseudocode summarizes the interaction 
implemented between the IoT node and the blockchain network. 

The smart contract emits a confirmation event, which is 
captured by the node through a listener implemented in Web3.py. 
Based on the response, the node either proceeds with executing the 
validated action in the experimental system or records a denial if 
the action violates governance policies. 

3.5.3 Transaction types and block structure 
The system generates state-changing transactions that are 

submitted by IoT nodes and processed within the Ethereum testnet 
(Sepolia), where simulated gas consumption reflects real-world 
conditions. Each transaction is incorporated into a block on the 
chain, following the Ethereum standard format and containing the 
following fields: 

• Hash of the previous block 
• Block timestamp 
• List of executed transactions 
• Merkle root of the transactions 
• Validation nonce 
• Final storage state of the smart contract 

The inclusion of each governance decision as a blockchain 
transaction ensures its immutability and prevents any unauthorized 
modification. Once written to the ledger, the action becomes a 

1: Read current sensor data: X = [x1, x2, ..., xn] 

2: Execute AI model: action ← model_inference(X) 

3: Construct transaction TX: 

4: TX.payload ← {  

5: “action”: action, 

6: “timestamp”: current_time, 

7: “context”: X 

8: }
9: Sign TX with node’s private key: TX.signature 

← Sign(TX.payload, private_key) 

10: Connect to Ethereum network via Web3 RPC 

11: Send TX to smart contract 

12: Wait for confirmation of receipt and validation 

13: Log transaction state: “Approved” or “Rejected” 

Algorithm 1. Node decision submission to blockchain. 
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FIGURE 4 

Distributed validation flow and decision execution in the urban governance system. 

permanent, auditable record. This blockchain structure reinforces 
the integrity and traceability of every decision executed by 
the system. 

3.5.4 Distributed governance 
To evaluate decentralized decision-making within the 

governance model, a multi-node consensus mechanism was 
implemented. Multiple validator nodes, both physical and logical, 
participate in a distributed voting process that replaces unilateral 
decision enforcement with a majority-based rule. Each node 
independently evaluates the AI-inferred action using its local 
context or policy thresholds and casts a binary vote. 

The system adopts a simple majority rule, formalized as: 

Approval = 

 
1 if  

 n 
i=1 vi ≥ 

 n 
2 

 

0 otherwise 
(5) 

Here, vi ∈ {0, 1} denotes the vote from node i, and n is the 
total number of validators. The smart contract collects all votes 
via emitted events and registers the action only if the consensus 
threshold is reached. This logic reproduces realistic governance 
scenarios such as federated urban infrastructures or distributed 
municipal committees (Ghifari et al., 2021). 

Figure 4 illustrates the operational flow: the AI module 
infers a decision, which is structured, digitally signed, and 
submitted to the blockchain. Validator nodes assess the 

decision, cast their votes, and, upon majority approval, the 
decision is immutably recorded and executed within the 
experimental urban control environment. This distributed 
validation scheme, combined with local AI inference and 
physical sensing, transforms the system into a fully functional 
experimental architecture for autonomous urban governance, 
founded on decentralization, algorithmic integrity, and 
transparent auditing. 

3.6 Controlled urban simulation scenario 

The system was validated in a controlled physical testbed 
designed to emulate the dynamics of a smart urban intersection. 
This environment enabled the evaluation of the system’s 
performance under real-time operating conditions, including 
local AI inference, blockchain-based validation, and physical 
actuation. The constructed setup included scaled infrastructure 
with elements such as vehicle lanes, pedestrian crossings, street 
lighting, and traffic control systems, each connected to distributed 
sensors and actuators managed by coordinator nodes. 

The sensing infrastructure included DHT22 modules for 
temperature and humidity, LDR sensors for ambient light 
measurement, and PIR sensors to detect pedestrian movement. 
These components were physically integrated with Arduino UNO 
microcontrollers, which communicated via a local Wi-Fi network 
with Raspberry Pi edge nodes. Each edge node performed real-time 
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TABLE 3 Controlled urban scenarios and evaluated conditions. 

A B C D E F 

Scenario 1 Day Absent Absent Constant ambient lighting 6 

Scenario 2 Night Moderate (10 s) Moderate (10 s) Adaptive lighting activation 6 

Scenario 3 Day Intense (4-6 s) Intense (4-6 s) Expected increase in energy consumption 6 

Scenario 4 Night Nil Nil Simulated failure of main luminaire 6 

Scenario 5 Alternating Variable (random) Variable (random) Combined events: motion + light + humidity 6 

A: Scenario; B: Time Condition; C: Pedestrian Flow; D: Vehicle Flow; E: Simulated Events; F: Rounds.  

inference and submitted decisions for validation on the Ethereum 
blockchain, following the protocol described in previous sections. 

3.6.1 Test conditions and scenario design 
The test environment incorporated dynamic conditions to 

replicate realistic urban contexts and evaluate the system’s 
adaptability. The following physical variables were introduced 
and controlled: 

• Time of day simulation: external light sources were adjusted 
to mimic day-night cycles, directly influencing the LDR sensor 
readings. 

• Pedestrian flow: human movement patterns were induced 
near PIR sensors using controlled movement of objects and 
personnel at variable frequencies. 

• Microclimate variation: localized temperature and humidity 
levels were altered in real time using thermal elements and 
vaporizers, directly impacting DHT22 sensor values. 

• Disturbance events: predefined anomalies, such as lighting 
malfunctions and sensor signal saturation, were triggered to 
test the system’s fault tolerance and recovery mechanisms. 

These controlled variables reflect real-world operating 
scenarios and were combined to create complex, high-
variability environments. The system responded to these stimuli 
with distributed inference, blockchain-based validation, and 
autonomous actuation, demonstrating its capacity for adaptive, 
decentralized urban governance. 

To ensure the realism and applicability of the architecture, the 
simulation scenario was scaled to reflect a deployable structure 
consistent with the capacities of a typical university laboratory 
setting. The infrastructure included a total of 36 physical sensors, 
distributed across 12 terminal nodes, each composed of an Arduino 
UNO R3 connected to a DHT22, LDR, and PIR sensor. These 
nodes were coordinated by 6 Raspberry Pi 4 units functioning as 
edge processors, which performed real-time inference and local 
decision-making. Each processing unit managed two terminal 
nodes and controlled actuation components such as servomotors, 
solid-state relays, and LED arrays. 

3.6.2 Experimental rounds and evaluation 
scenarios 

The experimental validation was conducted across 30 physical 
test rounds, distributed over five defined scenarios. Each round 

lasted 20 minutes and included real-time data acquisition, AI-
based inference, blockchain transaction submission, and physical 
execution of actions through actuators. All actions and contextual 
parameters were automatically logged for subsequent analysis of 
performance, latency, decision consistency, and system stability. 
Table 3 summarizes the configuration of each scenario evaluated 
during the testing phase: 

Each scenario was explicitly designed to assess different 
operational dimensions of the system. Scenario 1 represents 
baseline behavior in static conditions. Scenarios 2 and 3 evaluate 
responsiveness and energy efficiency under increased activity. 
Scenarios 4 and 5 introduce anomalous and unpredictable events 
to measure the system’s robustness and adaptability in volatile 
environments. Throughout the experimental rounds, metrics such 
as inference execution time, end-to-end latency of blockchain 
validation (on the Sepolia testnet), decision acceptance/rejection 
rates, and behavioral stability under fluctuating loads were 
continuously monitored. 

3.7 Experimental procedure 

The experimental procedure establishes the operational 
sequence used to validate the behavior of the decentralized 
urban governance system. This procedure is designed to ensure 
reproducibility, traceability, and complete control of the conditions 
under which the tests are executed. This allows for evaluating 
the performance of the artificial intelligence model, the efficiency 
of the blockchain validation process, and the consistency of the 
decisions generated. 

The system is initialized, ensuring the integrity of each 
architecture node. This process includes turning on the Arduino 
microcontrollers, deploying the operating system on the Raspberry 
Pi, and activating the inference model in TensorFlow Lite format 
previously loaded on the edge nodes. A connection is established 
with the private local Wi-Fi network, specifically configured 
for the simulation, and the Web3 client is launched for direct 
communication with the RPC node on the Ethereum testnet 
(Ghifari et al., 2021). In parallel, the smart contract deployed on the 
blockchain is activated and configured to accept only transactions 
from nodes authenticated using ECDSA signatures. Once the 
system is initialized, the physical test environment is configured 
by activating controlled simulation mechanisms. Light levels are 
adjusted using programmable light sources that simulate day-night 
cycles; simulated pedestrian traffic is generated by moving past 
PIR sensors; and changes in climatic variables are induced by 
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localized heaters and steam generators that alter the temperature 
and humidity in the sensory environment. 

During each experimental round, active sensors capture 
environmental conditions in real time. Data acquired by the 
DHT22, LDR, and PIR sensors is transmitted via the MQTT 
protocol to the local processing nodes, where it is grouped and 
normalized using the parameters defined in the calibration phase. 
The generated input vector is encapsulated in a standard structure 
that includes the current state of the environment and is fed directly 
to the embedded inference model. 

The AI model performs inference on the input vector 
and selects the most appropriate action from the possible 
defined classes. This action, sensory context, and timestamp 
are packaged as a structured transaction, digitally signed, and 
transmitted via Web3.py to the deployed smart contract. The 
contract verifies the transaction’s validity according to the policies 
encoded in its internal logic and, if the decision meets the 
established criteria, records the transaction in a new block on the 
Ethereum network. 

Subsequently, the physical subsystem associated with the 
decision is activated, which may include activating lighting, 
changing the state of a simulated traffic light, or modifying the 
energy operating mode. Each executed action is bidirectionally 
associated with the validated and recorded decision, allowing full 
traceability from the sensory context to the final urban action. 
At the end of each round, the system automatically records 
metrics that evaluate its performance. These metrics include total 
response time (from sensory capture to blockchain validation), 
cumulative energy consumption per node (measured using INA219 
modules), the frequency of decisions rejected for violating contract 
policies, and contextual consistency, measured as the percentage of 
decisions that conform to the actual state of the environment versus 
a predefined reference. 

These metrics are stored in structured files for later analysis 
and allow for direct comparisons between scenarios, system 
stability assessment under dynamic conditions, and measurement 
of each component’s impact on the full cycle of distributed 
urban governance. 

3.8 Performance evaluation metrics 

The system is evaluated using a suite of quantitative metrics that 
assess its behavior in terms of responsiveness, decision reliability, 
energy efficiency, and resilience under adverse or uncertain 
conditions. These metrics are applied systematically during each 
simulation round, with data collected automatically via embedded 
scripts in each node. 

3.8.1 System responsiveness and energy 
efficiency 

The total system response time Tresp quantifies the elapsed 
interval between the sensory detection of an event and the 
execution of the corresponding action in the physical environment. 
It includes the inference delay, blockchain transaction validation 
time, and actuator activation latency. Synchronization is 

ensured using NTP across all nodes, and the response time is 
calculated as: 

Tresp = Tejec − Tevent (6) 

In parallel, the energy consumption of each hardware 
component is measured using INA219 sensors. Current values are 
sampled per module category–sensor, microcontroller, processing 
unit, actuator, and accumulated in milliamp-hours (mAh). The 
total consumption is defined as: 

Etotal = 
n 

i=1 

Ii · ti (7) 

These two indicators allow evaluating the latency-performance 
trade-off and the energetic footprint of blockchain-based urban 
automation under realistic operating loads. 

3.8.2 Decision quality and blockchain validation 
success 

Two complementary metrics are used to assess decision quality. 
The first is the validation success rate in blockchain (TVE), which 
captures the percentage of AI-inferred decisions that satisfy smart 
contract constraints and are correctly confirmed on-chain: 

TVE = 
Nval 

Ntot 
· 100 (8) 

The second is the decision efficiency of the AI model (ηIA), 
which reflects the proportion of model outputs that match an ideal 
reference policy manually established for each context: 

ηIA = 
Ncorrect 

Nevaluated 
(9) 

These metrics quantify both the technical correctness of the 
inferences and the alignment of decisions with desirable urban 
behavior, providing a robust measure of functional performance. 

3.8.3 Resilience and operational stability 
The system’s resilience is evaluated by injecting controlled 

disturbances, such as partial node disconnections, network 
congestion, and increased transaction latency. Two indicators 
are defined: 

• Functional recovery rate: the proportion of disrupted 
cycles that the system recovers from autonomously without 
requiring manual intervention. 

• Tolerated time deviation: the maximum temporal margin 
that can be added to Tresp while preserving functional 
coherence and system continuity. 

These indicators characterize the system’s fault tolerance and 
its ability to maintain autonomy and operational integrity in 
real-world, unpredictable environments typical of decentralized 
smart cities. 
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FIGURE 5 

Response time distribution by scenario under different operating conditions; Graph (A): response times with blockchain validation; Graph (B): 
response times without blockchain validation. 

TABLE 4 Average and maximum response times per scenario, with and without blockchain validation. 

Scenario Avg. time with 
blockchain (ms) 

Max. time with 
blockchain (ms) 

Avg. time without 
blockchain (ms) 

Max. time without 
blockchain (ms) 

Scenario 1 444.23 513.17 195.87 246.31 

Scenario 2 474.70 574.31 222.96 293.90 

Scenario 3 505.75 621.95 248.92 335.21 

Scenario 4 539.46 702.03 264.85 414.11 

Scenario 5 582.67 740.64 271.24 326.46 

4 Results 

4.1 System response time analysis 

Response time is a critical metric in urban decision-making 
systems as it determines the system’s ability to react promptly to 
contextual events. To evaluate this metric, 30 experimental rounds 
are conducted for each of the five scenarios defined in section 3.6, 
under two configurations: with and without blockchain validation. 
In each round, the time elapsed between the detection of the 
sensory event and the final execution of the corresponding action 
is measured, including all intermediate steps of the system. 

Figure 5 presents the response time distribution for the 
five scenarios, differentiating between operating conditions with 
and without blockchain validation. Graph A shows that when 
smart contract validation is integrated, response time increases 
significantly, particularly in scenarios 3, 4, and 5, which involve 
adverse weather conditions or intense sensory activity. This 
behavior reflects the time penalty associated with sending, signing, 
verifying, and recording transactions on the decentralized network 
and the variable load of the testnet used. 

In contrast, Graph B shows response times when the 
blockchain validation component is removed, allowing actions 
to be executed immediately after local inference. The curves 
show greater consistency between scenarios, with less dispersion 
and lower latency peaks. However, variability is still attributable 
to sensory complexity or the number of concurrent events. 
A direct comparison between the two graphs allows us to 

appreciate the structural impact of the distributed architecture on 
operational latency. 

Table 4 presents the average and maximum response time 
values for each scenario. In Scenario 1, characterized by low sensory 
activity and stable conditions, the average time with blockchain is 
444.23 ms, while without blockchain, it decreases to 195.87 ms. This 
difference progressively increases in more complex scenarios. For 
example, in Scenario 5, which simultaneously integrates weather 
changes, random pedestrian flow, and light alternation, the average 
with blockchain reaches 582.67 ms, with a maximum recorded 
time of 740.64 ms, compared to an average of 271.24 ms without 
distributed validation. 

This behavior establishes that the system maintains acceptable 
latency performance, even under conditions of high sensor load 
and distributed logic. However, it also demonstrates that the time 
cost of decentralized governance is nonlinear and must be carefully 
considered in time-sensitive urban applications, such as traffic 
management or emergency response. Maximum tolerable latency 
limits should be defined according to the application domain and 
could be optimized through parallel validation mechanisms or 
more lightweight contracts. 

4.2 Energy consumption assessment 

The system’s cumulative energy consumption represents a key 
criterion in designing decentralized urban solutions, especially 
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TABLE 5 Cumulative energy consumption by component and scenario 
(mAh). 

Scenario Sensors 
(mAh) 

Processing 
nodes (mAh) 

Actuators 
(mAh) 

Scenario 1 11.94 30.96 16.92 

Scenario 2 11.99 38.16 12.75 

Scenario 3 12.10 41.57 18.08 

Scenario 4 15.15 44.72 18.71 

Scenario 5 14.86 47.74 13.94 

when projected for implementation in distributed nodes with 
limited resources and restricted energy autonomy. The architecture 
includes low-power sensors, microcontrollers for data acquisition, 
embedded processing nodes (Raspberry Pi 4), and physical 
actuators that simulate traffic lights, lighting, and pedestrian 
control. Each component is individually evaluated using INA219 
measurement modules, allowing continuous capture of current and 
voltage throughout the execution of each scenario. 

Table 5 complements this analysis by providing the specific 
values by component and scenario. In Scenario 1, which 
simulates stable daytime conditions with low interaction, 
the total consumption of the processing nodes is 30.96 
mAh. However, in Scenario 5, characterized by dynamic 
conditions and simultaneous sensory events, this value 
increases to 47.74 mAh, representing a 54.2% increase. This 
quantitative difference reflects the computational burden 
imposed by the need to make more frequent decisions, 
evaluate them, and validate them using smart contracts under 
distributed logic. 

In the case of actuators, consumption variability is also 
significant and is directly related to the number of actions 
executed per scenario. For example, in Scenario 3, which simulates 
intense pedestrian flow and abrupt changes in weather conditions, 
the highest actuator consumption is recorded (18.08 mAh), 
attributable to the recurring activation of signaling and flow control 
mechanisms. In contrast, Scenario 2, with nighttime conditions and 
moderate flow, shows lower consumption (12.75 mAh), consistent 
with a lower frequency of state changes in the environment. The 
results identify the processing nodes as the dominant component 
in the system’s energy profile. While these nodes are essential 
for ensuring real-time decisions and performing local validations 
without relying on external infrastructure, their energy costs 
suggest optimizing strategies. These include model compression, 
using lighter inference architectures such as MobileNet or TinyML, 
implementing lazy inference schemes, and reducing the blockchain 
validation rate for non-critical events. 

Furthermore, this energy behavior raises key questions 
about the system’s scalability in real-world environments, where 
hundreds or thousands of nodes must operate continuously. 
Decentralized energy management, adaptive contract design, 
and event prioritization based on their urban impact could 
constitute future improvements that enhance the proposed system’s 
operational sustainability. 

4.3 Successful validation rate in blockchain 

The blockchain validation rate represents a critical metric 
for evaluating the trustworthiness of the proposed distributed 
governance system. This metric quantifies the percentage of 
decisions generated by the artificial intelligence module that are 
correctly accepted, signed, and recorded on the Ethereum testnet 
network using smart contracts. The validation process includes 
transaction generation, digital signature, submission through a 
local Web3 client, and evaluation of its conditions within the 
deployed contract. 

During each experimental iteration, the system executes 
between 10 and 15 validated decisions in real time, totaling more 
than 150 transactions per scenario. Internal testnet event logs 
are used to calculate the proportion of successful transactions 
compared to the total submitted, allowing for the identification of 
failure or rejection patterns. 

Figure 6 shows, in Graph A, the distribution of successful 
validation rates across the five simulated scenarios, using a violin 
plot to reflect the dispersion and density of the data obtained 
per round. Under stable conditions (Scenario 1), the validation 
rate remains high and stable, with average values close to 98%. 
However, as the complexity of the environment increases, Scenarios 
4 and 5, where multiple parallel events and climate variability are 
introduced–a progressive reduction in the success rate is observed, 
reaching averages close to 85% with high dispersion. This decline 
can be attributed to the increased frequency of operational errors 
and the accumulated latency in the validation network. 

Graph B complements this analysis with a swarm plot that 
categorizes validation errors according to their cause: signature 
errors, timeouts, violations of the contract’s internal logic, and 
decisions that do not meet the conditions established in the smart 
contract. This representation visualizes how each type of error 
is distributed across scenarios. In less demanding scenarios, the 
predominant errors are invalid or poorly formatted signatures, 
possibly due to minor asynchronies or node connection losses. 
In contrast, in high-sensory-load scenarios (such as Scenario 
5), timeout errors become the dominant cause, followed by 
logic violations, where the generated decisions do not meet the 
thresholds defined in the deployed smart contract. 

Table 6 provides a quantitative breakdown of these causes. 
In Scenario 1, signature errors account for 34.8% of failures, 
while errors due to contract conditions barely reach 17.4%. This 
proportion is partially reversed in Scenario 5, where timeout errors 
exceed 33.3% of the total, and contract-related errors remain a 
recurring cause due to decisions made under conditions unforeseen 
by the contract logic. This behavior suggests contractual logic must 
adapt to dynamic contexts through automatic updates or more 
flexible governance schemes. 

4.4 AI model accuracy in decision making 

The accuracy assessment of the implemented AI model focuses 
on determining its ability to infer correct decisions based on the 
sensory conditions present in each scenario. The system operates 
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FIGURE 6 

Validation process performance and error distribution by scenario; Graph (A): distribution of the blockchain validation rate by scenario; Graph (B): 
classification of validation errors by cause. 

TABLE 6 Percentage distribution of validation errors by scenario and type 
of cause. 

Scenario Signature 
error (%) 

Timeout 
(%) 

Logic 
violation 

(%) 

Contract 
condition 

(%) 

Scenario 1 34.8 26.1 21.7 17.4 

Scenario 2 30.0 25.0 30.0 15.0 

Scenario 3 27.6 24.1 31.0 17.2 

Scenario 4 25.0 29.2 27.1 18.7 

Scenario 5 22.2 33.3 25.9 18.6 

using a multi-category classifier, pre-trained with simulated data 
and tuned with contextual feedback to select one of several possible 
actions: turning the lights on or off, changing the traffic light, 
enabling pedestrian access, and activating energy-saving mode. 

For this analysis, a sequence of ideal decisions defined by 
experts is considered a reference, representing the optimal response 
based on the environmental stimuli present. Each simulation round 
produces between 10 and 15 decisions, totaling more than 400 
decisions evaluated for the entire system. Comparing inferred and 
ideal choices allows for calculating overall accuracy metrics and 
evaluating error trends by class. 

Figure 7 presents two complementary visualizations. Graph A 
shows the evolution of the AI model’s accuracy in the five scenarios, 
represented as a smoothed curve with variability bands. In Scenario 
1, characterized by stable conditions and low sensory load, the 
model achieves an average accuracy of 95% with minimal deviation. 
However, as the complexity of the environment increases, for 
example, in Scenarios 4 and 5, which include multiple event sources 
and environmental variability, the model’s accuracy progressively 
decreases, reaching an average of 81% with a dispersion more 
significant than 3.5%. This trend suggests a direct sensitivity of 
the model to the simultaneous occurrence of conflicting signals, 
such as the presence of pedestrians in bright light or atypical 
weather conditions. 

Graph B represents a radar chart comparing accuracy by 
decision type, contrasting the distribution of ideal decisions 

versus those inferred by the model. This chart lets us identify 
which decision categories show the most significant divergence 
under real-world conditions. It is evident that decisions such as 
“Light On” and “Energy Save” maintain high consistency between 
inference and expectations, with deviations of less than 3%. In 
contrast, decisions such as “Change Signal” and “Pedestrian Pass” 
present a more significant gap, with differences of up to 7%. 
This indicates that these classes present more significant semantic 
ambiguity or greater dependence on the environmental context, 
affecting the inference quality. 

Table 7 presents the consolidated confusion matrix for all 
scenarios. The most significant number of errors is concentrated 
in transitions between functionally similar classes, such as “Change 
Signal” and “Pedestrian Pass,” which can be attributed to decisions 
contextualized in irregular pedestrian flows or shared crossing 
areas. The dominant diagonal indicates correct classification in 
most decisions, which validates the model as a basis for the 
proposed system. However, it also points out the need for fine-
tuning in differentiating specific sensory patterns. 

4.5 System resilience assessment 

System resilience is assessed based on its ability to maintain 
essential operations and recover functionality following partial or 
total failures of some key components. To achieve this, five types of 
control failures are induced: sensor disconnection, network outage, 
inference node freeze, blockchain validation delay, and localized 
power fluctuation. Each type of failure is applied during multiple 
experimental rounds, replicating critical operating conditions that 
may occur in real-world distributed urban environments. 

Figure 8 presents two complementary visualizations of system 
behavior. Graph A illustrates the functional recovery time by 
failure type. The system rapidly responds to minor failures, such 
as temporary sensor disconnection or minor network disruptions, 
with average recovery times of 4.5 and 7.2 s, respectively. However, 
more structural failures, such as the failure of the primary 
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FIGURE 7 

Assessment of the accuracy of the artificial intelligence model in simulated urban environments; Graph (A): evolution of AI model accuracy by 
scenario; Graph (B): comparison between ideal and inferred decisions by action type. 

TABLE 7 Consolidated confusion matrix for AI model decisions. 

A B C D E F 

Light on 42 3 1 0 1 

Light off 2 40 3 1 2 

Change signal 1 2 39 3 3 

Pedestrian pass 0 1 4 37 3 

Energy save 1 2 2 3 39 

A: Ideal Decision \ Inferred Decision; B: Light  On.  C: Light  Off.  D: Change Signal. E: 
Pedestrian Pass. F: Energy Save.  

processing node, require context transfer and reactivation of 
adaptive logic from a secondary node, which increases recovery 
time to an average of 9.1 s. This behavior demonstrates that 
distributed architecture, while fault-tolerant, presents a time 
penalty directly proportional to the criticality of the affected node. 

Graph B shows the variability in model accuracy during the 
recovery period. The boxplot data shows that decision drift is 
lower during sensor or blockchain failures, where compensation 
mechanisms estimate missing values or apply lazy validation. 
In these cases, accuracy remains around 80% with controlled 
dispersion. However, when a failure occurs in the inference node, 
accuracy drops to values below 75% during the first few seconds 
of the recovery process, with increased dispersion indicating a 
temporary loss of coherence in decision-making. This behavior is 
consistent with the need for internal state reconstruction and data 
synchronization during inter-node transfer. 

Table 8 details the compensatory actions automatically 
activated by the system for each type of failure. When sensors 
are disconnected, an estimation module based on moving 
averages and fuzzy logic is activated, allowing degraded functional 
decisions to be maintained without interruption. In situations 
of connectivity loss, the system implements a temporary local 
validation mechanism and a scheduled retry using adaptive timers. 

The failure of an inference node triggers a logical fallback protocol, 
where a secondary node assumes the functions of the primary node 
using a lightweight version of the model with local state persistence 
and an interrupted decision buffer. In blockchain delays, the 
validation logic is temporarily relaxed, allowing execution under 
optimistic logic, and validation is rescheduled with lazy signing. 
Furthermore, the system restarts safely using previously persisted 
information in scenarios with power fluctuations, ensuring 
continuity without loss of operational context. 

The results show that the system maintains structural and 
operational stability under controlled adverse conditions, thanks 
to a distributed architecture, internal backup mechanisms, and 
functional persistence. Combining techniques such as secondary 
inference, optimistic logic, lazy validation, and context persistence 
allows the system to recover in acceptable timescales without 
compromising the intelligent governance of the simulated urban 
infrastructure. The recovery metrics obtained and the accuracy 
during stabilization confirm resilient behavior aligned with the 
autonomy, adaptability, and operational continuity principles 
required in decentralized urban scenarios. 

4.6 Integrated multimetric analysis by 
scenario 

The proposed system’s integrated evaluation allows us to 
identify how its main performance dimensions interact under 
progressively more demanding simulated operating conditions. 
Five key metrics are considered: mean response time, AI model 
accuracy, cumulative energy consumption, successful blockchain 
validation rate, and functional failure recovery time. This 
consolidation allows us to establish structural behavior patterns, 
analyze technical trade-offs, and assess the system’s robustness from 
a systemic perspective. 

Table 9 summarizes the quantitative values obtained in each of 
the five scenarios. The mean response time increases from 230 ms 

Frontiers in Sustainable Cities 15 frontiersin.org 

https://doi.org/10.3389/frsc.2025.1623412
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Villegas-Ch et al. 10.3389/frsc.2025.1623412 

FIGURE 8 

Assessment of the system’s operational resilience to controlled failures; Graph (A): functional recovery time after different types of failure; Graph (B): 
variability in the precision of decisions during the recovery process. 

TABLE 8 Compensatory actions of the system in the event of induced failures. 

Induced failure type Direct impact Compensation mechanism 
enabled 

System post-failure status 

Sensor failure Temporary loss of data input Estimation based on moving averages and local 
fuzzy logic 

Partial resume with degrade 

Network interruption Disruption in distributed validation Temporal local validation + adaptive timer retry Successful retry afterward 

Node crash Local inference node failure Decision transfer to neighboring node with logical 
fallback 

Recovery after 9 s 

Blockchain delay Delay in decision validation Execution under optimistic logic + lazy validation Retroactive acknowledgment logged 

Power fluctuation Partial restart of the control system Safe startup with state persistence and decision 
buffer 

Safe mode enabled briefly 

TABLE 9 Multimetric summary of the system by simulation scenario. 

Scenario Average response 
time (ms) 

AI model 
accuracy (%) 

Total energy 
consumption (mAh) 

Successful 
validation rate (%) 

Average 
recovery time (s) 

Scenario 1 230 95 61 97 4.5 

Scenario 2 280 91 72 93 7.2 

Scenario 3 310 88 77 89 9.1 

Scenario 4 335 85 80 86 8.5 

Scenario 5 360 81 86 83 10.0 

in Scenario 1 to 360 ms in Scenario 5. This increase is attributable 
to the more significant number of simultaneous sensory events, the 
complexity of the inferences required, and the volume of validation 
operations executed on the blockchain network. This increase in 
latency directly impacts the system’s ability to maintain consistent 
real-time decisions under an intensive load. 

The accuracy of the AI model progressively decreases, dropping 
from 95% in Scenario 1 to 81% in Scenario 5. This deterioration 
in the model’s inference capacity is associated with the increasing 
sensory ambiguity and operational overload faced by the processing 
nodes, which reduces their efficiency in discriminating complex 
patterns under noise, congestion, or simultaneous events. 

Total energy consumption also shows an upward trend, with 
a 41% increase between Scenario 1 (61 mAh) and Scenario 
5 (86 mAh). This increase is consistent with the increasing 
computational load, the more frequent activation of actuating 
components such as traffic lights and lighting systems, and the 
increased use of secondary nodes in functional recovery processes. 
A controlled decline is observed regarding the successful validation 
rate on the blockchain, ranging from 97% in Scenario 1 to 83% 
in Scenario 5. This reduction reflects the progressive saturation 
of the validation network, increased decisions generated under 
extreme conditions, and the appearance of errors due to timeouts or 
breaches of contractual conditions. However, the system maintains 
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FIGURE 9 

Integrated multimetric performance by scenario. 

an operational rate above 80% in all cases, demonstrating adequate 
robustness in its distributed governance logic. 

The last integrated metric is the mean time to functional 
recovery from induced failures. This metric increases nonlinearly 
from 4.5 s in Scenario 1 to 10.0 s in Scenario 5. The system’s 
ability to recover the whole operation is affected not only by the 
complexity of the failure but also by the density of parallel events 
that interfere with compensation mechanisms, such as heuristic 
estimation or the activation of redundant nodes. 

Figure 9 presents these metrics in an integrated form 
on a radar chart, where each axis represents a normalized 
metric. The graphical analysis reveals a progressive pattern 
of overall degradation as the scenarios approach complex 
urban operating conditions. The areas delimited by each 
scenario allow us to visualize how individual strengths (e.g., 
validation or recovery) are offset by increasing latency, 
energy consumption, and accuracy deficits. The radar 
shows that the system maintains functional equilibrium 
in the first three scenarios, while in scenarios 4 and 5, 

the tensions between efficiency and resilience become 
more pronounced. 

Multimetric analysis confirms that the system responds 
appropriately to dynamic conditions and can maintain stable 
performance under various forms of technical stress. The 
interaction between distributed components, adaptive energy 
management, and blockchain-based governance provides a robust 
functional framework for decentralized urban scenarios, even when 
faced with high-load events and system failures. 

4.7 Comparison with existing proposals 

Table 10 compares the proposal developed in this study with 
four representative works identified in the literature review. This 
comparison is based on five key axes: the level of technological 
integration between AI, IoT, and blockchain; the validation 
environment; the presence and type of resilience mechanisms; and 
the governance structure implemented. 
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TABLE 10 Technical comparison between the developed proposal and identified studies. 

Reference Evaluation approach Key technologies Technical description of the model 

Tan and Taeihagh (2020) Multi-criteria evaluation with an ethical 
focus 

AI, ethical indicators The conceptual framework integrates transparency, 
inclusion, and algorithmic fairness indicators. 

Ghahremani-Nahr et al. 
(2022) 

Supply chain simulation IoT, blockchain Conceptual framework for sustainable management 
based on IoT and blockchain without physical 
assessment. 

Cai and Hong (2024) Hybrid architecture evaluation AI, blockchain, IoT Functional analysis of AI-BC architecture in smart 
cities using NS3 simulation. 

This Work Physical-simulated validation in an 
urban environment 

Distributed AI, IoT, 
blockchain 

Operational architecture deployed in a controlled 
environment with traceability and comprehensive 
assessment. 

Regarding technological integration, most of the reviewed 
works address only partial components of the architecture 
required for fully distributed urban governance, the study 
by Ghahremani-Nahr et al. (2022), for example, proposes a 
conceptual framework that integrates IoT and blockchain in 
sustainable supply chain management but does not consider 
distributed inference architecture or active decision validation 
through smart contracts. Meanwhile, the work by Tan and 
Taeihagh (2020) addresses governance from a social and ethical 
perspective but without technological implementation. In contrast, 
the proposal developed here integrates the three components 
operationally: distributed physical sensors, artificial intelligence 
models embedded in the nodes, and computational validation 
through smart contracts deployed on a functioning blockchain 
network. This technical integration has been tested under 
physical and simulated conditions, allowing for its real-world 
quantitative evaluation. 

Regarding the validation environment, this proposal is the 
only one that combines real physical infrastructure (Raspberry 
Pi, environmental sensors, actuators) with executable blockchain 
validation (Ethereum testnet). At the same time, other works, such 
as that of Ghahremani-Nahr et al. (2022), are limited to conceptual 
or simulated environments. This hybrid environment, which 
combines physical, logical, and distributed environments, allows 
for evaluating real-world technical behaviors such as network 
latencies, energy variability, node synchronization, and induced 
failures, which cannot be analyzed in theoretical frameworks or 
simulations without operational infrastructure. 

Regarding resilience, none of the studies compared details 
of autonomous functional recovery mechanisms. Existing 
proposals assume ideal conditions or tolerance through structural 
redundancy without describing how the system responds to node 
loss, sensor failures, or network link degradation. In contrast, the 
system developed in this study implements an active resilience 
model, which includes logical fallback, heuristic estimation in the 
absence of data, state persistence, and lazy validation in smart 
contracts. This approach is tested under adverse conditions, 
allowing for measurement of recovery times, decision stability, and 
the functional continuity of the system. 

From a governance perspective, the reviewed works present 
significant limitations. Tan and Taeihagh (2020) identify the 
need for institutional frameworks that prioritize transparency, 
algorithmic fairness, and citizen participation but do not 

implement a technical architecture that materializes these 
principles. Similarly, Ghahremani-Nahr et al. (2022) introduce the 
notion of traceability and reliability in distributed environments 
but without programmable validation mechanisms or real-
time auditing. In contrast, the present proposal implements a 
functionally and computationally verifiable distributed governance, 
where each decision generated by the AI system must meet logical 
conditions embedded in smart contracts. These decisions are 
validated, recorded, and audited, allowing for traceability of 
simulated urban events such as lighting changes or traffic light 
adaptations. This level of control is not present in any of the 
compared proposals. 

5 Discussion 

The results demonstrate the technical and functional feasibility 
of implementing a decentralized urban governance system 
through the coordinated integration of physical IoT devices, 
distributed embedded artificial intelligence, and automatic 
validation via smart contracts on blockchain platforms. This 
approach, experimentally validated in a controlled environment 
with incrementally complex urban simulations, offers a functional 
advancement over existing proposals in the literature. For instance, 
Ghahremani-Nahr et al. (2022) propose conceptual frameworks 
involving IoT and blockchain but lack operational validation 
or mechanisms for autonomous inference. Similarly, Tan and 
Taeihagh (2020) emphasize ethical and transparent governance but 
do not advance toward a technically auditable implementation. 
Unlike these theoretical or partially realized models, the system 
developed herein integrates a physically validated, fully distributed 
architecture with embedded inference, blockchain-based decision 
validation, and operational resilience (Ambrose and Siddiki, 2024), 
constituting a replicable framework for real-world deployment. 

Comparatively, while other national-scale implementations 
such as City Brain in China (Xu et al., 2024) demonstrate 
anticipatory governance capabilities through centralized AI 
systems, they rely heavily on large-scale integration and corporate-
state coordination. In contrast, this work proposes a decentralized 
alternative grounded in edge intelligence and blockchain 
verification, enabling similar capabilities such as rapid response 
and transparency under a bottom-up, replicable approach. This 
highlights the potential of modular systems to complement large 
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urban AI platforms, thereby democratizing access to intelligent 
governance mechanisms at smaller scales. 

From a methodological standpoint, the hybrid environment 
used, combining physical sensors, edge inference nodes, and a 
blockchain testnet, enables the simultaneous evaluation of latency, 
energy consumption, and system fault tolerance (Tavakoli et al., 
2024; Razzaq, 2024). The experimental design supports real-time 
data acquisition, inference, smart contract execution, and physical 
actuation under controlled yet diverse conditions. This setup has 
made it possible to compute critical metrics such as response 
time, transaction validation success rate, and resilience to node 
or network failures. The inclusion of radar charts, boxplots, and 
confusion matrices enhances the interpretability of these metrics 
and highlights the interplay between inference efficiency, contract 
execution success, and system overhead. 

Across all evaluated scenarios, the system exhibits robust and 
consistent performance. The AI model achieves a decision accuracy 
exceeding 80% even under adverse or dynamic conditions, while 
blockchain validation rates remain above 83%, confirming the 
feasibility of executing computational governance in distributed 
environments. The system also demonstrates acceptable recovery 
behavior, maintaining operational continuity after induced faults 
such as sensor failure or communication delay, with recovery times 
ranging from 4.5 to 10 s. These findings validate the proposed 
architecture’s resilience and its suitability for non-deterministic 
urban environments. 

One of the most distinctive contributions of this system 
is its ability to enforce verifiable and auditable governance 
via blockchain. Each decision inferred by the AI component 
is submitted as a digitally signed transaction, validated by 
a smart contract, and immutably recorded on-chain. This 
ensures operational transparency and creates a tamper-
proof audit trail–critical in urban settings where automated 
decisions can directly influence public safety, mobility, or 
energy distribution. Moreover, the contract logic serves as 
a safeguard by blocking invalid or inconsistent decisions 
and triggering alerts for post-event analysis. This automated 
validation mechanism, absent in most current proposals, aligns 
with contemporary demands for explainable and trustworthy 
AI systems. 

Despite these strengths, several limitations must be 
acknowledged. The experimental setup, while physically 
implemented, remains confined to a controlled environment 
with a limited number of nodes. Consequently, absolute 
latency or energy values may not scale linearly in larger urban 
deployments. In addition, although the system uses a functional 
Ethereum testnet, it does not simulate mainnet congestion or 
gas fee dynamics, which could impact its feasibility in cost-
sensitive real-world applications. Another constraint lies in 
the simplified AI model used; processing limitations on edge 
nodes (e.g., Raspberry Pi) required a compact architecture, 
potentially reducing generalization capacity under highly 
variable conditions. The system also assumes a minimum 
level of network stability and clock synchronization, which, 
although partially mitigated, may not always be guaranteed in 
urban scenarios. These constraints underline the importance 
of careful calibration and incremental deployment in future 
real-world implementations. 

From the perspective of urban management, the system 
facilitates distributed decision-making by decentralizing control 
logic and guaranteeing traceability of autonomous actions. 
The architecture enables local, adaptive responses, such as 
dynamic signaling or infrastructure actuation, without relying on 
centralized infrastructure or manual intervention. This design 
offers tangible benefits for municipalities aiming to enhance 
transparency, reduce latency, and mitigate the risk of single 
points of failure in governance systems. It is especially applicable 
to small and medium-sized cities or digitally evolving urban 
districts, where lightweight, modular, and fault-tolerant systems 
can deliver scalable impact with minimal deployment cost. 
However, successful adoption may require minimal sensing 
infrastructure and institutional readiness to adopt decentralized 
governance paradigms. 

Beyond the experimental testbed and small- to medium-
scale applicability, the question of scalability requires explicit 
consideration. The proposed framework could be extended to 
large metropolitan areas by incrementally increasing the number 
of edge nodes and implementing hierarchical coordination 
among clusters of IoT devices. However, such scaling introduces 
non-linear complexities, including transaction throughput 
limitations in blockchain networks, increased latency in consensus 
protocols, and heterogeneous infrastructure integration. From 
a socio-economic perspective, adoption pathways will also 
differ. Highly digitized urban contexts may leverage existing 
broadband connectivity and institutional readiness, whereas 
cities in developing regions may face barriers related to cost, 
interoperability, and policy frameworks. These contrasts highlight 
that while the architecture is technically replicable, its deployment 
at larger scales will depend on both infrastructural maturity and 
governance capacity, making scalability multidimensional rather 
than a purely technical challenge. 

These four analytical axes can also be mapped directly onto 
the multi-level conceptual framework introduced in Materials 
and Methods. The technological integration of IoT, edge AI, and 
blockchain corresponds to the technical layer of the framework, 
ensuring interoperability and operational cohesion. The validation 
environment, based on datasets and controlled testbeds, aligns 
with the evaluative layer, where performance and governance 
properties are systematically assessed. Resilience, expressed 
through redundancy, recovery times, and fault tolerance, acts 
as a cross-cutting property spanning both the technical and 
evaluative levels. Finally, traceable governance, implemented 
through blockchain validation and immutable audit trails, 
corresponds to the managerial layer of the framework, where 
autonomous decisions are verified and institutional accountability 
is reinforced. Establishing this alignment clarifies how the proposed 
architecture operationalizes conceptual principles across distinct 
but interconnected levels of analysis. 

6 Conclusions and future work 

This work presents a fully functional and experimentally 
validated architecture for decentralized urban governance that 
integrates IoT sensing, embedded artificial intelligence, and 
blockchain-based smart contracts. The system demonstrates 

Frontiers in Sustainable Cities 19 frontiersin.org 

https://doi.org/10.3389/frsc.2025.1623412
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Villegas-Ch et al. 10.3389/frsc.2025.1623412 

the feasibility of executing autonomous decisions in real time, 
under dynamic conditions, and with verifiable validation 
mechanisms, all within a resource-constrained and distributed 
physical environment. 

Unlike prior conceptual or simulation-only approaches, 
this implementation achieves tangible interoperability between 
contextual inference and computational governance. Each decision 
generated by the AI layer is evaluated and validated on-chain, 
ensuring traceability, consistency, and auditability, key features for 
future urban infrastructures. 

The results confirm that the proposed architecture maintains 
acceptable levels of validation even under complex simulated 
urban conditions. However, critical issues regarding smart contract 
robustness and network fault tolerance have been identified and 
must be addressed to ensure the system’s scalability and resilience. 

The architecture’s modular and energy-efficient design enables 
local processing without relying on central servers, making 
it suitable for small and medium-scale urban deployments. 
Furthermore, the system exhibits functional resilience to faults 
and latency, maintaining continuity of operation even in 
adverse conditions. 

This work also advances the current body of research by 
building on prior proposals and extending their scope. Whereas 
earlier studies primarily offered conceptual models or simulation-
only evaluations, our implementation provides experimental 
validation under realistic operating conditions. Moreover, it brings 
together IoT sensing, embedded AI inference, and blockchain-
based governance in a unified framework, thereby complementing 
earlier fragmented approaches where these technologies had been 
examined separately. Finally, the system translates governance 
principles, transparency, auditability, and resilience into technically 
verifiable mechanisms. Taking together, these contributions 
support the transition from theoretical models to deployable 
systems and establish a replicable foundation for decentralized 
urban governance. 

As a replicable framework, this work lays the groundwork for 
auditable, adaptive, and autonomous city management systems. 
Future efforts will extend its deployment to real urban contexts, 
incorporate mobile and mesh-based topologies, and enable runtime 
contract updates and policy learning, enhancing adaptability and 
long-term scalability. 
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