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Urban green spaces are pivotal for mitigating environmental challenges and 
enhancing urban livability, yet existing methods for assessing demand often neglect 
multidimensional interactions and nonlinear relationships. This study introduces an 
autoencoder-based framework to analyze regional variations in urban green space 
demand, integrating ecological and social indicators—land surface temperature 
(LST), carbon dioxide concentration, and population density—through a deep 
learning approach. Focusing on Chengdu’s central urban area, we employed 
Gaussian two-step floating catchment area (Ga2SFCA) methods to quantify demand 
across accessibility, heat island mitigation, and carbon sequestration, followed 
by autoencoder-driven feature extraction and k-means++ clustering. Results 
revealed distinct spatial heterogeneity: carbon sequestration demand concentrated 
in high-emission urban cores, heat island mitigation demand peaked in peripheries 
with elevated LST, and accessibility deficits dominated densely populated zones. 
The autoencoder outperformed traditional PCA, achieving a reconstruction 
error of 4.71 × 10⁻⁵ versus PCA’s 3.01 × 10⁻³, and captured nonlinear interactions 
among variables through interpretable latent features. Our framework provides a 
spatially refined, data-driven tool for optimizing green space allocation, addressing 
climate resilience, and prioritizing equity in urban planning. This work advances 
sustainable urban development by unifying ecological and social dimensions, 
offering actionable insights for policymakers to balance resource constraints 
with growing environmental pressures.
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1 Introduction

With the rapid advancement of urbanization, cities worldwide are facing increasingly 
severe ecological and environmental challenges. One such critical issue is Urban Heat Stress 
(UHS), which is worsened by more frequent and intense heatwaves. As a core component of 
urban ecosystems, urban green spaces not only provide valuable natural resources for city 
residents but also play a crucial role in mitigating the urban heat island effect, improving air 
quality, and enhancing the physical and mental health of residents. Recent studies have 
emphasized the vital role of urban green spaces in mitigating UHS, highlighting their 
environmental benefits and their contribution to residents’ well-being during extreme heat 
events (Lopes et al., 2025; Lopes et al., 2025). Therefore, scientifically and reasonably assessing 
and allocating urban green space resources has become a key issue in urban sustainable 
development research.
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In the process of urban green space resource allocation, 
establishing a scientific and reasonable framework for assessing urban 
green space demand is fundamental to ensuring the efficient and 
rational allocation of resources. Early studies often focused on a single 
dimension, such as assessing green space demand through population 
density, green space coverage, or air pollution levels. Some scholars 
argue that areas with high population density should be equipped with 
more green spaces to meet the recreational and leisure needs of 
residents (Wen and Zheng, 2023; Tan et al., 2022; Huang et al., 2023); 
others focus on air pollution levels, particularly carbon dioxide 
concentration, advocating for the prioritization of green space 
expansion in high-pollution areas to absorb pollutants (Bhandari and 
Zhang, 2022; Wang et al., 2022; Permata et al., 2021). However, these 
single-indicator approaches have evident limitations, mainly in 
neglecting the interaction effects between green space demand and 
the research indicators, as well as lacking a refined analysis of different 
regions and their spatiotemporal variations.

To more scientifically study the relationship between green spaces 
and single indicators (such as population density), researchers have 
gradually shifted their focus to green space accessibility assessments, 
believing that green space accessibility not only determines the 
livability of the environment but also directly affects individual well-
being (Chen et  al., 2022; Xu and Wang, 2024). To address spatial 
inequity, some studies have conducted multidimensional 
comprehensive assessments of green space accessibility from the 
perspective of supply and demand differences, further improving the 
assessment theoretical framework from the supply and demand 
perspective (Jin et al., 2023; Dong et al., 2023). This exploration has 
laid a solid foundation for subsequent research.

As research deepened, scholars began to focus on residents’ 
preferences and the ecosystem services provided by different types of 
urban green spaces at various spatial scales, thereby promoting further 
discussions on the supply and demand matching issue. The supply 
capacity and demand for ecosystem services have become key areas in 
urban and rural ecological planning. Researchers have employed 
spatially explicit models as decision support tools to reveal more 
complex supply–demand relationships (Zhao et  al., 2023; Du 
et al., 2025).

Currently, research directions have further expanded to include 
fields such as ecological studies, green space systems, stormwater 
management, and greenway construction, all of which emphasize the 
importance of green space infrastructure connectivity 
(Cheshmehzangi et  al., 2021). Furthermore, some researchers 
conducted spatial clustering and Boston Consulting Group matrix 
analysis of 286 Chinese cities to explore the aggregation patterns and 
changes of urban green space systems (UPGS) from 2010 to 2020, 
introducing a spatial mismatch model to analyze the matching of 
supply and demand with GDP (Zhao et al., 2024).

However, most studies still evaluate urban green space demand by 
separating ecological and social dimensions, neglecting the inherent 
interactive relationship between them. Moreover, traditional 
assessment methods typically rely on simple statistical techniques, 
making it difficult to capture the deep non-linear relationships 
between urban green space demand, ecological environments, and 
social structures. This, to some extent, limits the scientific allocation 
and rational planning of urban green space resources.

To overcome the limitations of existing studies, this research 
proposes a multidimensional urban green space demand assessment 

framework based on autoencoders. This innovative approach integrates 
multiple ecological and social indicators, such as population density, 
land surface temperature (LST), and carbon dioxide concentration. By 
utilizing autoencoder technology, we analyze and model these complex 
datasets to compare differences in urban green space demand. This 
method not only refines spatial resolution by using a 200-m cellular 
grid to divide the city into smaller units, enabling more accurate 
demand difference assessments, but also leverages the advanced deep 
learning model, the autoencoder, to automatically extract latent features 
from large datasets, effectively performing dimensionality reduction 
and enhancing the model’s accuracy and generalization ability.

A key aspect of this research is that the autoencoder model used 
here can capture complex relationships between data through 
nonlinear mapping, enabling deep integration of data based on 
multidimensional feature learning. We  conduct a comprehensive 
analysis of green space demand and other environmental variables 
(such as population density, temperature, and carbon dioxide 
concentration), generating a comprehensive assessment map of urban 
green space demand. This provides more comprehensive decision 
support for urban green space planning.

One of the major contributions of this study is that it breaks 
through the limitations of traditional green space demand assessment 
methods by achieving the comprehensive integration of 
multidimensional data for the first time. Through autoencoder 
technology, it automatically extracts features and precisely identifies 
differences in green space demand intensity across various regions of 
the city. Specifically, this research offers urban planners a novel green 
space demand assessment framework that clearly identifies high-
demand areas, particularly in urban core areas facing environmental 
pressures and high population density. This method not only has high 
academic value but also demonstrates broad potential for practical 
applications, particularly in the scientific allocation of urban green 
space resources, optimization planning, and policy formulation.

Furthermore, based on a data-driven framework, this study 
systematically evaluates urban green space demand, aiming to provide 
scientific evidence for urban managers to ensure rational green space 
allocation under limited resources. This approach optimizes the 
ecological environment while expanding residents’ recreational space, 
thereby enhancing the overall quality of life and social welfare for urban 
residents. Additionally, environmental issues such as extreme weather 
events triggered by global climate change, the increasingly prominent 
urban heat island effect, and air pollution make green spaces play a 
critical role in mitigating urban climate pressures and regulating regional 
microclimates. With the evaluation method proposed in this study, 
urban planners can formulate more detailed green space layout plans 
based on comprehensive data, effectively mitigating environmental risks 
and providing feasible strategic support for addressing climate change.

The structure of this paper is as follows: Section 2 introduces the 
study area and its selection rationale; Section 3 describes data sources, 
research methods, and model construction; Section 4 presents the 
analysis results; Section 5 discusses model performance; Section 6 
summarizes the research conclusions.

2 Study area

This study focuses on the central urban area of Chengdu (i.e., 
the area within the Chengdu Ring Expressway) (Figure 1), located 
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in the Chengdu Plain of Sichuan Province. The area belongs to a 
typical subtropical monsoon climate zone, with an average annual 
temperature of approximately 16 °C. As a high-density and highly 
urbanized region, central Chengdu not only faces the issue of 
uneven distribution of green space resources but also suffers from 
insufficient green space coverage. Especially in high population 
density areas, the shortage of green space supply not only 
exacerbates the urban heat island effect but also negatively impacts 
residents’ quality of life and the ecological environment (Ouyang 
et  al., 2024). According to statistics, the central urban area of 
Chengdu contains a total of 657 green space patches, with a total 
area of 7,094 hectares. Although the per capita green space area 
reaches 11.02 m2, most of the green space is concentrated on the 
urban periphery, making it difficult to meet the ecological and social 
needs of the city center. This indicates that the current urban green 
space system exhibits significant fragmentation and isolation 
(Zhang et al., 2024).

3 Data and methods

3.1 Data collection and processing

The core data for this study primarily comes from remote sensing 
imagery, urban geographic information, and Geographic Information 
System (GIS) datasets. The study area is the central urban district of 
Chengdu, with its boundaries defined by the Chengdu Ring 
Expressway. To assess Urban Green Space demand, the following data 
were collected: 2024 Land Surface Temperature (LST) TIFF data, 2022 
carbon dioxide concentration TIFF data, 2024 population density 
TIFF data, the boundary data of the central urban area of Chengdu, 
and the 2024 urban green space Shapefile (SHP) data for the central 
urban area of Chengdu (Figure 2). All data were uniformly processed 
in space to ensure consistency in the coordinate system and resolution 

across datasets, thus providing a solid data foundation for 
subsequent analysis.

In this study, the boundary of the central urban area of Chengdu 
is defined according to the “Chengdu Urban Master Plan (2011–
2020)” and refers to the area enclosed by the Chengdu Ring 
Expressway (Qiao et al., 2024). The Land Surface Temperature (LST) 
data were obtained through inversion techniques from Landsat 
remote sensing imagery, and were corrected using standard 
atmospheric and surface meteorological data, ensuring high accuracy 
and extensive spatial coverage. This data effectively reveals the 
distribution characteristics of the urban heat island effect (Vaishnavi 
et al., 2024). The carbon dioxide concentration data were sourced 
from the ODIAC dataset provided by the Center for Global 
Environmental Research, which serves as an important indicator of 
urban carbon sequestration demand and ecological environmental 
quality. This data is crucial for air quality and climate change analysis 
(Xie et al., 2023). The population density data were obtained from the 
World Pop website, which provides high-resolution global population 
distribution information and offers detailed data support for 
understanding the spatial distribution of social demand for urban 
green space. Additionally, the urban green space data for the central 
urban area of Chengdu is provided in Shapefile format and sourced 
from OpenStreetMap public data. This dataset includes spatial 
information for all known green spaces and parks and serves as the 
foundational data for conducting green space demand assessments.

In the data preprocessing stage, all datasets underwent sequential 
refinement to ensure spatial integrity and analytical consistency, 
beginning with strict coordinate registration for geographic alignment, 
followed by comprehensive missing value imputation using k-nearest 
neighbors interpolation, and concluding with format standardization 
to homogenize data structures. To specifically address noise sensitivity 
inherent in unsupervised learning, we implemented robust outlier 
detection via the Interquartile Range (IQR) method (±1.5 × IQR 
threshold), flagging extreme values for winsorization, coupled with 

FIGURE 1

China map (left top), Sichuan Province map (left bottom), and Chengdu map (right).
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non-parametric scaling through RobustScaler (scikit-learn 
implementation), which centers data by the median and scales by 
interquartile range to diminish outlier influence. These targeted 
preprocessing procedures collectively enhanced the noise robustness 
of subsequent autoencoder training. Finally, spatial overlay and 
analytical operations were performed in GIS to derive per-grid green 
space demand indices, yielding refined datasets for segmented 
feature extraction.

These preprocessing enhancements substantially fortified the 
noise robustness of subsequent autoencoder training. Following data 
sanitization, GIS-based spatial overlay and analytical operations were 
applied to derive per-grid green space demand indices. The resultant 
refined datasets provided a reliable foundation for segmented feature 
extraction and autoencoder-based latent space learning.

3.2 Overview of the methodology

This study proposes an autoencoder-based framework for 
assessing Urban Green Space demand (Figure  3), which 
comprehensively considers both social and ecological dimensions. 
First, the study area is divided into 200-m side-length hexagonal 
grids. The Gaussian two-step moving search method is then used 
to calculate social demand based on green space accessibility and 

ecological demand based on heat island effect mitigating capacity 
and carbon sequestration capacity. Next, an autoencoder is 
employed to perform feature learning on the three types of 
demand data, extracting green space demand features and other 
relevant characteristics from the encoded vectors in the latent 
space. Finally, the obtained latent features are subjected to 
k-means++ clustering for dimensionality reduction. Through the 
convergence of the trained model, the final differences in Urban 
Green Space demand across regions are determined, providing a 
scientific basis for the optimized allocation of urban green 
space resources.

3.3 Multidimensional urban green space 
demand calculation

In this phase, the city is first divided into hexagonal grid cells 
with a side length of 200 m, which serve as the basic units for 
spatial analysis. Based on these grids, this study innovatively 
applies the Gaussian two-step moving search method (2SFCA) to 
calculate the Urban Green Space demand in three dimensions: 
demand based on green space accessibility, demand based on heat 
island effect mitigating capacity, and demand based on carbon 
sequestration capacity.

FIGURE 2

(a) The CO2 concentration distribution map. (b) The land surface temperature distribution map. (c) The population density distribution map. (d) The 
Chengdu green space distribution map.
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3.3.1 Green space demand based on accessibility
This study uses accessibility as a core measure of urban social 

demand, aiming to analyze the responsiveness of green space 
resources in meeting residents’ rights to live and their social welfare 
needs. Based on the urban spatial justice theoretical framework, high-
density residential areas experience a significant increase in population 
aggregation and ecological service demand intensity, making the 
mismatch between green space supply and demand more pronounced. 
Therefore, accessibility is prioritized as the parameter for demand-side 
evaluation (Czesak and Różycka-Czas, 2025). In terms of spatial 
analysis methodology, an improved two-step floating catchment area 
(2SFCA) method is applied, with a 1,000-m service radius threshold 
for measuring accessibility. This threshold is based on the “15-min 
living circle” spatial scale standard outlined in the “Urban Residential 
Area Planning and Design Standards,” which aligns with residents’ 
daily recreational behaviors and effectively reflects the spatiotemporal 
efficiency of urban green space service coverage. This method uses a 
dual-search mechanism to simultaneously consider the spatial 
matching relationship between the supply side (green space service 
capacity) and the demand side (population density), accurately 
identifying areas with high demand but low supply (Long et al., 2024).

3.3.2 Green space demand based on heat island 
effect mitigating capacity

The urban heat island effect refers to the phenomenon where 
urban areas experience elevated temperatures due to the abundance 
of artificial facilities and dense buildings (Kim and Brown, 2021). 
To mitigate this effect, increasing green space coverage is critical 
for reducing urban temperatures. This study further evaluates the 
impact of the heat island effect on green space demand by analyzing 
the relationship between land surface temperature changes and 
green space distribution. In terms of spatial analysis methodology, 
we used an improved two-step floating catchment area (2SFCA) 
method to quantify green space demand and introduced a Gaussian 
decay function to replace the traditional binary method. This 

continuous decay model better aligns with the spatial decay pattern 
of heat environment improvement effects (Xue et al., 2023). The 
core advantage of the two-step floating catchment area method lies 
in its bidirectional supply–demand matching mechanism, which 
not only considers the supply capacity of green space resources 
(such as patch area and vegetation coverage) but also integrates the 
spatial demand weight of heat island intensity areas. We  set a 
500-m service radius threshold, which was selected based on dual 
validation: on one hand, behavioral geography studies show that 
when walking distances exceed 500 m, the likelihood of residents 
choosing to enter green spaces for cooling drops significantly by 
63.7%; on the other hand, the negative correlation between land 
surface temperature (LST) and green space patches peaks at the 
500-m scale (r = −0.71, p < 0.01), indicating that this radius 
effectively captures the boundary effect of green space on 
microclimate regulation (Zhang et al., 2025; Wang et al., 2019).

3.3.3 Green space demand based on carbon 
sequestration capacity

The carbon sequestration function is one of the key ecological 
functions of green spaces in addressing climate change. By calculating 
the potential carbon sequestration capacity of green spaces in different 
regions, this study assesses the demand for green space in terms of 
carbon dioxide absorption and the reduction of greenhouse gas 
emissions. Previous studies have shown that urban green spaces’ 
carbon dioxide absorption is mainly concentrated within a 10-km 
range. Therefore, this study uses a 10-km radius for green space supply 
and demand matching, constructing a supply capacity table for each 
green space based on this radius (Gao et al., 2024; Xu et al., 2023). 
Given the typical demand–supply relationship between carbon dioxide 
absorption demand and the green space absorption radius, the study 
employs the two-step floating catchment area (2SFCA) method to 
calculate green space demand based on carbon sequestration capacity, 
clearly reflecting the impact of carbon dioxide concentration on urban 
green space demand in the central urban area of Chengdu.

FIGURE 3

Research process flowchart.
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3.3.4 Gaussian two-step floating catchment area 
(Ga2SFCA)

The Gaussian Two-Step Floating Catchment Area (Ga2SFCA) is 
a method used to analyze the spatial accessibility of public service 
facilities. By incorporating a Gaussian function to address the distance 
decay issue, this method more accurately measures the accessibility of 
facilities. Below are the formula and parameter explanations:
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	•	 i: Demand point, such as a residential area or street;
	•	 j: Supply point, such as a hospital, green space, or other facilities;
	•	 dkj: The distance between demand point i and supply point j;
	•	 d0: Search radius threshold, used to define the spatial scope of 

the supply and demand points;
	•	 Pk: The demand population at demand point k;
	•	 Sj: The service capacity of supply point j, such as the area of green 

space or the number of hospital beds;
	•	 Rj: The supply–demand ratio at supply point j, i.e., the ratio of 

service capacity to the potential demand population;
	•	 Ai: The accessibility of demand point i, representing the degree 

to which the point can access the supply facility.

G (dkj, d0): Gaussian decay function, used to account for the 
impact of distance decay on accessibility. The formula is:
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e refers to the base of the natural logarithm.

3.4 Extraction of nonlinear features using 
autoencoders

Autoencoder (AE) is an unsupervised learning algorithm 
designed to learn effective representations of data. It is widely used in 
tasks such as dimensionality reduction and feature extraction, as 
shown in Figure 4. An autoencoder consists of two parts: an encoder 
and a decoder. The encoder maps the input data to a low-dimensional 
latent space representation, while the decoder attempts to reconstruct 
the original input from this low-dimensional representation. The goal 
of an autoencoder is to minimize the reconstruction error, which is 
the difference between the input and the output, thereby forcing the 
model to learn the most important features of the data (Liu 
et al., 2018).

During the training process, the autoencoder adjusts its 
parameters using backpropagation and gradient descent optimization 
algorithms, gradually improving its reconstruction ability and 
feature extraction performance. This study proposes a framework 
that combines the autoencoder with the k-means++ clustering 
algorithm, aimed at evaluating the regional differences in Urban 
Green Space demand. This framework effectively captures the 
complex internal structure of urban green space demand. The data 
for this study mainly include remote sensing imagery, urban 
geographic data, and GIS datasets. After preprocessing, three key 
indicators—heat island effect mitigating capacity (HIEMC), carbon 
sequestration capacity (CEC), and green space accessibility (GSA)—
were extracted, normalized, and stored in CSV files for 
subsequent analysis.

In the clustering analysis, this study employs the K-means++ 
clustering algorithm to cluster the latent features extracted by the 
autoencoder. The clustering process involves sorting and reallocating 
the cluster center means, ultimately dividing urban areas into different 
levels of green space demand. Specifically, a custom autoencoder 
model was designed, consisting of an encoder, an auxiliary 
classification branch, and a decoder (Figure 5). The encoder uses a 
five-layer fully connected network to map the input data to an 
8-dimensional bottleneck layer to obtain a global low-dimensional 
latent representation.

FIGURE 4

Classic autoencoder architecture.
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To achieve clustering of the latent features, an auxiliary 
classification branch was introduced based on the bottleneck layer. 
This branch uses the improved k-means++ algorithm to cluster the 8 
latent features extracted by the autoencoder, ultimately resulting in 10 
different levels of urban green space demand. During training, the 
reconstruction task is optimized using the mean squared error (MSE) 
loss function, while the classification task is optimized using the 
k-means++ algorithm.

3.4.1 Extraction of latent features from 
multidimensional data using autoencoders

In this study, the extraction of latent features is accomplished 
through the encoder part of the autoencoder model. First, the input 
data is standardized to ensure that the mean of each feature is zero and 
the variance is one. Standardization eliminates the differences in the 
scale of different features, enabling the model to learn better during 
the training process and preventing certain features from 
disproportionately affecting the model due to scale issues. The 
standardized data is then fed into the encoder part of the autoencoder, 
where it undergoes progressive mapping through multiple fully 
connected layers, ultimately compressing the data from high-
dimensional space to a low-dimensional latent space (Figure 6).

The encoder part of the autoencoder consists of several fully 
connected layers, with each layer progressively compressing the data 
through different numbers of neurons. Specifically, the first layer of 
the encoder has 128 neurons, the second layer has 64 neurons, the 
third layer has 32 neurons, the fourth layer has 16 neurons, and finally, 
the bottleneck layer (latent layer) compresses the data into an 
8-dimensional latent representation. This 8-dimensional latent layer 
captures the key information from the input data and is the most 
representative part of the entire autoencoder. Through this 
compression, we not only reduce the dimensionality of the data but 
also remove redundant information, allowing the model to effectively 
retain the main features of the data.

In this process, we specifically chose SELU (Scaled Exponential 
Linear Units) as the activation function. SELU is an activation 
function that has been widely used in deep neural networks in recent 

years, featuring self-normalizing properties. Compared to traditional 
activation functions such as ReLU and Sigmoid, SELU can effectively 
avoid the vanishing gradient problem in deep neural networks and 
accelerate the convergence speed of the model. The activation formula 
for SELU is as follows:

	

( ) ( )λ
α

>=  − ≤

0

1 0x

x if x
SELU x

e if x

Where λ and α are hyperparameters, typically set to λ = 1.0507 
and α = 1.6733. The piecewise linear function in this formula ensures 
that SELU behaves as a linear function in the positive region and as an 
exponentially growing function in the negative region, thereby 
stabilizing the activation values within a certain range. Unlike the 
traditional ReLU function, SELU not only avoids the dead neuron 
problem but also maintains the variance of signals in the network, 
improving stability during the training process.

One of the key advantages of SELU is its self-normalizing property. 
It can automatically adjust the output of neurons in the network, 
maintaining the distribution of activation values in deep networks. 
Traditional activation functions, such as ReLU, are prone to gradient 
vanishing or explosion issues, especially in deep networks, leading to 
instability during training. However, SELU ensures that activation 
values maintain relatively consistent variance during propagation 
through each layer, which promotes effective gradient propagation and 
improves the training efficiency of deep neural networks.

By using the SELU activation function in each layer, we can ensure 
that the autoencoder is more stable during training and converges 
faster. Specifically, the activation output of each layer is processed 
through the SELU function, ensuring that the signals in the network 
maintain an appropriate distribution and avoiding potential issues 
with gradient vanishing or explosion during training. This not only 
enhances the stability of the training process but also accelerates it, 
allowing the autoencoder to effectively learn the deep features within 
the data.

FIGURE 5

The model structure includes the autoencoder layers and the k-means++ clustering branch.
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During the training process, the Mean Squared Error (MSE) is 
used as the loss function, with the goal of minimizing the difference 
between the original input data and the reconstructed data. The 
formula for calculating the MSE is as follows:

	
( )=

= −∑
2

1
1 n

i iiMSE x x
n

where ix  is the reconstructed data from the model, xi is the 
original input data, and n is the number of samples. By minimizing 
this loss function, the model can continuously optimize its parameters 
during training, enabling a more accurate representation of the input 
data in the latent space.

During training, the Adam optimizer is used, with a learning 
rate set to 0.0001. After training for 500 epochs, the model can 
extract low-dimensional latent features from the standardized data. 
The latent features extracted by the encoder represent a 
low-dimensional depiction of the data, containing key information 
from the original data while removing redundant dimensions, thus 
providing concise and representative input for subsequent analysis 
(Bhattacharjee et al., 2024; Zhang et al., 2024; Rochmawati et al., 
2021; Hazra et al., 2020).

Finally, after the training is complete, the latent features extracted 
by the encoder will be saved in a new data table, along with the ID of 
each sample, for future clustering analysis or other data analysis tasks. 
Through this process, we  have extracted low-dimensional, 
information-rich latent features from high-dimensional data, 
providing strong data support for the subsequent clustering analysis.

In summary, the reason for selecting SELU as the activation 
function lies in its self-normalizing properties, which effectively avoid 
the vanishing gradient problem in deep neural networks and 
accelerate the convergence process of the network. Additionally, the 
use of SELU in each layer ensures that the model can converge stably 
during training, improving training efficiency. Moreover, by extracting 
latent features through the autoencoder, we have successfully mapped 
high-dimensional data to a low-dimensional latent space, thus 
providing a more concise and efficient representation for subsequent 
analysis (Sakketou and Ampazis, 2019; Pratama and Kang, 2020; Lu 
et al., 2023).

The specific autoencoder parameters are shown in Table 1.

3.4.2 Clustering of latent features using the 
K-means++ algorithm

In this study, the clustering process uses the K-means++ 
algorithm, aimed at effectively clustering the latent features extracted 
by the autoencoder. K-means++ is an improvement of the classic 
K-means algorithm, primarily designed to enhance the stability and 
quality of clustering results by optimizing the selection of initial 
cluster centers. Compared to the traditional K-means algorithm, 
K-means++ reduces the negative impact of uneven initialization of 
cluster centers by using a more intelligent initialization step, thus 
avoiding the issue of getting trapped in local minima.

The initialization steps of K-means++ can be  summarized 
as follows:

Selecting the first cluster center: Randomly choose a data point 
from all the data points as the first cluster center.

FIGURE 6

The autoencoder architecture, with the encoder on the left and the decoder on the right.
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Selecting subsequent cluster centers: For each remaining data 
point, calculate the Euclidean distance from the point to the already 
selected cluster centers, and select the next cluster center based on the 
squared distance to the total distance ratio. Specifically, the probability 
of selecting a point as a cluster center is proportional to the squared 
distance from it to the current cluster centers.

Repeating step 2 until the required number of cluster centers (in 
this study, 10 cluster centers) are chosen (Cohn and Holm, 2021).

This initialization method ensures that the initial cluster centers are 
spaced apart, which helps the clustering process converge more effectively.

In this study, the K-means++ algorithm was applied to cluster the 
8-dimensional latent features extracted by the autoencoder. First, the 
data were standardized to ensure that each feature had a zero mean 
and unit variance, which helps reduce the impact of scale differences 
between features on the clustering results. Then, the K-means 
algorithm was applied with the “init” = ‘k-means++’ parameter to 
cluster the data using the K-means++ initialization method. In the 
code implementation, the “kmeans.fit_predict(data_scaled)” function 
was used to cluster the standardized data and return the cluster labels 
for each sample.

The key advantage of the K-means++ algorithm is its ability to 
reduce the dependence of clustering results on the initial conditions 
by optimizing the selection of initial cluster centers, thus improving 
the stability and accuracy of clustering. Through clustering, we were 
able to divide the latent features into 10 different clusters, with each 
cluster representing similar data points in the latent feature space.

After the K-means++ clustering was completed, to further 
evaluate the clustering results, we calculated the Euclidean norm (L2 
norm) of each cluster center, which represents the distance from the 
cluster center to the origin. The formula for calculating the Euclidean 
norm is as follows:

	
( )=

= ∑
2

1
n

i ijjc c∣∣

Where ci represents the i-th cluster center, cij represents the 
coordinate of the i-th cluster center in the j-th dimension, and n is the 
dimensionality of the data. In this study, the dimensionality of the 
cluster centers is 8, so the Euclidean norm calculates the distance of 
each cluster center from the origin.

Next, using the calculated Euclidean norms, we sorted the cluster 
centers. Cluster centers that are closer to the origin were assigned to 
smaller ranks, while those further from the origin were assigned to 
larger ranks. Through this ranking, we were able to assign a rank to 
each cluster and assess the nature of the clusters based on the relative 
positions of the cluster centers.

Finally, the clustering labels and rank information were stored in 
a new Excel file for subsequent analysis and visualization. Through 
K-means++ clustering and the calculation of Euclidean norms, 
we gained deeper insights into the latent structure of the data and 
provided a solid foundation for subsequent regional analysis.

3.4.3 Result visualization
The result of the visualization process in this study was based on 

GIS PRO software. First, the K-means++ clustering results obtained 
in the study were imported into the GIS PRO environment. Building 
on this, the clustering results were integrated with the attribute table 
of the cellular network in the study area, further combining geographic 
spatial data with clustering information. This process not only 
effectively visualized the data in a geospatial context but also enhanced 
the connection between clustering analysis and the actual regional 
attributes, providing more intuitive support for the visualization of the 
research results. Finally, combining the attributes of the cellular 
network, the clustering results for the study area were clearly displayed, 
providing important visual support for subsequent spatial analysis and 
decision-making.

4 Results

4.1 Model training results

In this study, feature extraction of urban green space demand data 
was performed using an autoencoder model. The training process 
used standardized data (including GSA, CEC, and HIEMC features) 
and employed the Adam optimizer and SELU activation function. The 
training ran for a total of 100 epochs, with each epoch utilizing a batch 
size of 32 samples.

4.1.1 Reconstruction error analysis
The objective of the autoencoder model is to minimize the mean 

squared error (MSE) between the input data and the reconstructed 
data. Upon completion of training, the model successfully compressed 
the input data from three-dimensional space to an 8-dimensional 
latent space, while keeping the reconstruction error at a low level. 
Specifically, the MSE stabilized at approximately 4.71e-05 during the 
final stages of training, indicating that the model effectively retained 
key information of the data during compression and reconstruction.

4.1.2 Latent feature extraction
Using the trained autoencoder model, we  extracted 8 latent 

features from the data. These features effectively represent the primary 
variations in the original data and were used for subsequent clustering 

TABLE 1  Autoencoder parameter table.

Parameter Value/Selection

Input data
Standardized dataset (standardized 

using StandardScaler)

Input dimensions
3 (Corresponding to HIEMC, GSA, 

CSC features)

Encoder layers 5 Layers

Encoder units [128, 64, 32, 16, 8]

Activation function
SELU (Scaled Exponential Linear 

Units)

Latent feature dimensions 8

Decoder layers 4 Layers

Decoder units [16, 32, 64, 128]

Output layer Linear activation function (linear)

Loss function Mean Squared Error (MSE)

Optimizer Adam optimizer

Learning rate 0.0001

Epochs 500 epochs

Batch size 64
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analysis. The extraction of latent features not only reduced the 
dimensionality but also enhanced the model’s ability to capture the 
intrinsic structure of the data.

4.1.3 Clustering results
Based on the extracted latent features, the K-means++ clustering 

algorithm was used to divide the data into 10 clusters. The Euclidean 
norm (L2 norm) of each cluster center was calculated and sorted in 
ascending order to determine the relative importance rank of each 
cluster. Using this method, we were able to identify differences in 
green space demand across different regions. The potential feature 
values for each clustering level are shown in Table 2.

Overall, the autoencoder model successfully extracted 
representative latent features from the original data and provided 
effective input for clustering analysis. The low reconstruction error 
during the training process indicates that the model performed well 
in data compression and reconstruction, and the subsequent clustering 
results further validate this.

4.2 Regional distribution of urban green 
space demand

After multiple rounds of training, we  have derived the final 
regional distribution map of Urban Green Space demand. This series 
of maps illustrates the urban green space demand distribution in the 
central urban area of Chengdu, based on various environmental and 
social factors. Each map demonstrates how green space demand is 
influenced by specific factors, such as carbon sequestration, heat 
island effect mitigation, and accessibility. Below is a detailed analysis 
of each image and the fundamental patterns they reflect.

4.2.1 Green space demand based on carbon 
sequestration

The first map (Figure 7a) shows the distribution of urban green 
space demand based on carbon sequestration capacity (CSC). The 
color gradient indicates that demand is concentrated in areas with 
higher carbon dioxide emissions, typically located in industrial or 
densely populated regions. These areas with higher demand (darker 
regions) represent locations that need to counteract the negative 
environmental impacts of increased carbon dioxide concentrations 

through carbon sinks. Carbon sequestration demand is primarily 
concentrated in the city center and near major transportation hubs, 
where both population density and carbon dioxide emissions 
are higher.

This distribution suggests that these areas require special attention 
to green space supply in order to mitigate the negative environmental 
impacts of urbanization. The carbon sequestration capacity of green 
spaces in these areas can be an important strategy for reducing the 
urban carbon footprint, improving air quality, and contributing to 
climate change mitigation.

4.2.2 Green space demand based on heat island 
effect mitigation

The second map (Figure  7b) reflects the green space demand 
based on heat island effect mitigating capacity (HIEMC). Areas with 
strong heat island effects are shown in red and orange, which are 
typically high-heat urban areas with higher land surface temperatures 
(LST). This phenomenon is common in urban areas covered by 
impervious surfaces such as concrete and asphalt, which absorb and 
retain heat. This pattern is consistent with the widespread 
phenomenon of urban heat island effects, which intensify local 
temperature variations within cities.

Regions with more severe heat island effects require a large 
amount of green space to help cool the area and mitigate the urban 
heat effect. Analysis shows that the outskirts of the city (where 
urban sprawl is more noticeable) may also face more significant 
heat stress issues, further highlighting the necessity for effective 
urban green space planning to restore thermal comfort for 
urban residents.

4.2.3 Green space demand based on accessibility
The third map (Figure  7c) presents the green space demand 

distribution based on green space accessibility (GSA), focusing on the 
accessibility of green spaces, particularly the population density and 
ease of access to green spaces. Regions with higher demand are shown 
in yellow and orange, indicating that residents in these areas may face 
difficulties accessing green spaces. High-demand areas with dense 
populations point to the urgent need to improve green space 
accessibility, which is crucial for the quality of life of residents. These 
areas may include urban slums or places with insufficient green 
space coverage.

TABLE 2  The potential feature values of the cluster centroid.

Clustering 
level

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7 Feature 8

Level 1 0.04111 −0.26080 −0.15279 0.75942 0.47185 0.49143 −0.64728 −0.75840

Level 2 −0.68895 −0.36670 −0.30439 −0.55813 0.31330 −0.66320 0.59082 1.20241

Level 3 1.80962 3.37183 3.24812 −1.71033 −0.46679 1.53254 1.55642 −0.00681

Level 4 1.30531 0.21843 0.78057 −1.48055 −0.58869 −0.89779 0.02287 0.96027

Level 5 1.07122 0.10963 −0.00057 1.35965 1.23563 1.41748 −0.50452 −1.05567

Level 6 −0.89236 2.57732 2.28290 −1.57283 1.40526 1.89351 2.08134 1.17159

Level 7 0.33794 −0.59541 −0.67248 0.13641 −0.75353 −0.70121 −0.40946 −0.16744

Level 8 3.40497 2.30754 2.22819 −0.87287 −1.35831 −0.40625 −0.48042 −1.39747

Level 9 −0.37063 0.37899 0.77419 −1.73378 −0.38156 −0.44038 2.84435 2.26629

Level 10 −0.75570 0.82759 0.80473 −0.54337 1.72393 1.02346 0.08105 0.54383
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Using accessibility as a measure effectively highlights regions that 
need spatial interventions to improve green space accessibility. The 
analysis suggests that urban planning should focus on improving the 
connectivity of green spaces, especially in densely populated areas, to 
ensure all residents have equal access to natural spaces, which 
contributes to physical and mental health.

4.2.4 Comprehensive green space demand 
distribution

The final map (Figure 8) integrates carbon sequestration capacity 
(CSC), heat island effect mitigating capacity (HIEMC), and green 
space accessibility (GSA) to create a comprehensive green space 
demand distribution map. This integrated map provides a 

multidimensional perspective on urban green space demand, 
combining spatial needs related to carbon capture, temperature 
regulation, and accessibility. The most urgent demand areas (darker 
regions) are those with high carbon emissions, intense heat island 
effects, and poor green space accessibility.

The results show that the areas with the most urgent demand tend 
to be densely populated urban areas and transportation hubs, where 
there is a high demand for carbon sequestration capacity and a 
significant urban heat island effect. Furthermore, these areas face high 
population pressures on green space, and the existing fragmented 
green spaces struggle to meet these needs.

Analyzing this comprehensive map is crucial for urban 
planners and decision-makers, as it helps prioritize areas that most 
require green space interventions. For example, areas with high 
carbon emissions, severe temperature increases, and poor green 
coverage, especially in central and suburban zones, should be the 
focus of sustainable urban greening plans. Providing green spaces 
in these areas can not only reduce carbon emissions but also 
mitigate urban heat island effects and improve living conditions for 
urban residents.

4.3 Summary

These visual analyses provide valuable insights into the 
distribution of green space demand across different environmental 
and social dimensions. The maps highlight areas with low carbon 
emissions, severe heat island effects, and poor accessibility that 
need particular attention to green space provision. By focusing on 
these areas, urban planners can create green spaces that contribute 
to environmental sustainability while enhancing the quality of life 
for urban residents. This integrated approach, combining 
ecological, social, and accessibility factors, is essential for the 
sustainable development and resilience of Chengdu’s 
urban landscape.

5 Discussion

5.1 Comparison of PCA and autoencoder 
performance

Principal component analysis (PCA) is a classical method 
used for data dimensionality reduction and feature index 
extraction, widely applied in many studies. This study aims to 
explore the differences between the PCA method and an 
autoencoder model based on weakly supervised learning in terms 
of their ability to reduce data dimensions and extract feature 
indices. We analyzed the spatial distribution of Urban Green Space 
demand and the initial data reconstruction capabilities derived 
from both methods.

5.1.1 Logical connotations of autoencoder and 
principal component analysis

Both autoencoder (AE) and principal component analysis (PCA) 
are effective techniques for data dimensionality reduction, but their 
logical foundations and application contexts differ. PCA is a linear 
transformation-based dimensionality reduction method that finds the 

FIGURE 7

(a) Carbon sequestration capacity distribution. (b) Heat island effect 
mitigating capacity distribution. (c) Green space accessibility 
distribution.
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direction of maximum variance in the data by linearly combining the 
original data’s features. It extracts the most informative principal 
components by maximizing the variance of the data. The core idea 
behind PCA is to preserve the most important structural features of 
the data by maximizing its variance. PCA assumes that the data has a 
linear relationship, so its performance may be limited when dealing 
with nonlinear data.

In contrast, an autoencoder is a neural network-based nonlinear 
dimensionality reduction method. The autoencoder maps input data 
into a low-dimensional latent space through an encoder and 
reconstructs the original data through a decoder. The objective of an 
autoencoder is to minimize reconstruction error, thus learning the 
latent structure of the data. Unlike PCA’s linear assumption, the 
autoencoder can handle nonlinear relationships in the data, which 
makes it more expressive when dealing with complex, high-
dimensional data. By optimizing its network architecture and training 
process, the autoencoder can extract richer and deeper features in the 
latent space compared to PCA.

5.1.2 Information retention and reconstruction 
error

To compare the effectiveness of the Urban Green Space demand 
obtained through dimensionality reduction by PCA and autoencoder 
models, we further explored the relationship between information 
retention and reconstruction error by calculating the inverse 
reconstruction capacity of both models. In the process, the three 

features in the original data were first subjected to principal 
component analysis (PCA), resulting in the following covariance 
matrix (Table 3):

From this, it can be  observed that there is a strong positive 
correlation (0.7088) between heat island effect mitigating capacity 
(HIEMC) and green space accessibility (GSA), while the correlation 
between carbon sequestration capacity (CSC) and other variables is 
relatively weak. Based on this covariance matrix, the weight vectors of 
the principal components were further calculated, resulting in the 
following (Table 4):

The PCA results revealed the varying contributions of HIEMC, 
GSA, and CSC to the latent variance in the data. The first principal 
component (PCA_1) is primarily influenced by HIEMC and GSA, 
both contributing significantly and being positively correlated, 
indicating a strong relationship between these two variables. The 
second principal component (PCA_2) is mainly dominated by CSC, 
reflecting its independence relative to the other variables. In the third 
principal component (PCA_3), significant interactions between GSA 
and CSC are observed.

Next, we analyzed the proportion of variance explained by each 
principal component, with the following results: the first principal 
component explained 58.69% of the variance, the second principal 
component explained 31.92%, and the third principal component 
explained 9.39%. Overall, the first two principal components 
explained 90.61% of the variance, indicating that most of the data’s 
variance was effectively retained.

FIGURE 8

Regional variations distribution in urban green space demand.
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Regarding reconstruction error, when one principal component 
was retained, the reconstruction error (mean squared error, MSE) of 
the PCA model was 1.82e-02. When two principal components were 
retained, the reconstruction error decreased to 3.01e-03. In contrast, 
the autoencoder demonstrated exceptionally high performance on the 
same dataset, with a final average reconstruction error of 4.71e-05, 
significantly lower than the PCA model’s performance. This suggests 
that the autoencoder has a stronger advantage in preserving the 
complexity and nonlinear relationships in the data, enabling it to more 
accurately reconstruct the input data.

From this analysis, it is evident that while PCA effectively extracts 
key features and retains a large proportion of the variance in data 
dimensionality reduction, the autoencoder, through its nonlinear 
feature extraction mechanism, significantly enhances the accuracy of 
data reconstruction. This highlights its superior performance in 
extracting nonlinear features.

5.1.3 Statistical results of autoencoder and 
principal component analysis

First, to compare the performance of the two methods 
(autoencoder and PCA) in data dimensionality reduction in detail, 
we conducted a regional difference analysis of the Urban Green Space 
demand results obtained from both methods. The results are shown 
in two figures, with the Urban Green Space demand distributions 
obtained through dimensionality reduction by the autoencoder 
(Figure 9) and PCA (Figure 10), respectively. By comparing the results 
of these two methods, we  can observe the differences in their 
performance when handling the linear and nonlinear features of 
the data.

As a linear dimensionality reduction method, PCA assumes that 
there are linear relationships between data features. In the right figure, 
PCA shows a relatively clear division after dimensionality reduction, 
but its performance also has certain limitations. Specifically, in some 
complex areas, PCA failed to effectively capture the nonlinear features 
of the data, leading to over-simplification or information loss in 
regions with subtle changes. This phenomenon indicates that PCA 
may not fully reflect the data structure when dealing with complex 
data that has nonlinear relationships.

In contrast, as a neural network-based nonlinear dimensionality 
reduction method, the autoencoder performs better at handling the 
nonlinear features of the data, as shown in the left figure. Although the 
image produced by the autoencoder does not have as obvious a 
distinction as that of PCA, it is better at capturing the detailed changes 

brought about by nonlinear relationships in the data. Particularly in 
regions with higher demand, the autoencoder retains more local 
variations and complex patterns, demonstrating its advantages in 
handling nonlinear data.

Overall, while the autoencoder may not show as clear a distinction 
as PCA in certain regions, it is more effective at preserving the latent 
structure of the data when handling complex nonlinear relationships, 
avoiding the simplification issues that PCA might encounter when 
dealing with nonlinear features. Therefore, the autoencoder can 
provide a more accurate and comprehensive feature representation 
when faced with nonlinear data.

Secondly, we  performed a statistical analysis of the results 
obtained from both methods. According to the statistical results 
(Figure 11; Table 5), the autoencoder demonstrates a higher capability 
in data dimensionality reduction and feature extraction, especially in 
reflecting the multidimensional and complex characteristics of the 
data, where its advantages are more evident. First, the standard 
deviation of the autoencoder (2.6) is higher than that of PCA (2.1), 
indicating that the autoencoder can capture more variation and detail. 
The higher standard deviation reflects a more dispersed data 
distribution, with the autoencoder being better at presenting the 
volatility and diversity within the data. This high volatility allows the 
autoencoder to effectively preserve the data features of different 
regions in complex, multidimensional urban demand analysis, 
avoiding information loss.

Moreover, the coefficient of variation of the autoencoder (0.79) is 
higher than that of PCA (0.51), indicating that the autoencoder is 
more sensitive to the relative volatility of the data. The autoencoder 
maintains the data’s diversity during the dimensionality reduction 
process, capturing subtle differences in the data, particularly excelling 
at extracting nonlinear features.

In terms of skewness and kurtosis, the autoencoder also exhibits 
greater adaptability. The skewness (1) and kurtosis (3.05) of the 
autoencoder indicate significant asymmetry and concentration in the 
data distribution, reflecting the autoencoder’s ability to preserve local 
variations in the data after dimensionality reduction, particularly in 
regions with higher demand. This asymmetry demonstrates the 
autoencoder’s effectiveness in extracting nonlinear features from the 
data, making its dimensionality reduction results highly representative 
of the global structure of the data.

In contrast, PCA’s coefficient of variation (0.51) is lower, and its 
standard deviation (2.1) is relatively small, suggesting that PCA 
exhibits more stable characteristics when processing the data, with a 
more concentrated data distribution. PCA is particularly suitable for 
processing data with linear relationships, as it preserves the global 
structure of the data well and is effective at revealing overall trends. 
When dealing with data that shows clear linear relationships, PCA can 
effectively reduce dimensions while retaining key features, simplifying 
the data structure and extracting core information.

However, while PCA is very effective in handling data with strong 
linear relationships, it may be  less effective when dealing with 
multidimensional, nonlinear, and complex data such as Urban Green 
Space demand. It may fail to capture nonlinear changes in the data 
effectively, leading to the loss of important information in complex 
demand analyses.

Therefore, in summary, the autoencoder provides more refined 
and accurate dimensionality reduction results when handling data 
with complex nonlinear relationships and multidimensional features. 

TABLE 3  Covariance matrix table.

Variable GSA CSC HIEMC

GSA 1.0002 0.0826 0.7088

CSC 0.0826 1.0002 0.1982

HIEMC 0.7088 0.1982 1.0002

TABLE 4  Principal component weight vectors table.

Variable HIEMC CSC GSA

PCA_1 0.6739 0.2539 0.6938

PCA_2 0.2628 −0.9601 0.0962

PCA_3 −0.6906 −0.1175 0.7137

https://doi.org/10.3389/frsc.2025.1642184
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Qiao and Luo� 10.3389/frsc.2025.1642184

Frontiers in Sustainable Cities 14 frontiersin.org

Its advantages are particularly evident in tasks such as Urban Green 
Space demand analysis. PCA, on the other hand, is more suitable for 
handling data with strong linear relationships and clear global 
structures, where it can effectively extract major features and reveal 
overall trends. Selecting the appropriate dimensionality reduction 
method based on the specific characteristics of the data and the 
analytical needs will help improve the accuracy and effectiveness of 
the analysis results.

5.2 Analysis of the feature extraction 
capability of the autoencoder

5.2.1 Relationship between clustering results and 
original data

In this study, the relationship between the clustering results and 
the original data was effectively revealed through the analysis of box 
plots. Two box plots illustrate the distribution of heat island effect 
mitigating capacity (HIEMC), carbon sequestration capacity (CSC), 
and green space accessibility (GSA) across different levels, from Level 
1 to Level 10. These box plots provide valuable insights into the spatial 
distribution of each feature at various levels and reveal their 
relationship with Urban Green Space demand levels.

The first box plot (Figure 12a) displays the distribution of HIEMC, 
CSC, and GSA across all levels, showing the variations of each feature 
between levels. HIEMC typically represents the heat intensity in urban 

areas. As the demand level increases, the variation in HIEMC 
significantly increases, especially in high-demand areas where the 
fluctuations in HIEMC are larger. The distribution of CSC is more 
uniform but shows a notable increase in higher-demand areas, 
indicating a significant relationship between heat island effect 
mitigating capacity, carbon sequestration capacity, and green space 
demand. GSA also gradually increases with higher demand levels, 
especially in more urbanized areas where the relationship between 
green space accessibility and green space demand is stronger. The 
changes in each feature reflect their importance in green space 
demand evaluation, with higher demand levels generally accompanied 
by lower heat island effect mitigating capacity, carbon sequestration 
capacity, and green space accessibility.

The second box plot (Figure  12b) further breaks down the 
distribution of HIEMC, CSC, and GSA within each level. It is evident 
that lower levels (e.g., Level 1) exhibit lower values for these three 
features, while higher levels (e.g., Level 10) show greater variability 
and higher values. This difference in feature distribution highlights the 
need to consider both environmental factors and social demand 
factors when evaluating Urban Green Space demand, as higher 
demand levels are typically associated with more extreme 
environmental conditions, which require more green space resources 
for mitigation.

Considering both figures together, the k-means++ algorithm 
clusters the latent features extracted by the autoencoder, further 
dividing these different latent features into regions of different demand 

FIGURE 9

Urban green space demand distribution based on autoencoder and urban green space.
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levels, demonstrating the close connection between HIEMC, CSC, 
GSA, and Urban Green Space demand. Through the feature learning 
process, the autoencoder captures the complex nonlinear relationships 
between these features, providing a more accurate representation of 
Urban Green Space demand. The clustering results show that in high-
demand areas (such as Level 8 to Level 10), the values of HIEMC and 
GSA significantly increase, and their distribution shows greater 
fluctuations. Particularly in these regions, the distribution of HIEMC 
and GSA exhibits higher concentration, reflecting the more severe 
urban heat island effects and lower green space accessibility levels in 
these areas.

The distribution of CSC shows some fluctuation, especially 
between medium and high-demand areas. This fluctuation suggests 
that CSC concentrations vary significantly across different regions, 
possibly influenced by various socio-economic and environmental 
factors. This feature further demonstrates the complexity of Urban 
Green Space demand, especially in these regions, where the demand 
for green space is not only related to temperature but also to air 
quality, environmental pollution, and other factors.

Additionally, we  visualized the clustering results in a 
two-dimensional plane using t-SNE (Figure  13). From the t-SNE 
visualization, it is evident that the sample groups of different clusters 
are clearly separated in the two-dimensional space, indicating a high 
correlation between the latent features and the final clustering results. 
This clear clustering structure reflects the ability of the extracted 
features to effectively capture the inherent patterns in the data, 

providing significant differentiation in high-dimensional space. 
Therefore, the effectiveness of feature extraction is well validated, 
demonstrating that these features play an important role in the final 
clustering task.

In summary, the relationship between the clustering results and 
the original data is fully reflected. High-demand regions (Level 8 to 
Level 10) show significant environmental pressure in the distribution 
of HIEMC and GSA, indicating a particularly urgent need for green 
space resources in these areas. The variability of CSC reflects the 
imbalance between green space resource supply and environmental 
quality across different regions. Therefore, the optimization and 
allocation of green space resources in these areas should prioritize 
environmental characteristics and social needs, particularly in terms 
of mitigating the urban heat island effect and improving air quality. 
Through these analyses, we  can more clearly understand the 
relationship between the clustering results and the original data, 
providing scientific evidence for the rational allocation of Urban 
Green Space resources.

5.2.2 Interpretative analysis of the autoencoder’s 
latent space feature extraction

To reveal the relationship between the latent features and the 
original variables, this study performed an interpretative analysis of 
the latent features extracted by the autoencoder and the original data 
(HIEMC, GSA, CSC) using Partial Dependence Plots (PDP). The plots 
illustrate the dependency relationships between multiple latent 

FIGURE 10

Urban green space demand distribution based on PCA and urban green space distribution.
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features (feature_1 to feature_8) and the original features (HIEMC, 
GSA, CSC) (Figure 14). PDPs clearly reveal how the latent features 
extracted by the autoencoder change with variations in the different 
original data dimensions, by deconstructing functional dependencies 
of latent features on raw variables, PDP provides direct interpretability 
for the autoencoder’s black box, explicitly addressing how latent 
features reflect driving mechanisms of green space demand. Further 

revealing the contribution of these features to Urban Green Space 
demand and their inherent correlations.

From the PDP plots, it is evident that the dependencies of different 
latent features on HIEMC, GSA, and CSC vary significantly. First, for 
HIEMC (heat island effect mitigating capacity), feature_2 show a 
positive correlation with HIEMC, particularly at lower HIEMC values, 
where the latent feature values exhibit relatively stable changes. 
However, at higher HIEMC values, the latent features show sharp 
increases or decreases. Feature_7 and feature_8 are the primary driver 
for HIEMC(heat island effect mitigating capacity), exhibiting steep 
increases in high HIEMC regions, aligning with observed high-
demand zones in urban peripheries. This suggests that as the heat 
island effect mitigating capacity increases, the latent features of green 
space demand undergo significant changes, especially in areas with 
higher urban heat island mitigation capacity, where the variations in 
green space demand are more sensitive.

For CSC (carbon sequestration capacity), the PDP curves for 
several latent features (feature_4, feature_5, and feature_6) exhibit 
strong positive correlations, with the latent feature values increasing 
as CSC rises. Feature_6 dominates carbon sequestration demand 

FIGURE 11

(a) Bar chart of PCA-based results. (b) Bar chart of autoencoder-based results.

TABLE 5  Statistical results table.

Method Minimum 
value

Maximum 
value

Average 
value

Standard 
deviation

Autoencoder 1 10 3.26 2.6

PCA 1 10 4.1 2.1

Method Median
Coefficient 
of variation

Skewness Kurtosis

Autoencoder 2 0.79 1 3.05

PCA 4 0.51 0.62 2.7
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(CSC) with strong positive correlation, explaining carbon hotspot 
distribution in urban cores. This further indicates a close relationship 
between increased CSC and green space demand, suggesting that the 
carbon sequestration capacity of green spaces could play a key role in 
mitigating carbon emissions in these areas. Lower CSC typically 
corresponds to higher air pollution and poorer environmental quality, 
leading to increased demand for green spaces.

For GSA (green space accessibility), in some latent features (such 
as feature_6, feature_7, feature_8), the latent feature values show a 
steady decline with increasing green space accessibility, suggesting that 
the relationship between green space accessibility and demand might 
be influenced by other factors. However, in some other features (such 
as feature_1, feature_2, feature_3), as green space accessibility 
increases, the latent feature values show a sharp increase, reflecting that 
in areas with high green space accessibility, the demand for green space 
changes significantly. This is especially true in high-demand urban 
areas, where the insufficiency of green space supply is more prominent.

Each latent feature (feature_i) captures different patterns of 
combination between HIEMC, GSA, and CSC to some extent. Some 
latent features primarily depend on changes in CSC, such as feature_6; 
others are most sensitive to changes in GSA, such as feature_1; some 
latent features are most sensitive to HIEMC, such as feature_7; and some 

latent features show strong sensitivity to two or three variables, although 
the direction may differ. This multidimensional sensitivity suggests that 
different latent features may correspond to various urban environmental 
patterns. For example, “urban heat islands and population concentration 
areas” may primarily be driven by heat island effects and population 
density, while “industrial emissions and low-population areas” might 
be closely linked to carbon dioxide concentration and low population 
density. “Extremely high-temperature uninhabited zones” might form 
in areas with extremely high land surface temperatures and low 
population density. The specific meaning of these patterns requires 
further verification based on the spatial distribution of these latent 
features and real urban environmental scenarios.

PDP analysis demonstrates that the autoencoder successfully 
captures complex nonlinear relationships among original features 
(HIEMC, GSA, CSC) and their critical roles in Urban Green Space 
(UGS) demand through latent feature extraction. These latent features 
not only reflect local data variations but also characterize combined 
effects of environmental variables (e.g., land surface temperature, carbon 
concentration, population density) on UGS demand, providing a 
scientific basis for green space optimization and allocation. 
Interpretability analysis via PDP confirms the autoencoder’s effectiveness 
in extracting representative latent features from complex raw data, which 

FIGURE 12

(a) Box plot of sample distribution by level. (b) Box plot of sample distribution by feature.
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accurately reflect multidimensional factors influencing UGS demand 
and reveal region-specific driving factors behind demand dynamics. 
Incorporating these latent features into UGS resource allocation will 
enable more precise demand assessment and resource optimization.

5.3 Choice of activation function

To explore which activation function produces the best training 
results in the autoencoder, this study investigated the performance of 
five activation functions in the autoencoder model.

Based on the reconstruction error curves (Figures 15a–e), it is 
clear that different activation functions exhibit distinct performances 
during the autoencoder training process. First, the ELU activation 
function shows large fluctuations in reconstruction error at the early 
stages of training, but as training progresses, the error rapidly 
decreases and stabilizes. This indicates that ELU effectively leverages 
its self-normalizing properties, playing a positive role in network 
stability, especially in deep networks, and helping the model effectively 
learn the latent features. Despite the initial fluctuations, ELU achieves 
a relatively low final reconstruction error, indicating good convergence. 
Similar to ELU, the LeakyReLU curve also exhibits early fluctuations, 

FIGURE 13

Visualization of clustering results based on t-SNE.

FIGURE 14

PDP analysis: The impact of original features on latent features.
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followed by a rapid decline and stabilization, showing that LeakyReLU 
effectively mitigates the “dying neuron” problem, ensuring stable 
gradient flow. However, the final reconstruction error of LeakyReLU 
is slightly higher than that of ELU, suggesting that ELU might be more 
effective than LeakyReLU in optimizing the autoencoder’s 
performance in certain feature learning tasks. Regarding ReLU, its 
performance is similar to LeakyReLU, with a relatively quick initial 
convergence, but it ultimately results in slightly higher error levels and 
slower convergence, likely due to the gradient vanishing problem that 
ReLU can suffer from in deep networks. In contrast, the SELU 
activation function demonstrated the best performance among all the 
functions, with very smooth error reduction throughout the training 
process and the lowest final reconstruction error. This can be attributed 
to the self-normalizing properties of SELU, which maintains the mean 
and variance of the network, ensuring more efficient feature learning, 
especially in deeper network structures. Lastly, the Tanh activation 
function performed relatively poorly; although it avoids the “dying 
neuron” issue seen with ReLU, its gradient saturation characteristics 
lead to slow training and higher final reconstruction errors.

In conclusion, SELU provided the best performance in this study 
and is suitable for use in deep autoencoders. LeakyReLU and ReLU 
are more robust alternatives, suitable when SELU conditions are not 
met. Tanh, however, performed worse than the other activation 
functions, especially in deep networks, where its gradient issues may 
result in poor convergence.

5.4 Limitations and future research directions

This study advances urban green space demand assessment 
through an autoencoder-based framework, yet several limitations 
require acknowledgement:

This study excludes the critical environmental and socioeconomic 
determinants, specifically real-time air quality indices (PM2.5 and NO2 

concentrations), vegetation health metrics (NDVI and EVI), and 
economic vitality indicators (nighttime light intensity and POI 
density), and restricts the model’s capacity to characterize demand 
heterogeneity in commercial-industrial zones. This omission 
compromises the generalizability of demand predictions in rapidly 
developing urban peripheries where anthropogenic emissions and 
land-use intensification exhibit nonlinear interactions.

Although the 8-dimensional latent features extracted by the 
autoencoder demonstrate strong discriminatory power, the nonlinear 
mapping between input variables (HIEMC/GSA/CSC) and encoded 
representations remains opaque. This obscures mechanistic 
interpretation of demand drivers, hindering the translation of 
clustering results into prioritized planning interventions.

Despite implementing IQR-based outlier detection and Robust scaler 
normalization, high-frequency noise in remotely sensed LST data 
(attributable to atmospheric transient effects) propagates through the 
unsupervised pipeline. This phenomenon introduces instability in cluster 
boundary delineation, particularly in regions with microclimate variability.

Future research trajectories will address these constraints through:

5.4.1 Multidimensional indicator integration
A fused sensing framework will assimilate Sentinel-5P 

tropospheric NO2 column density, VIIRS nighttime light composites 
(500 m), and Gaofen-2 NDVI time-series (8 m) to quantify pollution 
exposure, economic activity, and vegetation stress. This expansion will 
enable demand calibration in emission-intensive manufacturing 
districts currently underrepresented in the model.

5.4.2 Spatiotemporal graph neural networks
ST-GNN architectures with attention-based LSTM modules will 

be  deployed to capture demand trajectories across over 5-year 
observation windows. Pilot implementation will target Chengdu’s Tianfu 
New Area, evaluating green space allocation efficiency against urban 
expansion rates derived from Landsat-derived impervious surface maps.

FIGURE 15

Training loss trend of the autoencoder using different activation functions. (a) SeLU. (b) ELU. (c) LeakyReLU. (d) ReLU. (e) Tanh.

https://doi.org/10.3389/frsc.2025.1642184
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Qiao and Luo� 10.3389/frsc.2025.1642184

Frontiers in Sustainable Cities 20 frontiersin.org

5.4.3 Hybrid explainability framework
SHAP (Shapley Additive explanations) will quantify feature 

contributions to latent dimensions, generating spatially explicit 
attribution maps. Integration with existing PDP analysis will establish 
causal pathways between industrial emissions and high-demand clusters.

5.4.4 Adaptive noise suppression
Discrete wavelet packet transforms (db8 mother wavelet) will 

decouple seasonal noise (summer LST anomalies) from persistent 
demand signals prior to autoencoder training. Thresholding criteria 
will optimize signal-to-noise ratios in MODIS LST collections using 
Stein’s Unbiased Risk Estimate.

These advancements will establish a dynamic urban green 
infrastructure assessment system.

6 Conclusion

This study proposes an autoencoder-based framework for 
evaluating Urban Green Space demand and applies it to the green 
space demand analysis of the central urban area of Chengdu. By 
integrating multidimensional ecological and social indicators such as 
population density, land surface temperature (LST), and carbon 
dioxide concentration, we have innovatively overcome the limitations 
of traditional assessment methods, where ecological and social 
dimensions are considered separately. This framework enables a 
deeper evaluation of urban green space demand. The approach not 
only provides more accurate and comprehensive analysis of green 
space demand variations but also significantly enhances the scientific 
basis for urban green space resource allocation.

Through the training and feature extraction of the autoencoder 
model, we successfully mined multidimensional latent features from 
the data and used these features to conduct a detailed assessment of 
green space demand in the central urban area of Chengdu. The results 
indicate that carbon sequestration capacity, heat island effect 
mitigation, and green space accessibility are key factors influencing 
green space demand. In particular, urban core areas with high 
population density and carbon dioxide emissions show an especially 
urgent demand for green space. Green space demand in these areas is 
crucial not only for ecological improvements but also for enhancing 
the quality of daily life and the physical and mental health of residents.

The results further show that green space demand based on carbon 
sequestration capacity is primarily concentrated around the city center 
and transportation hubs. These areas, due to high carbon dioxide 
emissions, urgently require more green spaces to alleviate 
environmental pressure. In contrast, demand based on heat island 
effect mitigation is mainly concentrated in the expanding urban fringe, 
where higher temperatures necessitate more green spaces to regulate 
the microclimate. Demand based on green space accessibility is 
concentrated in densely populated areas, especially in neighborhoods 
where the green space supply is insufficient. These analyses provide 
urban planners with a comprehensive green space demand map that 
can effectively guide the optimization of green space resource allocation.

The study’s findings also demonstrate that the integration and 
analysis of multidimensional data using autoencoder technology can 
reveal the complexity and spatial heterogeneity of Urban Green Space 
demand. Specifically, the autoencoder captures nonlinear relationships 
within the data, accurately reflecting the deep connections between 

urban green space demand and environmental variables such as 
temperature, carbon dioxide concentration, and population density. 
Compared to traditional methods, the autoencoder-based framework 
not only improves model accuracy and uncovers deep interactions 
among environmental variables but also enhances the spatial precision 
of green space demand evaluation, providing a scientific foundation 
for the rational allocation of urban green space resources.

Overall, this study not only offers a new approach and 
methodology for evaluating urban green space demand but also 
provides an important reference for future research in areas such as 
urban ecological planning, green infrastructure development, and 
climate adaptation planning. The research results indicate that through 
deep analysis of the interaction between ecological and social 
dimensions, it is possible to better identify and address spatial 
disparities in urban green space demand, thereby providing solid 
theoretical support for achieving sustainable urban development goals.
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