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Evaluating urban traffic dynamics: 
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Urban mobility is a significantly increasing challenge in fast-growing cities, where 
efficient traffic management is crucial to ensure smooth movement and enhance 
the overall quality of life. The research consists of an in-depth analysis of urban 
mobility for the city under study using a data-driven approach to address day-to-
day traffic challenges. It includes a fusion of traffic flow analysis and vehicle count 
data with weekend and weekday indicators to develop predictive models. The study 
evaluates the city’s traffic data by examining peak and off-peak periods. We focus 
on simple contextual variables – specifically, temporal indicators – our models 
provide an efficient framework for traffic forecasting in complex environments. 
The findings underscore that meaningful traffic forecasts can be used to provide 
practical and scalable solutions for urban planners and administrators to optimize 
traffic management in rapidly expanding cities.
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1 Introduction

Reducing travel delays and improving overall traffic efficiency by utilizing the current 
transportation network to its fullest potential requires highly accurate traffic flow predictions 
(National Academies Press, 2000; Liu et al., 2021). By enabling travelers to make well-informed 
route decisions, real-time traffic data can significantly reduce traffic on major thoroughfares 
(de Moraes Ramos et  al., 2020). Advanced predictive models are essential to intelligent 
transportation systems because traffic congestion has become a significant problem due to 
increased urbanization (Pecar and Papa, 2017; Yin et al., 2022).

Traffic forecasting is a challenging task, nevertheless, because of the ever-changing 
temporal and spatial patterns. The majority of traffic prediction models make use of past data 
to forecast future vehicle flow within particular timeframes and areas. Route optimization and 
vehicle dispatching are two effective traffic management techniques that are supported by these 
predictive insights. Furthermore, integrating real-time traffic information into these systems 
decreases trip time variability and enhances the dependability of travel decisions (Wijayaratna 
et al., 2017). Numerous studies have developed real-time traffic prediction systems to aid daily 
commutation. However, this research diverges from that focus, instead exploring how traffic 
prediction can support informed urban infrastructure development in response to long-term 
city growth while ensuring safe mobility.

Many cities rely on devices such as cameras and sensors to collect traffic data, but accessing 
this information is often constrained by technical and logistical barriers, limiting its availability in 
real-time. The efficiency of traffic modeling tools that rely on real-time data to produce precise 
predictions is greatly impacted by these issues. Since most models require immediate updates with 
the latest traffic conditions to provide reliable forecasts, it becomes essential to explore alternative 
methods when real-time data collection is not feasible. Such alternatives are exceptionally vital for 
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cities without the necessary infrastructure for automated data collection, 
ensuring effective traffic management even in resource-limited settings.

The difficulty of traffic flow prediction in urban settings, where 
real-time data collection is impractical, is the main emphasis of this 
study. Conventional prediction methods usually use “lag features,” 
which examine past traffic data to find trends and forecast future flows. 
However, in situations where real-time data is not available, these 
models have significant limitations. The aim of this research is to create 
models that can accurately forecast traffic flow without relying on lag 
characteristics or actual time data. The suggested strategy aims to 
develop valuable and practical traffic prediction models for real-world 
applications by utilizing sophisticated feature engineering approaches.

Contribution: This study presents a real-world traffic dataset 
collected from Vellore, India, between 2016 and 2023. Using this 
dataset, we construct models that combine historical traffic patterns 
with contextual factors such as weekday and weekend variations to 
generate accurate and robust traffic forecasts, despite certain data 
collection constraints. A detailed evaluation of model accuracy and 
hyperparameter sensitivity is performed, offering insights into model 
performance under different urban traffic conditions and identifying 
the scenarios where prediction reliability varies.

This document is structured as follows: In Section 2, the pertinent 
literature is reviewed. The features of a recently gathered traffic flow 
dataset are presented and discussed in Section 3. The issue description, 
experimental strategy for model comparison, and machine learning 
methods employed in the study are all described in Section 4. The 
outcomes of the data analysis and model evaluation are presented in 
Section 5, after which the results are discussed. A summary and 
recommendations for future research directions are provided in 
Section 7, while Section 6 discusses the study’s limitations.

2 Related works

Researchers have examined the traffic modeling problems in great 
detail and have come up with a number of solutions to deal with this 
complex challenge at various capacities. Intelligent transportation 
systems depend heavily on traffic modeling, which has attracted a lot 
of scientific interest. Accurately measuring characteristics such as flow 
of traffic, density, and speed, and using their correlations to predict 
future traffic trends are the main goals of traffic models. Improving 
traffic operations, ensuring that road facility planning and design are 
supported, and increasing the traffic network’s efficiency are the main 
goals. A comprehensive review highlighted the critical impact of lane-
changing behavior on traffic flow and safety, discussing modeling 
approaches, driver characteristics, and emerging technologies like 
ADAS and V2V communication (Samal et al., 2024).

A study conducted in an Indian smart city used videographic 
analysis and multiple linear regression to evaluate travel time reliability 

and identify key factors influencing traffic congestion (Samal et al., 
2023). The complex interactions between temporal and spatial 
elements that influence traffic forecasting are highlighted in this work, 
which examines traffic flow analysis using historical data (Guo et al., 
2018; Bogaerts et al., 2020). Since the road network is interrelated, 
spatial considerations take into account how changes in traffic 
conditions on one route may affect nearby roads, while temporal 
elements record persistent patterns like peak hours and seasonal 
variations. Both temporal and spatial dependencies, as well as other 
variables, must be  included in order to represent traffic behavior 
properly and enhance the effectiveness of prediction models. 
Additionally, research has indicated that multi-target models can 
enhance the model’s capacity to generalize across many contexts by 
facilitating information sharing among related targets (Jin and Sun, 
2008; Huang et al., 2014).

Historically, researchers have developed several machine-learning 
techniques to effectively model and predict traffic flow. Numerous 
models, including MA, AR, and ARIMA, have been widely used in 
statistics, which mostly deal with univariate time series data (Jin and 
Sun, 2008). When there is little data available, these models work 
particularly well. Over time, many of these models were enhanced to 
incorporate multivariate data and additional factors, leading to the 
development of models like VARIMA (Vu, 2007), ARMAX, and 
ARIMAX (Peter and Silvia, 2012), which have since been successfully 
applied to traffic modeling (Williams, 2001).

Traditional statistical techniques frequently fail to capture intricate 
time-dependent interactions as data volumes continue to increase 
(Makridakis et  al., 2018; Spiliotis et  al., 2022). As a result, 
contemporary methods have shifted toward increasingly complex 
machine learning (ML) models. However, the distinction between 
ML-based models and statistical models is sometimes hazy and 
imprecise (Barker, 2020). In our work, approaches that explicitly 
define the data-generating process are classified as statistical, whereas 
methods that concentrate on directly discovering patterns and 
correlations from the data are classified as ML-based.

Traffic was first modeled using traditional machine learning 
techniques, which included tabular data treatment and the 
incorporation of temporal dependencies with lag characteristics (Luk 
et al., 2000; Kumar and M., 2006). Using sophisticated neural network 
models, such as RNNs (Predić et al., 2024), which provide cyclical 
connections between neurons, has, over time, produced predictions 
that are more accurate. When used to predict traffic, these models 
performed exceptionally well in capturing temporal patterns (Yun 
et al., 1996; Park, 2009). With the advent of LSTM cells (Gers et al., 
2001), which enhanced the processing of temporal data, further 
developments were made, and traffic forecasting systems swiftly 
embraced these developments (Zhao et al., 2017).

As temporal modeling techniques, such as LSTMs, have advanced, 
CNNs (O’Shea, 2015) have also gained increasing popularity. Initially 
created to classify images, CNNs were modified to handle sequences 
of time data (Bai et al., 2018) and have demonstrated effectiveness in 
traffic forecasting (Zhang et al., 2017; Li et al., 2021). Recently, there 
has been a shift toward designing models specifically tailored for time 
series analysis. One such model, N-BEATS (Oreshkin et al., 2019) has 
proven to be particularly effective in forecasting univariate time series, 
especially when dealing with large datasets. Another prominent 
model, DeepAR (Salinas et al., 2020), it utilizes LSTM cells to predict 
parameters within a probabilistic framework, providing greater 

Abbreviations: MA, Moving Average model; AR, Auto-Regressive model; ARIMA, 

Auto-Regressive Integrated Moving Average; N-BEATS, Neural basis expansion 

analysis for interpretable time-series forecasting; DeepAR, Probabilistic Forecasting 

with Autoregressive Recurrent Networks; MOL-TR, Municipality of Ljubljana traffic 

data set; MAE, Mean absolute error; MSE, Mean squared error; MAPE, Mean absolute 

percentage error; STL, Single-target learning; MTL, Multi-target learning; LR, Linear 

regression; ANN, Artificial neural networks; AutoML, Automated Machine Learning.
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insights into model uncertainty. DeepAR is also capable of handling 
multivariate time series data, incorporating both past and future 
covariates. Recently, transformer-based models (Lim et al., 2021), 
freeway traffic speed predictions have been made using tools such as 
the Temporal Fusing Transformer for Readable Multi-horizon 
Periodic Forecast (Zhang et al., 2022). While deep learning methods 
are commonly used in traffic prediction, other approaches that have 
also been successful should not be overlooked (Dong et al., 2018; 
Elsayed et al., 2021).

The majority of prior research has concentrated on continuous or 
real-time data collection, which restricts its applicability to idealized 
situations. Other modeling approaches are needed in real-world 
scenarios where it is not always possible to collect data in real time. In 
these challenging circumstances, where conventional models relying 
on temporal components are ineffective, this research aims to develop 
solutions. To the best of our knowledge, no prior research has tried to 
forecast traffic flow without the use of lag characteristics.

The need to regularly and impartially evaluate forecasting 
algorithms’ performance is growing as their number keeps expanding. 
M Forecasting Competitions (Makridakis and Hibon, 2000; 
Makridakis et al., 2020; Makridakis et al., 2022) are some of the most 
well-known data sets that have been created to accomplish this. 
METR-LA and PEMS-BAY (Li et al., 2017) are two of the most widely 
utilized data sets for assessing and contrasting models in the field of 
traffic forecasting. Loop detectors are used to gather traffic statistics 
for these data sets, which are crucial benchmarks for assessing models 
(Cai et al., 2020; Tian and Chan, 2021).

2.1 Research questions and hypotheses

Based on the gaps identified in the literature, the study is guided 
by the following questions:

RQ1: Can traffic flow be effectively predicted using only basic 
temporal categories such as weekdays and weekends, without 
relying on detailed lag-based time features?

RQ2: To what extent does weekday–weekend variation help 
improve prediction accuracy in the absence of continuous or real-
time traffic data?

The following hypotheses are proposed in line with the 
research questions:

H1: While detailed lag-based time features are a common and 
powerful tool in time-series forecasting, traffic prediction 
remains feasible and effective by leveraging a simplified set of 
contextual variables, specifically the distinction between 
weekdays and weekends. This approach is predicated on the 
fundamental understanding that human and commercial 
activity patterns are strongly cyclical and directly tied to these 
basic temporal categories. Weekdays typically exhibit 
predictable bimodal traffic peaks corresponding to morning 
and evening commutes, driven by work and school schedules. 
Weekends, in contrast, often show different patterns—either 
lower overall volume or shifts in peak times associated with 
leisure and retail activities. By training a model on these two 

distinct classes of data, it can learn and generalize the 
underlying traffic behaviors without needing to explicitly model 
the dependencies on the traffic conditions of the preceding 
hours or days. This method proves particularly valuable in 
resource-constrained environments where detailed historical 
data or sophisticated computational models are not readily 
available, offering a robust and practical solution for generating 
meaningful traffic forecasts.

H2: In the absence of continuous or real-time traffic data, the 
weekday-weekend distinction serves as a powerful proxy for 
underlying mobility patterns, thereby significantly enhancing 
prediction accuracy. This binary temporal feature captures the 
fundamental shift in a city’s rhythm: weekdays are typically 
dominated by commuter traffic, logistical movements, and 
school-related journeys, resulting in predictable morning and 
evening peaks. Weekends, conversely, are characterized by more 
varied, often leisure-driven travel, leading to different peak 
times, routes, and overall traffic volumes. By incorporating this 
single, easily obtainable variable, a predictive model can 
differentiate between these two distinct regimes, preventing it 
from making a “one-size-fits-all” forecast. This simple 
contextualization allows the model to learn and apply two 
separate sets of traffic patterns, one for each category, leading 
to a more nuanced and accurate prediction. This approach is 
particularly valuable in cities with limited data collection 
capabilities, as it provides a low-cost, high-impact method for 
structuring historical traffic data, allowing for the creation of 
meaningful and reliable forecasts that would otherwise 
be difficult to achieve.

3 Municipality of Vellore traffic dataset

This section describes the traffic data collected during various 
traffic surveys conducted in the municipality of Vellore. The goal of 
the numerous traffic counting stops positioned throughout is to 
identify the vehicles that pass. They are dispersed across the city, 
paying particular attention to routes with heavy traffic. An outline of 
the places within the city limits considered for the study is provided 
in Figure 1.

Each measuring stop records measurements daily during the 
study interval, while vehicle estimates at 5-min intervals are stored in 
the traffic data, mainly collected through traffic surveys. Bike, Car, 
Auto rikshaw, Bus, Light, Medium, Heavy, and Trailer Trucks. Vehicle 
count measurements were collected from 17 stops (as detailed in 
Table 1) during the 2016–2023 acquisition period and are included in 
the full data set. Table 2 provides a concise summary of the dataset. 
The number of vehicles of this type that were recorded passing the 
measurement stop with the name ‘stop name’ during the 5-min time 
interval that ended at the moment indicated via the timestamp is 
represented by the integer variable ‘count,’ integrated into each 
measurement instance.

The distribution of traffic per day for the measurement stop ‘Raja 
Theater’ is displayed in Figure 2 to facilitate a better understanding 
of traffic patterns (Keep in mind that other traffic-measuring 
locations might show distinct trends). The volume of traffic typically 
exhibits a consistent trend. The primary significant variations occur 
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each day, with rush hours in the morning and evening having two 
peaks. A weekly design is also evident, with traffic levels lower on 
weekends than on weekdays on specific routes, while the situation is 
opposite on certain routes where weekend traffic will be higher than 
weekday traffic, as they serve access to leisure destinations.

An equivalent breakdown can be seen when vehicle types are 
compared. Vehicle frequencies are distributed as seen in Figure 3, with 
certain types being more common than others. The majority of 
vehicles are regular passenger bikes, which are determined to 
be almost 320 times more common than heavy trucks. The distribution 
patterns vary by vehicle type, with bikes typically showing a high in 
the morning and evening, whereas passenger cars and auto-rickshaws 
exhibit separate peaks in the afternoon and evening.

Measurement errors are a natural part of the procedure. 
Measurement stops may have difficulties, including reporting 
erroneous data as a result of interruptions, or they may stop reporting 
data entirely in the event of a significant disruption or the data 
collection process at a stop being temporarily shut down.

Changes in the location of measuring stops can complicate traffic 
predictions. Due to ongoing building tasks or modifications in road 
layouts, several stops were moved either temporarily or permanently 
throughout the time of observation. For instance, a specific stop was 
converted to one exclusively for busses and auto-rickshaws while 

FIGURE 1

Location of identified study points in Vellore city.

TABLE 1  List of identified stops for the data collection.

Stops Latitude Longitude

New Bus Stand 12.9255746 79.1243371

Jail Stop 12.8822229 79.1061853

Old Bus Stand 12.9220972 79.1298299

Katpadi Rly Station 12.9716791 79.1354425

National Theater 12.9295309 79.1314584

Raja Theater 12.9145358 79.1299371

Odai Pillayar Kovil Stop 12.9589034 79.1185703

CMC 12.9254736 79.1345617

Voorhees College 12.9108654 79.1294558

Chittoor Bus Stop 12.9663375 79.1349161

Viruthampattu 12.9450252 79.1218867

Tollgate 12.8986523 79.1275585

Roundtana 12.9762665 79.2733285

Vallimalai X Road 13.0265148 79.1994095

Thorapadi 12.8874828 79.0983939

Bagayam 12.8796521 79.1319201

Silk Mill 12.9497813 79.1343584
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general traffic was prohibited. These modifications lead to differences 
in the number of vehicle types as well as the quantity of vehicles going 
through a stop.

Errors in the data collection process might lead to data 
modeling issues. One such error occurs when extremely high 
traffic volumes cause data overflow, preventing values from 

TABLE 2  A snapshot of the collected data for stopping the ‘Silk Mill’.

Date Time Car Bike Auto 
rikshaw

Bus Light 
truck

Medium 
truck

Heavy 
truck

Trailer 
truck

01-01-2023 08:00:00 26 32 12 5 3 4 2 4

01-01-2023 08:20:00 1 41 14 3 1 6 6 2

01-01-2023 08:40:00 9 19 24 4 1 6 5 5

01-01-2023 09:00:00 18 57 19 7 4 1 3 6

01-01-2023 09:20:00 18 4 12 11 2 1 4 2

01-01-2023 09:40:00 6 57 15 11 4 1 3 5

02-01-2023 08:00:00 28 53 27 6 6 4 1 5

02-01-2023 08:20:00 24 52 26 7 6 6 2 2

02-01-2023 08:40:00 3 39 11 2 6 2 2 5

02-01-2023 09:00:00 5 23 33 3 4 5 5 5

02-01-2023 09:20:00 17 39 1 6 6 4 3 4

02-01-2023 09:40:00 4 44 12 11 4 1 5 3

03-01-2023 08:00:00 12 4 23 10 5 5 2 3

03-01-2023 08:20:00 14 18 29 4 5 1 5 4

03-01-2023 08:40:00 9 17 33 7 6 1 6 5

03-01-2023 09:00:00 20 18 7 10 1 5 6 2

03-01-2023 09:20:00 21 44 7 4 6 3 4 1

03-01-2023 09:40:00 12 6 9 9 4 4 5 5

04-01-2023 08:00:00 15 25 5 7 2 6 6 6

04-01-2023 08:20:00 8 46 4 4 3 5 1 3

04-01-2023 08:40:00 3 18 14 2 5 5 5 1

FIGURE 2

A daily allocation of vehicles at 5-min intervals was observed for the ‘Raja Theater’ stop. The average traffic volumes for weekdays, Saturdays, & 
Sundays are independently aggregated and shown by colored lines.

https://doi.org/10.3389/frsc.2025.1631748
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Parkavi and Parthiban� 10.3389/frsc.2025.1631748

Frontiers in Sustainable Cities 06 frontiersin.org

being stored. These overflowed data are excluded from 
further analysis.

An essential component of traffic modeling is seasonal influences. 
Seasonal variations can have an impact on accident rates, vehicle types, and 
travel habits. This impact provides valuable insights into broader trends, 
although it may not be detailed enough to accurately forecast occurrences 
that affect traffic. For example, traffic patterns can be significantly altered 
by a sunny season that lasts for several days or months.

The patterns of traffic are significantly impacted by public holidays 
as well. These periods usually see a sharp drop in traffic volume and a 
change in the timing of traffic peaks.

4 Methodology

A detiled explanation of the modeling framework and the error 
metrics used to evaluate the predictions is provided in this section. 
Next, a method for making predictions is described, including details 
on feature engineering and the machine learning models used. The 
flowchart of the methodology is shown in Figure 4.

4.1 Data collection procedure

To effectively model traffic patterns, the right approach must 
be chosen when many forecasts are needed for related activities, such 
as traffic flow forecasting. The framework of modeling for traffic 
prediction is presented in this section. The procedure for gathering 
data and creating models is shown in Figure  3. The way traffic 
modeling is performed is significantly affected, as the most up-to-
date Past data trends are not accessible. Using traffic statistics from 
the last 5 min, for example, is not practical when predicting 
traffic numbers.

Assume that three measuring stops each have data obtained at time 
intervals A₁, A₂, and A₃ for stops 1, 2, and 3, respectively. Before the 
acquisition points, all traffic data is collected at that point. Data collection 
may occur at varying intervals for other stops. The gap between A₁, A₂, 
and A₃ and the model-building phase defines this interval, during which 
data is stored at a measurement stop without being considered. The data 
gathered up until that point is used to build a model that forecasts future 
traffic trends. Currently, it is possible to predict the traffic patterns for the 
following day. It should be  noted that, in addition to data being 
unavailable because of delayed capture, a malfunctioning measurement 
stop may also be the cause of missing data. There are inherent limits to 
this modeling paradigm as well. The most recent data might not 
be available when the model is constructed because of data transfer delays 
(manual, for example). Standard forecasting techniques that rely on the 
most recent data are ineffective because this data is usually unavailable. 
Predictions in traditional forecasting frameworks require actual inputs 
like A₁, A₂, and A₃, even though the model is built using current data.

Data for this study were sourced from the local highway department, 
which provided foundational datasets originally compiled for urban 
planning initiatives. To supplement this, we  identified key areas of 
interest and augmented the initial data with additional departmental 
records. Due to logistical constraints in collecting city-wide data, the 
scope of our analysis was initially confined to these specific, high-priority 
zones. We are currently developing a methodology to expand our data 
collection efforts to include the city’s newly developing areas. This future 
work will not only support urban expansion planning but also establish 
a critical data foundation for subsequent research phases.

4.2 Error metric

Selecting a metric that aligns with the desired predictions and goals 
might be difficult when optimizing vehicle number predictions (Barros 

FIGURE 3

Vehicles by category and measuring stop, on average (at 5-min intervals).
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et al., 2015). The chosen method for reporting all results is the mean 
absolute error (MAE) (Lana et al., 2018). It is defined as the metric:

	
= −∑1 forecast true

CC
C

MAE Y Y
C 	

(1)

The actual and expected vehicle counts at the measurement stop 
over a specified time period are denoted by forecast

CY and true
CY , 

respectively. It is noteworthy that the sum does not include any 

missing values. C  is a variable that represents the total number of 
stops. Due to its many benefits, the MAE, as shown in Equation 1, is 
frequently chosen over other metrics like MAPE (Schneider et al., 
2017) and the MSE (Zheng and Wu, 2019; Wahab et al., 2021). Model 
performance can be greatly impacted by outliers (Chai and Draxler, 
2014), which are frequently the result of inconsistent data. They have 
a less noticeable effect on the MAE, though. On the other hand, when 
significant prediction mistakes occur, the MSE has a tendency to 
severely penalize models. In certain situations, this behavior might 
be beneficial; however, performance degradation can occur due to 

FIGURE 4

Flowchart illustrating the proposed traffic prediction methodology, including data collection, feature engineering, model selection, and evaluation.
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data issues (e.g., distorted information or changes in traffic patterns 
resulting from rare events). A commonly used statistic that seeks to 
decrease percentage error is the MAPE. On the other hand, erroneous 
projections may result in severe penalties when the number of cars 
assessed is small. A typical example of this occurs during night traffic, 
when there are few vehicles on the road, and the actual count may 
be zero or close to it. In these cases, MAPE assigns a significant error 
to the predictions, even when the discrepancy is just a few vehicles. 
The loss functions that the models employ to reduce the mistakes 
must be distinguished from the error metrics that assess the accuracy 
of predictions. A fair comparison of the models is made possible by 
this study’s attempts to guarantee that the loss function used by the 
machine learning models matches the error metric.

4.3 Engineering features

Creating domain-dependent attributes using timestamp data is a 
typical procedure for creating time-dependent models in order to 
increase predicted accuracy (Zheng and Wu, 2019; Wahab et  al., 
2021). The dataset just contains the timestamp, so it’s critical to design 
features that machine learning algorithms can comprehend. Features 
constructed from timestamp data must gather information so that 
machine learning models can apply previously learned knowledge to 
new, unseen occurrences. A popular technique in time-series feature 
engineering is cyclic feature encoding (Schneider et al., 2017), which 
involves transforming time-based data using sine and cosine functions 
to enable periodic recurrence at a predetermined frequency. This 
encoding preserves periodic or cyclic events, with similar embeddings 
being assigned to events that are temporally close. Furthermore, the 
algorithm’s performance is improved by incorporating one-hot 
encoded time features. This method simulates the separate effects of 
events that occur near one another but are not comparable (Khadiev 
and Safina, 2019). Additional information that would be missed by 
cyclic feature encoding alone is captured by this encoding technique. 
The features that were taken from each 5-min measurement interval’s 
date and time data are shown in Table 3. The standardized mean of 
zero and standard deviation of one for all generated features helps 
some algorithms, like neural networks, converge while having no 
effect on others, like tree-based models.

4.4 Models

Accurately modeling traffic using features derived from 
timestamps is a complex task. This section provides an overview of the 
models applied in traffic modeling, highlighting their respective 
strengths and weaknesses. It is worth mentioning that more advanced 
machine learning techniques, detailed in Section 2, can be applied for 
real-time traffic forecasting. These techniques use temporal 
dependencies, often known as lag characteristics. They are not 
appropriate in this situation, though, because of the nature of the data 
collection procedure described in Section 4.1. Since the most recent 
traffic data is not available at the time of prediction, temporal data 
cannot be used to make the forecast.

We chose Single-Task Learning (STL) and Multi-Task Learning 
(MTL) models for our urban traffic dynamics study because they fit 
our objectives and the features of our dataset. For targeted studies, STL 
models are beneficial since they let us identify and investigate the 
impact of particular elements on traffic circumstances, including 
weekend changes. Their straightforward structure also facilitates 
easier interpretation and helps establish initial performance metrics.

On the other hand, to better represent the multifaceted and 
interdependent aspects of urban transport systems, MTL models play 
a vital role. These models are capable of learning from several related 
tasks at once, such as predicting traffic flow and estimating travel 
duration, by drawing on commonalities across different data streams. 
This shared learning improves model generalization, especially when 
working with limited datasets, and offers a more resource-efficient 
alternative to training separate models for each task. By incorporating 
both time-series traffic data and contextual factors like weekday-
weekend classification, MTL helps construct a more comprehensive 
view of urban mobility. This dual approach allows us to begin with 
narrow investigations and progressively expand our analysis as more 
data becomes available.

We also implemented linear regression techniques owing to their 
foundational simplicity and low computational overhead. A significant 
benefit of this method is its transparency; coefficient values directly 
reveal how specific inputs, such as whether a day is a weekday or 
weekend, influence traffic behavior. Urban transport planners seeking 
to understand and address congestion patterns will find this clarity 
helpful. Furthermore, linear regression provides a reliable starting 
point for determining the main patterns in our initial dataset and lays 
the groundwork for further research with more complex models.

A general classification of the machine learning models used is 
single-target learning (STL) and multi-target learning (MTL). 
Assuming that the aims are independent, the STL framework 
suggests that the flow of traffic at one stop has no bearing on the 
flow at other stops. The creation of distinct models, each aimed at 
forecasting traffic at a particular stop, is necessary when stops are 
regarded as independent. The ability of MTL models to forecast 
several targets at once allows them to capture target dependencies, 
which can enhance generalization in contrast to STL models. This 
method entails building a single model that forecasts traffic 
simultaneously at every measuring site. In this work, we use MTL 
models, which eliminate the need to create individual models for 
every traffic stop, thus simplifying the construction and 
training process.

Taking into consideration these restrictions is crucial while 
selecting models. Hence, the focus is on models that satisfy these two 

TABLE 3  Overview of feature types, dimensions, and explanations 
(2016–2023).

Type of feature Count Summary

Monthly One-Hot 

Encoded

12 For every month of the year, a vector of 

binary values is used.

Day of the Week with 

One-Hot Encoded

7 Every day of the week has a binary 

vector.

One-Hot Encoded 

Minutes

72 A binary vector for each 5-min interval 

within a day.

Cyclical Day Features 2 Cyclic time encoding with a daily cycle.

Cyclical Week Features 2 Cyclic time encoding with a weekly cycle.

Cyclical Year Features 2 Cyclic time encoding with a yearly cycle.

Normalized Year Span 1 A normalized time span from 2016 to 

2023, scaled between [0, 1].
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essential requirements: (a) the model can be trained effectively and in 
a manageable amount of time (a couple of hours, for example), and 
(b) it is simple to update the model with new data. Popular machine 
learning techniques, such as Random Forest and XGBoost, are not 
considered because of the aforementioned constraints. Despite being 
widely used for tabular data, these models have several drawbacks:

	 a)	 They are not optimal for simultaneous multi-target predictions 
(multi-target learning is not supported by all XGBoost 
executions, at least not during testing and writing, to prevent 
the prediction of traffic across multiple stops);

	b)	 They cannot deal with missed outputs in situations involving 
several targets.

	 c)	 They need a complete model rebuild instead of permitting 
partial updates as new data is introduced; and

	d)	 Their limited ability to select optimization objectives results in 
performance issues when using MAE.

4.4.1 Tree-specific ensembles
The predictions of several decision trees are combined after they 

have been trained in order to improve the forecast accuracy of a single 
tree (Ho, 1995). A process like this is frequently referred to as a 
random forest. A random forest uses a technique known as bootstrap 
aggregation to train individual trees on training data that is randomly 
selected with replacement (Breiman, 1996). Numerous DTs make up 
a random forest. The trees are typically constructed using deterministic 
methods, which often produce trees that are similar. Individual trees 
are usually trained on randomly chosen dataset segments or with 
randomly picked features in order to encourage variety within the 
ensemble. Similar to classic tree ensemble methods, Extremely 
Randomized Trees (Geurts et al., 2006) is a comparable technique in 
which attribute splits are chosen at random. This method’s main 
advantage is its computational efficiency, which results from the nodes 
being divided using reduced criteria.

4.4.2 Mean at baseline
A straightforward model for traffic flow on a road segment 

forecasts the average volume of traffic at a particular measuring stop 
without taking time into consideration. Despite its inability to account 
for recurring fluctuations in traffic volume, this model provides a 
standard against which more complex models can be evaluated.

4.4.3 Decision trees
To create interpretable predictive models, DT learning (Kotsiantis, 

2013). A straightforward and powerful machine learning technique is 
used. The information is automatically converted into a decision tree 
(DT), with the terminal nodes predicting the desired value and each 
branch representing an attribute test.

DT can be  constructed using a variety of techniques (Mehedi 
Shamrat et  al., 2022), such as ID3, C4.5, CART, CHAID, and 
MARS. These approaches distinguish ways that discrete and numerical 
information is transmitted, as well as how the branch-building process 
is carried out. Randomness can be incorporated when the features are 
equally important. However, most of these methods are deterministic. 
Although DT can usually be constructed quickly, deciding how to 
create branches can take a considerable amount of time, mainly when 
loss functions like MAE are used, as they necessitate sorting 
node values.

4.4.4 Regression analysis with linear
The independent and dependent variables’ linear correlations are 

modeled utilizing linear regression (LR), which uses learning 
coefficients. It enables effective optimization and offers good 
interpretability. A distinct LR model is created for each stop to forecast 
traffic flow, and it is trained using MAE loss instead of MSE loss to 
better align with the challenge’s goals. To introduce non-determinism 
into the training process, the LR weights are iteratively updated using 
stochastic gradient descent. A baseline model that works well in 
circumstances where only linear relationships are considered is the 
LR model.

4.4.5 Neural networks
To identify intricate and nonlinear correlations between 

dependent and independent variables, mathematical models known 
as artificial neural networks (ANNs) are frequently employed. 
Neurons are organized into individual layers of specific sizes to form 
a neural network. A more intricate network that can approximate 
nonlinear functions can be created by stacking these layers. Once a 
neural network is constructed, it must be trained to find the mapping 
between input and output data. Backpropagation is the most popular 
method for this (Rojas, 2013), wherein we minimize the loss function 
by using gradient descent and iteratively changing the weights of 
different layers. This research focuses on fully connected neural 
networks, even though neural networks come in a variety of 
configurations and are frequently tailored for particular domains 
(Devlin, 2018; Li et al., 2021).

4.4.6 Agnostic ensembles for models
The sets of different models for machine learning, known as 

model-agnostic ensembles (Dong et al., 2020; Zhou and Zhou, 2021) 
are used to combine knowledge through different techniques, making 
predictions that are more accurate and dependable. The various ways 
predictions combine depend on the problem type, such as 
classification or regression. Combining weighted predictions yields a 
more precise estimate for regression problems. The ensemble’s 
algorithm performance can determine the weights of the various 
models, or all forecasts can be given the same weight. The ultimate 
prediction in the latter scenario is determined by averaging the 
projections from each individual model. The second method, which 
is straightforward, is used by merely averaging the predictions. In this 
work, neural networks are combined using only model-
agnostic methods.

5 Results and discussion

The models, configurations, and hyperparameters are first 
introduced in this part, and the impact of various hyperparameters on 
prediction accuracy is illustrated. Once the model that performs best 
on the validation set has been identified, its performance on the test 
set is examined. The impact of various occurrences is evaluated, and 
the model’s performance for each measuring stop is reviewed. It also 
looks at how performance evolves with time. The effect of public 
holidays and rush hour is an example of an interesting trend in the 
data that is highlighted by the selection of specific times and 
monitoring places. But not every measurement site exhibits these 
clear trends.
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5.1 Details of the experimental design and 
implementation

The models’ performance on new, unseen samples is assessed by 
dividing the data into training and test sets. The model is then trained 
using these sets, and its performance is evaluated using them. The 
temporal sequence must be maintained when splitting the data into 
two groups, and the most recent observations that do not overlap with 
the training data must be included in the test set (Cerqueira et al., 
2020). Four-split time-series cross-validation is used to address this. 
Figure 5 illustrates how the data were separated for analysis. Please 
be aware that every model is stochastic by nature. For a more precise 
and reliable evaluation of their achievements across various datasets 
and parameter settings, we repeat the training procedure 30 times for 
every combination of train/test split and hyperparameters.

The best model and the most suitable set of hyperparameters for 
that model must be chosen when selecting and evaluating models. To 
avoid inflated performance estimates during the hyperparameter 
tuning process, do not use test data to ensure an accurate evaluation 
of the models. Models were constructed and chosen using nested 
cross-validation (Wainer and Cawley, 2021). Using this method, each 
training set was split into two sections: a validation set to identify the 
most effective hyperparameters and a training set to train the models 
with various hyperparameter settings.

Finding the ideal neural network architecture is usually a complex 
undertaking since it requires a lot of computation and the use of 
several tuning techniques (Akiba et  al., 2019; Victoria and 
Maragatham, 2021) to identify the best hyperparameters. The 
hyperparameters explored during the model-building process are 
described in Table 4. To generate 20 models for every combination of 
hyperparameters and train/test split, we conducted a basic grid search 
across all conceivable parameter value combinations. In the next 
section, we  report the findings for each combination of 
hyperparameters and demonstrate how specific models’ performance 
is impacted by them. Only the model and hyperparameters linked to 
the highest accuracy on the validation set would be chosen for real-
world applications, such as daily use.

Every pair of split and hyperparameter train/test combinations 
was subjected to 30 separate runs of each method on an AMD Ryzen 
Threadripper PRO 5975WX. Python 3.10 was used to implement the 
algorithms. The models were trained with the PyTorch framework 

(Paszke et  al., 2019) and PyTorch Lightning (Falcon, 2019). The 
analysis was carried out using Snakemake (Mölder et al., 2021) and 
scikit-learn (Pedregosa et al., 2011).

5.2 Selection of models

Several limitations must be  balanced when developing and 
evaluating models. These constraints include factors such as the time 
required for model construction and training, the model’s overall 
complexity, its inference efficiency, the need to adjust hyperparameters, 
and other challenges, including adapting models to new data. Four 
distinct train/test splits of the data, as explained in Section 5.1, were 
used to train and assess the models outlined in Section 4.4. First, 
we experimented with different model types, such as neural networks, 
decision trees, and random forests, and tuned their hyperparameters. 
A comparison of the various model types based on the MAE between 
the observed and expected number of vehicles is presented in Figure 6. 
The models with the best hyperparameter values identified by the 
validation set are shown here. The standard deviation of performance 
across 30 repeated runs is represented by the gray bars. The study 
shows that all models perform better than the benchmark baseline 
model, which forecasts the mean, for an MAE of roughly 45.

When compared to a naive baseline, the error of the tree-based 
models is almost half, indicating that they perform well in terms of 
prediction. In both approaches, when the tree depth is unrestricted 
and every leaf has a minimum of two samples, we obtain the best 
hyperparameters from the validation data. Across the years under 
consideration, their performance is found to vary substantially, with 
1 year showing a noticeably larger inaccuracy than the others. There 
is a significant difference in performance between runs of the same 
dataset since both tree models are stochastic. It is almost twice as 
accurate as the baseline for linear regression. Linear regression 
exhibits significantly more stability over the years taken into 
consideration than tree-based models, with no discernible declines in 
performance in any 1 year. Repeatedly training linear regression on 
the same data yields significantly higher consistency, with minimal 
variation between runs. As a result of their consistently higher 
performance over other methods, neural networks are considered the 
best models. Furthermore, the predictability of the results is 
maintained with remarkable consistency across a range of 
experimental runs and the years under study. Three hidden layers, 
each with 512 neurons, are found to be the ideal arrangement in this 

FIGURE 5

Temporal division of the data into four training (green) and testing 
(red) sets through 4-fold cross-validation.

TABLE 4  Ranges of hyperparameters explored through grid search.

Model type Hyperparameter Values

Neural network

Number of Layers {1, 2, 3, 4, 5}

Neuron Count per Layer {128, 256, 512}

Dropout Rate {0, 0.2}

Early Stopping Patience {5}

Decision Tree
Max Depth {2, 4, 6, 8, 10, None}

Min. Samples per Leaf {1, 2, 3, 4, 5}

Extremely 

Randomized Trees

Max Depth {2, 4, 6, 8, 10, None}

Min. Samples per Leaf {1, 2, 3, 4, 5}

Linear regression Optimizer {SGD}
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case. Neural networks consistently outperform all other models, even 
when inadequate hyperparameters are used. It remains unclear why 
neural networks outperform conventional tree-based models. This 
advantage is likely due to the large volume of available training data 
and the neural network’s ability to learn complex decision boundaries. 
As a result, there is growing interest among researchers in applying 
neural network-based models to traffic modeling, as these models 
often outperform traditional approaches, even when hyperparameters 
are not perfectly optimized. Although the dropout rate (Kotsiantis, 
2013), is a common neural network hyperparameter, it is not discussed 
in this context, as it did not lead to any noticeable improvement in the 
performance of the evaluated models.

The impact of neural networks’ hyperparameters on the training 
process is further examined, as these networks are considered more 
suitable for traffic flow prediction in our context than other 
approaches. The impact of various hyperparameters on traffic flow 
prediction performance is illustrated in Figure  7. It has been 
discovered that performance is greatly impacted by the parameters 
chosen. With an MAE of about 30, networks with a single hidden layer 
usually perform poorly because they are unable to capture all the 
information. It has been demonstrated that increasing the number of 
hidden layers, and consequently the total number of parameters, 
improves neural networks’ predictive accuracy. The network with 
three hidden layers and 512 neurons each performed the best out of 
all the models that were evaluated. The usefulness of this architecture, 
as mentioned in the preceding section, was confirmed by the 
consistent outcomes it produced throughout the test and 
validation datasets.

5.3 Ensembles of neural networks

Now, neural network ensembles are the focus. Machine learning 
forecasting accuracy can be improved by mixing forecasts from several 
models, as is well known. A comparison of an ensemble approach 

using 15 neural networks and regular neural network models is shown 
in Figure 8. To allow each neural network in the ensemble to learn 
different information, we  initialize and train them separately. The 
process of forming an ensemble is always advantageous and frequently 
results in additional gains in prediction accuracy. Neural networks 
with three hidden layers and 512 neurons each make up the most 
efficient ensemble structure, as was previously established. As the 
complexity of the models inside the ensemble increases further, no 
performance improvement is seen.

5.4 Duration of training

As traffic data changes, regular updates may be required, which 
may be  a time-consuming operation, so cutting down on model 
development time is essential. The training and prediction times for 
each model are shown in Table 5. However, as described in Section 
5.1, different train/test split sizes prevent direct comparisons across all 
folds. A single train/test split from 2019 is hence the main emphasis. 
The stated statistics are all averages over the 30 runs. The different 
model types are shown to have dramatically varying training times. 
Despite the lack of high precision, it is possible to quickly train a 
baseline model that accurately predicts the mean traffic at a particular 
stop. Although they are more computationally expensive, tree-based 
models offer higher accuracy. A comparison between extreme trees 
and a single decision tree reveals that training an ensemble of trees 
uses more processing power. The models that cost the most to 
compute are neural networks and ensembles constructed on top of 
them. The time required for their construction is heavily influenced 
by the size and architecture of the network. Longer prediction lengths 
and slower training times are typically linked to deeper and broader 
networks, as one might anticipate. This network requires the most 
computing power to train, comprising five hidden layers with 512 
neurons each. Although their training times are not included in 
Table  2, it should be  noted that the amount of time needed for 

FIGURE 6

Using data from a prior year, the MAE compares the observed and anticipated vehicle counts for several machine learning models. Four different train/
test splits were used to train and assess each model 30 times. The standard deviation, illustrated by the gray bars, shows the variability in performance.
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ensemble training is usually related to their size. The training period 
is typically 10 times longer when ensembles of 10 neural networks are 
taught consecutively. Since the training duration of neural networks 
with Dropout is similar to that of networks without Dropout, we did 
not include them in the list.

5.5 Examining the forecasts

An ensemble of 10 neural networks, each with three hidden layers 
and 512 units, was identified as the best-performing model after 
analyzing the previously presented accuracy results. Based on the 
completed models, Figure 8 illustrates the distribution of prediction 

errors, which represent the difference between actual and anticipated 
values, for a few selected measurement points. From the figure, we can 
identify two key observations: specific measuring stops are more 
challenging to forecast traffic levels more accurately than others. 
Because daily traffic variances on popular roads are larger than those 
on less busy roads, it is challenging to anticipate traffic volumes at these 
sites. The figure shows the existence of outliers in the prediction errors. 
The majority of projections turn out to be accurate; however, mistakes 
of magnitude 100 or higher are common. These notable inaccuracies 
are frequently ascribed to exceptional occurrences that the current 
models are unable to adequately represent.

A more thorough analysis of how the predictions of the chosen 
model match the actual data is shown in Figure 9, which presents a 

FIGURE 7

For neural network models, the MAE between the actual and forecast vehicle counts is calculated using data from years that have already been 
observed, with different hyperparameters such as the number of hidden layers and their sizes. Every model underwent 30 training and testing sessions 
in 4 distinct train/test splits. For the performance, the gray bars show the standard deviation.

FIGURE 8

Evaluation of the impact of architectural changes on the MAE is possible by varying the number of hidden layers (from 1 to 5) and their sizes (128, 256, 
and 512 units) in both ordinary neural networks and ensemble models.
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thorough comparison. Each point represents the flow of traffic at 
either 6 AM or 8 AM. A clear divergence between weekdays and 
weekends is the first noteworthy pattern that is noticed. Compared to 
weekdays, weekend traffic is less frequent and less variable, which 
results in relatively fewer forecast inaccuracies. When this shift takes 
place, the frequency of the vehicles will be drastically changed. The 
chosen model is able to forecast and account for this shift in 
traffic distribution.

Despite the rigorous selection of this sample, several intriguing 
conclusions can be  made. First, daily traffic patterns, such as the 
morning rush hour and the slower traffic on weekends and evenings, 
are well-represented by the model. As a result, it is possible to learn 
and use the training data’s predictable periodic patterns to anticipate 
future traffic levels. A more troublesome trend that the model finds 
difficult to capture is the change in traffic quantities. The model 
consistently underestimates the traffic volumes in the test group, as the 
example illustrates. It supports the notion that traffic volumes have 
grown over time at a particular monitoring stop. The most recent test 
data can consequently have an entirely distinct distribution from the 
training data because it only contains the most recent measurements. 
The model frequently overestimates or underestimates traffic flow, 
which raises the possibility of abrupt variations in traffic volumes. 
However, because real-time data is not available, the model regularly 
generates skewed predictions. To account for this transition and 
produce more accurate estimates, the models will likely use the most 
recent traffic count statistics. Unfortunately, these characteristics are 
not included in the model by the current data transfer method.

The actual measured values and anticipated values for the stop at 
Chittoor Bus Stop during 4 days are shown in Figure 10 to provide a 
more thorough explanation of the errors. Although the predicted 

values in this instance represent the general traffic patterns without 
being overfitted to the noise, the observations are perceived as being 
somewhat noisy between the 5-min intervals as shown in Figure 11. 
Despite the lack of representations for each stop and time period, the 
models continuously provide precise traffic distribution estimation 
across different locations and intervals, excluding noise and random 
oscillations. The examination of data drift on test data is shown in 
Figure 12, which shows how the prediction error changes over a year 
without any model upgrades or retraining. Using data pooled across 
all available monitoring stops for every day over the next year, the 
MAE is calculated by comparing the measured and forecasted vehicle 
numbers. The MAE in this figure cannot be directly compared to the 
MAE in other figures since we did not include measurement stops 
with missing data. The pattern revealed by the linear trend persists 
over time despite the noisy nature of the single aggregated daily error. 
This illustrates a significant trend, showing that traffic patterns evolve 
over time. Performance is likely to deteriorate if the model is not 
updated on a regular basis. In addition, a clear, jagged line is seen all 
year long. Variability during the week and increased traffic numbers 
are the causes of this pattern. Therefore, forecasts for weekdays are 
linked to higher MAE values. For example, Figure 11 shows a visual 
comparison of the analysis between the actual data and the predicted 
values for an identified stop.

Important clarifications regarding the meaning of the several 
feature types used for prediction are finally given. Three different 
feature categories are introduced, as explained in Section 4.3. The 
feature categories are derived from times and dates, the presence of 
holidays, and seasonal information. When integrating all three feature 
categories, the optimal ensembles in Section 5.3 produce an MAE 
between 10 and 12. The significance of the feature groupings varies, 

TABLE 5  Training and inference times for various machine learning models.

Type of model Training time (sec) Inference time (sec)

Decision Tree (None, 2) 0.19 0.01

Extremely Randomized Trees (None, 2) 125.68 0.16

Neural Network (128 units, 1 layer) 23.79 0.06

Neural Network (256 units, 1 layer) 145.51 0.57

Neural Network (512 units, 1 layer) 229.69 0.30

Neural Network (128 units, 2 layers) 236.93 0.31

Neural Network (256 units, 2 layers) 266.45 0.32

Neural Network (512 units, 2 layers) 655.69 0.52

Neural Network (128 units, 3 layers) 655.69 0.57

Neural Network (256 units, 3 layers) 642.70 0.59

Neural Network (512 units, 3 layers) 819.35 0.74

Neural Network (128 units, 4 layers) 820.70 0.87

Neural Network (256 units, 4 layers) 899.02 1.86

Neural Network (512 units, 4 layers) 930.53 1.47

Neural Network (128 units, 5 layers) 1,080.80 2.08

Neural Network (256 units, 5 layers) 1,293.85 2.64

Neural Network (512 units, 5 layers) 1,263.38 1.54

Neural Network (128 units, 5 layers) 1,486.36 2.45

Neural Network (256 units, 5 layers) 1,510.61 3.40
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though. While elements that indicate holidays and seasons have a 
much lesser impact on the prediction, those that are based on date and 
time are thought to be the most crucial. The best ensemble’s MAE 

barely increases by 3% when it is retrained without the additional 
features. The MAE also rises by roughly 3.5% when the ensemble is 
trained without weekend data, using only date/time and other factors. 

FIGURE 9

Actual (blue) and expected (orange) vehicle counts at stops during August through October are displayed in the test data. Measurements were made at 
6:00 AM (top) and 8:00 AM (bottom) at 5-min intervals. The actual number of vehicles, as determined by the Neural Network (NN) model (3,512), is 
represented by the blue line, while the orange line indicates the anticipated number.

FIGURE 10

Test data displaying actual (blue) and predicted (orange) traffic across 4 days using the Neural Network (3, 512) model.
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The significance of different data points and weekend aspects cannot 
be disputed, even though the overall MAE decreases by only a few 
percent in their absence. These factors significantly improve 
predictions during severe seasonal events or holidays. To put it 
another way, weekend circumstances and other parameters can 
dramatically increase model accuracy for unexpected events, but the 
overall MAE summary does not consider this improvement because 
these events are uncommon.

5.6 Further study and next steps

While trying to compare the approach and results arrived at in the 
study with other similar research articles as cited in (Petelin et al., 
2023) gives a very similar outlook on the mobility analysis. Taking 
these as inputs, we will have to extend the study further to a broader 
spectrum to cover other parameters like the ones highlighted below 
and derive more detailed outcomes from the analysis.

This initial research aimed to understand how a city’s growth, 
increasing population, and evolving vehicle conditions have 
transformed its transportation landscape. During our study, 
we identified several additional factors that significantly impact daily 
commutes, including vacation seasons, holiday crowds, traffic jams, 
VIP escorts, and seasonal weather variations, notably high 
summer temperatures.

The next study effort should be centered on more thorough data 
collection, analysis, and methodology as a result of these discoveries. 
The goal is to uncover intricate patterns of traffic and road commutes 
within the city. This current paper provides the foundational insights 
necessary to build that broader study. A more thorough examination 
of these affecting elements will be  possible if the next phase 
concentrates on specific regions rather than the entire city.

The cumulative results of the studies will eventually guide local 
authorities in urban planning and traffic management, primarily to 
support outlier scenarios that are influenced by seasonal parameters. 

This study will lay the foundation for further detailed studies involving 
other parameters as highlighted above and eventually help identify 
patterns and predict outcomes that will aid in effective urban 
development and seamless traffic management.

6 Conclusion

This study presents a new dataset that monitors traffic flow for a 
variety of vehicle types on several road routes in Vellore, from 2016 to 
2023. Five-minute intervals are used to count and classify vehicles.

To make predictions, models are constructed using this dataset 
that integrates traffic data and information on weekends, without 
relying on temporal relationships. This criterion is crucial since real-
time data is not always collected, and the most recent past is 
insufficient to produce accurate projections of vehicle flows. It is 
shown that adequate feature engineering can provide usable models 
in spite of current constraints. The ability to recognize and take into 
account a variety of variables and trends that affect traffic flow makes 
these models useful for traffic prediction. They are therefore helpful 
instruments for short-term planning and well-informed traffic 
management, enabling informed decision-making. Neural networks 
achieve a better balance between prediction accuracy, inference, and 
training time, and the ease of making incremental modifications than 
conventional linear and tree-based models. A comparison of several 
models and the impact of hyperparameters on their performance 
forms the basis of this finding. The benefits of merging several models 
are also examined, as this can result in improved accuracy, but it also 
introduces the drawback of greater computing complexity.

The simplified predictive framework developed in this research 
offers a practical and immediate solution for Vellore’s traffic 
management authorities. By relying solely on traffic flow, vehicle count 
data, and the distinction between weekdays and weekends, city 
administrators can deploy these models without needing extensive 
investments in sophisticated data collection infrastructure, such as 

FIGURE 11

Actual traffic (blue) and expected traffic (orange) for stop names during 3 weeks are visualized using the Neural Network model (3,512), with vehicle 
count forecasts.

https://doi.org/10.3389/frsc.2025.1631748
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Parkavi and Parthiban� 10.3389/frsc.2025.1631748

Frontiers in Sustainable Cities 16 frontiersin.org

weather sensors or public holiday databases. The models can 
be integrated into a real-time traffic monitoring system to forecast 
congestion hotspots several hours in advance. For example, knowing 
that a particular road segment is likely to experience high traffic on a 
weekday afternoon allows traffic police to pre-emptively reroute traffic 
or deploy additional personnel to manage the flow. This proactive 
approach, driven by easily obtainable temporal data, can significantly 
reduce commute times and enhance road safety without requiring a 
complete overhaul of the city’s current traffic management tools.

Furthermore, the insights from this study can inform long-term 
urban planning and policy decisions. The models can simulate the 
impact of new infrastructure projects, such as a new flyover or a 
change in traffic signal timing, on the overall traffic network. By 
analyzing the weekday versus weekend patterns, planners can 
identify systemic issues that require structural changes, such as 

inadequate public transportation during peak commute hours or 
insufficient parking near commercial centers on weekends. This 
data-driven approach to planning ensures that resources are 
allocated effectively, addressing the root causes of congestion and 
promoting sustainable urban mobility. The research provides a 
blueprint for other rapidly growing cities with limited resources, 
demonstrating that effective traffic solutions can be  built on a 
foundation of minimal, yet meaningful, data, thereby democratizing 
access to advanced traffic management strategies.

To understand the circumstances under which the model 
performs well and the regions where precise traffic flow predictions 
are lacking, the top-performing model is examined. For the majority 
of the measuring stops, we show that our projections are generally 
correct. Some situations, however, are proven to be more challenging 
to represent. Examples are given of weekends when traffic can 

FIGURE 12

Over a period of 365 days, the MAE is calculated daily, demonstrating a progressive decline in predicting accuracy. As the time horizon increases, the 
forecast model’s reliability decreases, as seen by the interpolated linear trend.
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fluctuate wildly and the changeover to summer time. Furthermore, it 
is demonstrated that the models often overestimate or underestimate 
traffic flow and that data drift may eventually cause them to perform 
worse. Consequently, it is essential that models be modified frequently 
to incorporate fresh data.

The deeper  analysis of features, their construction, and the 
quantification of their importance are areas that will be explored in 
future work. To increase performance, the current characteristics 
should be improved first. Then, their significance should be quantified 
to make the models more straightforward to understand. A significant 
portion of this study is devoted to parameter adjustment. A system 
that meets all objectives, including training and inference speed and 
incremental update capability, is desired because of the growing 
popularity of AutoML techniques and should produce positive 
outcomes. More recent samples are typically given larger weights for 
modeling time-dependent problems. Researchers should conduct 
further analysis to assess whether assigning weights can improve 
performance and mitigate issues like drift. Additionally, they must 
take proactive steps to identify and address drift caused by the 
continuously changing traffic patterns and the impact of seasonal data 
like public holidays and other weather conditions.

Both research hypotheses have been substantiated by the study’s 
results. The models predicted traffic by using the difference between 
weekdays and weekends, even without the use of lag-based temporal 
factors. This result validates that even with simple temporal 
categorizations, significant traffic trends may be detected, supporting 
H1. Further supporting H2 is the discernible improvement in 
prediction performance that occurs when the weekday–weekend 
classification is added, highlighting its usefulness as an impactful and 
economical feature, particularly in settings with limited data. The 
study’s overall findings show that it is feasible to create scalable and 
dependable traffic forecasting systems in cities like Vellore that have 
little access to data.

6.1 Limitations

In this part, some of the study’s drawbacks and compromises are 
discussed. Some records in the TR dataset are incomplete and may 
be erroneous. We manually merged several stops that matched the 
exact physical location but had been moved or given different IDs 
throughout the data gathering phase to handle missing data issues. 
Errors can occur because the procedure of combining data from stops 
with various names is done by hand. Additionally, the forecast 
estimates traffic volumes based simply on the total number of cars, not 
on the specific categories of vehicles. Therefore, instead of separating 
different vehicle kinds, which can contain extra information not 
picked up by the models, we combined vehicle types.

We only make four splits when dividing the data for model 
training and validation. This choice made sense, as it would 
be computationally demanding to optimize the hyperparameters for 
each fold and redo the training process 30 times. To assess the impact 
of independent model-building processes on model performance, a 
minimum of 30 runs were selected for execution. In this work, 
we tuned the hyperparameters in two stages. Initially, we looked at 
the hyperparameters for several distinct learning methods. Further 
hyperparameter tuning was done only for neural networks after it 
became evident that they performed better than other models. All 

models required extensive parameter adjustment, which was 
necessary to avoid the significant computational costs involved. 
Similar to models that naturally support and are capable of efficiently 
minimizing the MAE measure, they were given priority when they 
were chosen for examination. Some tree-based algorithms slow down 
the entire process by searching for median values during feature 
splitting when the MAE is used. This results in a substantial increase 
in computational time. Moreover, representation of features may be a 
problem for some machine learning methods. This can have a 
detrimental effect on tree construction, especially for multiple 
one-hot encoded features (Au, 2018).
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