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To support the goals of low-carbon and sustainable development, new energy
vehicles (NEVs) are being increasingly adopted. However, the frequency of traffic
accidents involving NEVs also shows a rising trend. To address this challenge,
this paper proposes an accident risk prediction method for new energy vehicles
based on dynamic-static feature fusion. First, direct and indirect data strongly
related to accident risk are extracted from the full-year accident data of a
province in 2021, including environmental factors (weather and road type),
dynamic operating data (speed), vehicle alarm status, and historical accident
characteristics. Then, to quantify and capture the potential risk characteristics
of the vehicle, LSTM layers are used to construct dynamic and static feature
vectors representing vehicle accident risk. Moreover, the accident risk probability
is calculated based on fully connected layers and the sigmoid activation function.
Finally, the proposed accident risk prediction model is tested and validated
with real accident data. The results show that the model achieves a prediction
accuracy of 85% for new energy vehicle accidents, which is a 24% improvement
over traditional models based on weather and road types. The model can
timely warn drivers before accidents occur, helping them take necessary safety
measures to reduce accident probability.
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1 Introduction

As a central force in the low-carbon transition of the transportation sector, New
Energy Vehicles (NEVs) significantly reduce dependence on fossil fuels and greenhouse
gas emissions by optimizing energy structures and minimizing lifecycle carbon footprints.
NEVs have thus become a key component in building sustainable transportation systems
globally. According to statistics from the Traffic Management Bureau of the Ministry of
Public Security, the number of newly registered NEVs has surged from 1.2 million in 2019
to 7.43 million in 2023, reflecting a rapid-growth trend (Ministry of Public Security, 2024).
However, frequent safety incidents during the large-scale deployment of NEVs, such as
battery thermal runaway and fire caused by collisions, not only pose serious threats to
public safety but may also undermine their environmental benefits in several ways (Zhao
et al., 2025). On one hand, accidents can lead to vehicle damage, battery pollution, and
secondary environmental risks, directly reducing carbon reduction gains. On the other
hand, the resulting traffic congestion, emergency resource usage, and decline in public trust
may indirectly hinder NEV market adoption and infrastructure development, limiting
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the overall progress toward a sustainable road transport system.
In response, researchers have carried out extensive studies and
proposed various solutions to reduce both the frequency and
severity of accidents. Among these efforts, accident risk prediction
models have attracted considerable attention due to their potential
to provide early warnings and significantly decrease the likelihood
of traffic incidents.

Traffic accident risk prediction models seek to prevent
accidents by gaining a deep understanding of the factors that
contribute to their occurrence and by predicting the corresponding
risk levels. These models typically rely on techniques such as
data-driven analysis (Lin et al., 2015; Aung et al., 2018; Ardakani
et al., 2023), machine learning (Zhao et al., 2019; Brühwiler et al.,
2022; Li and Yu, 2025; Li and Chen, 2025; Zhang et al., 2022;
Ghasedi et al., 2021; Berhanu et al., 2023; Santos et al., 2021;
Prajapati et al., 2023; Ahmed et al., 2023), and neural networks
(Lin et al., 2021; Shaik et al., 2021; Najafi Moghaddam Gilani
et al., 2021; Yu et al., 2021; Chakraborty et al., 2019; Ghosh and
Karmakar, 2025; Kaffash Charandabi et al., 2022; Wang et al.,
2021), and deep learning (Ren et al., 2018; Basso et al., 2021;
Sun et al., 2024) to capture complex patterns in traffic data and
assess the likelihood of accidents under various conditions. Lin
et al. (2015) proposed a novel variable selection method based
on the Frequent Pattern Tree algorithm, which was integrated
with the k-nearest neighbors’ model and Bayesian network to
enable real-time traffic accident risk prediction. Aung et al. (2018)
introduced an accident prediction algorithm tailored for urban
environments. By incorporating variables such as vehicle speed,
weather conditions, and driver fatigue, the model employed a
Hidden Markov Model (HMM) to establish correlations between
observed data and potential accident risks. Park and Hong (2022)
proposed a deep learning-based accident risk prediction model
that integrates both static and dynamic road features, to accurately
assess the risk of accident occurrence under varying road and
environmental conditions. Zhao et al. (2022) presented an accident
risk prediction approach that combines deep convolutional neural
networks (CNN) with a random forest classifier. The CNN was
used to extract key features from the data, while the random
forest comprising multiple decision trees was used to output the
associated risk of a traffic accident.

Considering accident-related factors is crucial for improving
the accuracy of traffic accident risk prediction. However, the
causes of traffic accidents are complex and diverse, increasing
the difficulty of accident risk prediction. Existing research has
extensively explored the impact of vehicle factors and external
environmental factors on traffic risks (Yannis et al., 2017; Roland
et al., 2021; Ghasedi et al., 2021). Vehicle factors primarily refer to
the operating state of the vehicle during driver operation, including
vehicle spacing, steering angle changes, lateral acceleration, and
yaw rate (Enache et al., 2009; Ning et al., 2009). Studies have
shown that the vehicle’s operating state can indirectly reflect the
driver’s condition after excluding driver skill differences. Based on
this fundamental characteristic, some researchers have analyzed
driving behavior or driving risks using vehicle operation state
data (Mantouka et al., 2019). For example, Wang et al. (2011)
considered the factors, such as speed and acceleration, to establish
a risk assessment model. Mandal et al. (2016) used time-series

measurements of driving behavior and a particle swarm-optimized
artificial neural network algorithm to classify driver states and
assess driving risk. Research shows that the external environment,
including weather and road conditions, significantly affects driving
safety (Feng et al., 2010; Hassan and Abdel-Aty, 2011; Xiao et al.,
2000; Koramati et al., 2022; Hao et al., 2015; Xu X. L., 2013; Casner
et al., 2016). For example, Xu C. C. (2013) established an accident
risk model for adverse weather using real-time data and logistic
regression models, finding that the impact of rain on risk is greater
than that of fog. Chen et al. (2009) quantitatively analyzed the
impact of road type, specifications, alignment, sight distance, and
pavement condition on accident rates based on Bayesian theory.
The study found that under the same traffic flow, the accident rate
decreases with the improvement of road specifications.

The studies mentioned above mainly analyze the independent
impact of individual factors on traffic accidents, such as driving
conditions, vehicle speed, acceleration, and external environmental
factors like adverse weather and road conditions on driving
safety. However, they seldom consider the dynamic association
between vehicle factors and external environmental factors, as well
as the coupling effects between different factors on traffic risk.
Therefore, how to effectively integrate vehicle factors and external
environmental factors to achieve multi-source data fusion and
accurately predict risks is a significant challenge in the field of
traffic safety.

To address the above problems, this paper proposes an accident
risk prediction model for new energy vehicles based on dynamic-
static feature fusion. Key feature parameters strongly correlated
with accident risk are extracted by analyzing the impact of accident
risk factors on the risk of NEV accidents. Based on this, the LSTM
algorithm is employed to establish a mapping relationship from
dynamic-static feature parameters to NEV accident risk, enabling
accurate prediction of NEV accidents. The main innovations are
as follows:

(1) Relying on vehicle status data and external environmental
data from national regulatory platforms, a novel accident
risk prediction model is proposed based on the dynamic-
static feature fusion, accurately predicting the occurrence
of accidents.

(2) A mapping is established between dynamic-static feature
parameters and NEV accident risk based on the LSTM
algorithm. This approach accurately captures dynamic and
static risk patterns in time-series data, offers new insights
into risk assessment for driving safety, and provides reliable
data support for accident prevention.

2 Introduction to accident risk factors

The selection of key influencing factors for new energy vehicle
accidents is fundamental to establishing an accurate accident
risk prediction model. To improve the prediction accuracy of
the accident risk model, this paper extracts direct and indirect
information data related to NEV accidents from a full year
of accident records in a specific province in 2021. The direct
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TABLE 1 Weather conditions.

Index Weather
type

Index Weather
type

Index Weather
type

1 Sunny 8 Light snow 15 Blizzard

2 Overcast 9 Moderate
snow

16 Sandstorm

3 Cloudy 10 Heavy snow 17 Torrential
rain

4 Sleet 11 Fog 18 Haze

5 Light rain 12 Heavy rain 19 Dust

6 Moderate
rain

13 Thunderstorm

7 Showers 14 Snow
showers

information data includes the time, location, involved vehicles, and
causes of the accidents. The indirect information data primarily
includes road features and weather conditions.

2.1 Weather conditions

Weather conditions play a critical role in driving safety.
Adverse weather such as rain or snow can lead to slippery road
surfaces, increasing braking distances and significantly elevating
the likelihood of traffic accidents. Moreover, under low-visibility
conditions such as fog or haze, the limited visual perception of
the drivers further amplifies the risk of collisions. Although the
overall accident rate under clear weather is relatively low, the
probability of severe accidents tends to be higher due to higher
driving speeds. Therefore taking weather conditions as an input
variable in predictive models can help identify risks induced by
environmental factors.

To achieve accurate prediction of accident severity, the weather
conditions are cate-gorized into 19 distinct types, as shown in
Table 1. However, considering that some weather types occur
infrequently and to simplify the modeling process, these categories
were consolidated into five broader groups: sunny, overcast, snowy,
rainy, and foggy.

As shown in Figure 1, the majority of traffic accidents occur
under sunny weather conditions, accounting for 85.53% of the total.
This is followed by overcast (8.31%) and rainy (4.85%) conditions.
Snowy weather accounts for the smallest proportion, with only
0.6% of total accidents. The high number of accidents under sunny
weather conditions is primarily attributed to their high frequency
throughout the year.

2.2 Road types

Road type significantly influences the risk of accidents by
interacting with vehicle speed and traffic complexity. This paper
divides road types into ten categories, as shown in Table 2. It also
presents the distribution of accidents across different road types
in 2021, as shown in Figure 2. On highways, the higher driving

FIGURE 1

The distribution of traffic accidents under different weather
conditions in a province in 2021.

speeds lead to an increased accident rate. Although vehicles on
urban roads travel at lower speeds, they are more likely to be
disrupted by factors, such as pedestrians, non-motorized vehicles,
and traffic signals, significantly increasing the probability of low-
speed collisions. On rural roads, the lack of comprehensive traffic
infrastructure, sharp turns, and complex road conditions greatly
increase the risk of accidents. Therefore, the road type significantly
influences accident risk.

2.3 Vehicle speed

Vehicle speed is a direct factor influencing both the accident
occurrence rate and severity. Higher speeds not only increase
braking response time but also reduce the driver’s ability to react to
sudden situations, sharply increasing the probability of accidents.
Additionally, continuous speed data can help analyze driving
behavior and traffic flow. Real-time monitoring of vehicle speed
allows for the timely identification of abnormal behaviors such
as sudden acceleration and hard breaking, which are significant
factors contributing to accidents. Therefore, incorporating vehicle
speed as a time-series input feature in the model helps accurately
predict the occurrence of accidents. Additionally, the distribution
of traffic accidents by speed in 2021 is recorded (as shown in
Figure 3) and used for feature contribution assessment.

2.4 Vehicle alarm information

The alarm information of new energy vehicles effectively
reflects the vehicle’s internal status and potential faults. Alarms
for high battery temperature, undervoltage, or overvoltage may
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TABLE 2 Road types.

Road type code Description Road type code Description Road type code Description

1 Expressway 5 Rural road 9 Urban branch road

2 National road 6 Urban expressway 10 Other roads

3 Provincial road 7 Urban arterial road

4 County road 8 Urban secondary road

FIGURE 2

The number of traffic accidents across different road types in a province in 2021.

lead to vehicle loss of control, which is particularly dangerous at
high speeds. Alarms related to driving motor anomalies and motor
controller failures may cause stalling or loss of control, increasing
the risk of accidents. Brake system alarms often accompany reduced
braking performance, raising the likelihood of collisions. Therefore,
incorporating alarm information as an important variable in the
model helps capture potential fault risks in the vehicle. There are 19
types of alarm statuses for new energy vehicle accidents, as detailed
in Table 3.

2.5 Vehicle history accident information

Historical accident information is the key variable in
constructing an accident prediction model and holds significant
value for analyzing the risk of accidents under different
conditions. This paper extracts historical accident information
from two aspects: accident type and accident frequency, to
enhance the model’s ability to predict future accident types and
occurrence probabilities.

Accident types typically include five categories: scratching,
collision, running over, rollover, and battery fire/explosion. Each
type of accident has its specific causes and characteristics.

Analyzing different accident types can reveal their risk tendencies
under specific driving conditions. For example, collisions are more
common on highways, while rollovers are more likely to occur on
sharp turns or slippery road sections. Taking historical accident
types as input variables helps the model accurately identify accident
patterns, to optimize the prediction results.

Moreover, accident frequency is a key indicator for
assessing accident likelihood. By analyzing the historical
occurrence of specific accident types, the potential high-
risk areas and contributing factors can be identified.
Integrating accident frequency into the model enhances
the accuracy of hotspot detection and improves overall
prediction performance.

Based on the above analysis about accident-related factors,
this paper selects environmental factors (weather and road type),
dynamic operating data (speed), vehicle alarm status, and historical
accident features as the model inputs. Environmental factors reflect
external driving conditions, while dynamic operating data describes
the vehicle’s real-time operating status. Vehicle alarm status reveals
potential technical faults, and historical accident features can reflect
the vehicle’s accident tendencies. By integrating these features,
the models can capture multi-dimensional information affecting
accident occurrence, leading to more accurate risk prediction.
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2.6 Feature contribution assessment

To quantitatively assess the contribution of different accident
features to traffic accidents, the XGBoost model is employed to
analyze feature importance. Specifically, the Weight method is
applied to measure how frequently each feature fi appears as a
split node, which serves as an indicator of its importance. The
calculation formula is as follows:

Weightj =
T∑

t=1
count

(
fi in tree t

)
(1)

where T is the total number of trees; count(fi in tree t) represents
the number of times; feature fi is used to split a node in tree t.

As shown in Figure 4, real-time vehicle speed and vehicle alarm
information are the most influential predictors, indicating that
dynamic driving behavior and real-time vehicle diagnostics play a
critical role in accident occurrence. Historical accident frequency
ranks next, as it reflects the unresolved high-risk factors in specific
temporal and spatial contexts. Road type and weather conditions
have a moderate impact, suggesting that the infrastructure and
environmental factors can influence accident risk. Due to lacking
direct correlation with real-time risk factors , historical accident
types have the weakest effect. Above all, these findings help clarify
the relative importance of accident-related features and provide a
basis for selecting input parameters in accident risk prediction.

3 Method

This study proposes a prediction model for new energy
vehicle accident risk based on Long Short-Term Memory (LSTM)
networks. The model inputs include time-series data (such as
weather, road conditions, vehicle speed) and static accident history
features (such as vehicle historical accident types). The model
output is the accident risk probability, which reflects the likelihood
of a vehicle experiencing an accident within a certain future period.
The model utilizes LSTM layers to process time-series features
and fully connected layers to handle static features, capturing
complex temporal dependencies and long-term trends during
vehicle operation.

3.1 Introduction to LSTM

Long Short-Term Memory (LSTM) networks are a type of
recurrent neural network (RNN) architecture designed for time-
series data. They are remembering both long-term and short-
term information, addressing the problem of traditional RNNs
being unable to capture long-term dependencies in sequences
(Hochreiter and Schmidhuber, 1997). The structure of the LSTM
network unit is shown in Figure 5.

The LSTM network consists of multiple identical units, each
containing four key components: the input gate, forget gate, output
gate, and cell state. The input gate controls which information is
added to the cell state, the forget gate determines which information
is discarded, and the output gate regulates the contribution of
the cell state to the output. The cell state serves as the memory

FIGURE 3

The histogram of traffic accidents by vehicle speed in a province in
2021.

component, storing long-term dependencies. Each gate is governed
by the following equations:

g (x) = σ
(
Wx + b

)
(2)

Where σ the sigmoid function; x is the input; W is the weight
matrix; and b represents the bias term.

The sigmoid function maps the raw values to a range between
0 and 1, enabling it to effectively control the flow of information.
Each LSTM network unit has a corresponding memory cell at each
time step, whose responsibility is to retain information from the
past sequence. LSTM can adjust the amount of information passed
at each time step through the gating mechanism, to effectively
update the current memory cell state. This ensures that the model
can maintain long-term dependencies while avoiding problems of
vanishing or exploding gradients.

Given the input sequence be (x1, x2, · · · , xT) and the hidden
state

(
h1, h2, · · · , hT

)
. The flow steps for an LSTM network unit at

time stepare as follows:

(1) Data Input: The forget gate computes the output ft by using
the hidden state output from the previous time step ht−1 and the
current input xt to manage the degree of information retention.
The calculation formula for ft is as follows:

ft = σ
(
Wf

[
ht−1xt

] + bf
)

(3)

(2) Memory Selection: First, ht−1 and xt are passed through
the input gate to determine the information that needs to
be updated, denoted as it . Then, ht−1 and xt are processed
through the tanh function to obtain the candidate memory
state C̃t . Finally, the memory cell is updated ftCt−1 represents
the information to be forgotten, while itC̃t represents the new
candidate memory state. The sum of these two gives Ct , which
is the memory state at time step t. The calculation formulas are
as follows:

Ct = ftCt−1 + itC̃t (4)

it = σ
(
Wi

[
ht−1, xt

] + bi
)

(5)

C̃t = tanh
(
Wc

[
ht−1, xt

] + bc
)

(6)
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TABLE 3 New energy vehicle fault alarm codes.

Alarm
code

Status description Alarm
code

Status description Alarm
code

Status description

0 No fault 7 DC-DC temperature alarm 14 Single battery overvoltage alarm

1 Overcharge of energy storage device 8 Insulation alarm 15 Low SOC alarm

2 Drive motor temperature alarm 9 Power battery consistency difference
alarm

16 Energy storage device
under voltage alarm

3 High-voltage interlock alarm 10 Rechargeable energy storage system
mismatch alarm

17 Energy storage device overvoltage alarm

4 Drive motor controller temperature
alarm

11 SOC jump alarm 18 Battery high-temperature alarm

5 DC-DC status alarm 12 High SOC alarm 19 Temperature difference alarm

6 Brake system alarm 13 Single battery under voltage alarm

FIGURE 4

Feature importance ranking of accident predictors from XGBoost modeling.

(3) Data Output: Similar to the forget gate, the output gate
computes the result by using ht−1 and xt to obtain Ot . However,
Ot is multiplied by the tanh function applied to the current
memory state Ct to produce the current hidden state ht .

Ot = σ
(
Wo

[
ht−1, xt

] + bo
)

(7)

ht = Ot tanh (Ct) (8)

Where Wf , Wi, Wc, Wo represent the weight matrices, and
bf , bi, bc, b0 represent the bias terms. σ represents the sigmoid
activation function.

3.2 Overall model structure

The structure of the new energy vehicle accident risk prediction
model based on dynamic-static feature fusion is shown in
Figure 5. The model mainly consists of the LSTM layer, a fully
connected layer for static features, a fusion layer, and an output
layer. First, the model processes the time-series inputs, such
as vehicle speed, alarm information, and road type, through
the LSTM layer to extract temporal dependency features. The
LSTM layer processes the input data step by step by a multi-
unit structure, to learn the dynamic patterns during the vehicle’s
operation. Meanwhile, static features, such as historical accident
frequency and severity, are processed through an independent
fully connected (Dense) layer, generating a fixed feature vector
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FIGURE 5

Schematic diagram of the LSTM network unit structure.

to quantify and capture the vehicle’s potential accident risk
characteristics. Subsequently, the dynamic features extracted from
the LSTM layer and the static feature representation are fused
at each time step, forming a joint vector containing both
temporal and static features. This joint vector is then input
into a multi-layer fully connected network, and the sigmoid
activation function generates the risk probability of a future
accident occurring for the vehicle. The formal definition of the
network structure is as follows: The time-series input Xseq ∈ R

T×F

is processed through the LSTM layer to obtain a hidden state
vector hLSTM ∈ R

H

hLSTM = LSTMH
(
Xseq

)
(9)

Where H represents the output dimension of the LSTM layer,
denoted as LSTMH . The static input Xstatic ∈ R

S is then mapped
to a D-dimensional vector hstatic ∈ R

D through a fully connected
(Dense) layer

hstatic = ReLU (WstaticXstatic + bstatic) (10)

Where Wstatic ∈ R
D×s and bstatic ∈ R

D are the weight
matrix and bias vector of the fully connected layer. Then, the
output of the LSTM layer hLSTM ∈ R

H and the static feature
representation hstatic ∈ R

D are concatenated together to form a
joint vector hconcat ∈ R

H+D

hconcat = Concatenate (hLSTM , hstatic) (11)

The joint feature vector passes through a fully connected layer
with a sigmoid activation function to obtain the output value, which
represents the risk probability

ŷ = σ (WoutWconcat + bout) (12)

where σ represents the sigmoid function, and Wout ∈ R
1×(H+D)

and bout ∈ R are the weight matrix and bias vector of the output

layer. The loss function uses binary cross-entropy to evaluate the
deviation between the predicted risk probability and the true label
(Shannon, 1948). Assuming the true label is y ∈ {0, 1} and the
predicted risk probability is ŷ ∈ (0, 1), the binary cross-entropy loss
is calculated as follows:

L = − 1
N

N∑

i=1

[
yi log

(
ŷi

) + (
1 − yi

)
log

(
1 − ŷi

)]
(13)

Where N represents the number of samples, yi
is the true label of the i − th sample, and ŷ is the
predicted probability for the i − th sample. The loss
function penalizes incorrectly classified probabilities,
guiding the model to update its weights and improve
prediction accuracy.

3.3 Model prediction process

The overall prediction process of the proposed new
energy vehicle accident risk prediction model based on
dynamic-static feature fusion is shown in Figure 6. The
model mainly consists of three components: the data
preprocessing module, the model training module, and the
detection module.

(1) Data Preprocessing Module: The raw data tables are linked
using VIN and license plate numbers, with invalid data
being removed. To enhance model training effectiveness
and data consistency, all input features are normalized.
weather, road type, alarm information, and historical
accident types are encoded using one-hot encoding, while
speed is normalized to the range [0,1]. In inconsistent
data frequencies (1 Hz under fault conditions and every
30 s under normal conditions), a sliding window is used
to ensure consistent time frame structures for time-series
features across different data frequencies. In cases of low-
frequency data, linear interpolation is applied within the
window to ensure effective data input at each time step. A
window from 20 to 10 s before the accident record time is
selected as the input for predicting whether the accident
will occur.

(2) Model Training Module: The preprocessed training data is
fed into the network model for training, and the accident
risk prediction model is generated by iteratively optimizing
the model using the cross-entropy loss function. The
structure of the prediction model is shown in Figure 7.
The traffic accidents predicted in this study include both
minor and severe incidents. All accident records were
sourced from user-reported data, either through self-
registration via a mobile application or through formal
emergency reporting.

(3) Risk Prediction Module: The risk prediction module inputs
the preprocessed test data into the trained accident risk
prediction model. The model performance is assessed by
comparing the prediction results with the actual outcomes.
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FIGURE 6

The prediction process of new energy vehicle accident risk prediction model.

FIGURE 7

The structure of the new energy vehicle accident risk prediction mode.
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4 Results and discussion

4.1 Evaluation metrics

After the model is constructed, its performance needs
to be evaluated. Accident prediction is essentially a binary
classification task. For binary classification problems, there are four
possible outcomes:

True Positive (TP): The actual class is positive, and the
prediction is also positive, meaning accident cases are accurately
identified as accidents.
False Positive (FP): The actual class is negative, but the
prediction is positive, referring to non-accident cases that are
misclassified as accidents.
True Negative (TN): The actual class is negative, and the
prediction is also negative, meaning non-accident instances are
accurately predicted as non-accidents.
False Negative (FN): The actual class is positive, but the
prediction is negative, referring to accident cases that are
misidentified as non-accidents.

To evaluate the performance of the proposed model,
Accuracy (Acc), Precision, Recall, and F1 Score are adopted as
evaluation metrics.

(1) Accuracy represents the ratio of correctly classified samples
to the total number of samples

Accuracy = TP+TN
TP+FN+FP+TN (14)

(2) Recall means the proportion of actual positive samples that
the classifier correctly predicts as positive

Recall = TP
TP+FN (15)

(3) Precision denotes the proportion of true positive samples
among the positive samples identified by the classifier

Precision = TP
TP+FP (16)

(4) F1 Score: To balance precision and recall, researchers
proposed another evaluation metric—the F-score (F1 Score).
Its general form is Fβ , as shown in Equation 16.

Fβ = (1+β2)PR
β2P+R

(17)

Where p represents precision, and R denotes recall. The
setting of β allows for different weights to be assigned to
recall and precision. When β > 1, recall has a greater impact;
when 0 < β < 1, precision has a greater impact. In practical
tests, both precision and recall are equally important, so β

is typically set to 1. Consequently, Equation 16 simplifies
to Equation 17, representing the widely used F1 score. The
F1 score generally ranges from 0 to 1, with higher values
indicating better algorithm performance.

F1 = 2PR
P+R (18)

(5) False Negative Rate (FNR): The false negative rate indicates
the proportion of actual incidents that the system fails to
detect. A low FNR is critical for ensuring user trust and
system safety. It can be calculated as:

FRN = FN
FP+FN (19)

(6) Area Under the Receiver Operating Characteristic Curve
(AUC): The AUC represents the model’s ability to
distinguish between positive and negative classes across
all possible thresholds. An AUC of 1.0 indicates a perfect
classifier, while 0.5 suggests no discriminative ability.
The ROC curve plots the True Positive Rate (TPR)
against the False Positive Rate (FPR) at various threshold
settings. Specifically:

TPR = TP
TP+FN (20)

FPR = FP
FP+TN (21)

The AUC is the area under the ROC curve, which can be
computed as the integral of the ROC curve:

AUC = ∫ 1
0 TPR (FPR) d (FPR) (22)

Moreover, The AUC can also be approximated by
numerical integration methods using discrete points on the
ROC curve:

AUC =
n−1∑

i=1

(TPRi+TPRi+1)
2 × (FPRi+1 − FPRi) (23)

where n is the number of points on the ROC curve. The AUC
ranges from 0 to 1, with values closer to 1 indicating better
classification performance.

4.2 Dataset and experimental setup

This experiment selects a portion of the 2021 accident data and
non-accident data at a 1:5 ratio, constructing a dataset containing
7,386 records. The dataset is divided into a training set and a test
set at a ratio of 8:2. The experiment is conducted using the Python
3.8 programming platform and the Pytorch 2.0.1 framework. The
model was trained using the Adam optimizer with an initial
learning rate of 0.001. A batch size of 32 was employed, and the
training was conducted for a total of 100 epochs.

To obtain the optimal LSTM network parameters, grid search is
used to evaluate prediction accuracy under different combinations
of LSTM layer depth and hidden size. As shown in Figure 8, the
highest validation accuracy of 85.4% is achieved with two LSTM
layers, each containing 64 hidden units. However, continuously
increasing the number of layers (beyond two) or hidden units (e.g.,
256) does not lead to further improvement and may slightly reduce
performance, likely due to overfitting. These results suggest that
moderately deep and well-balanced architecture is most suitable for
modeling dynamic accident risk in new energy vehicles.
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FIGURE 8

Validation accuracy of LSTM architectures with varying depth and hidden units.

FIGURE 9

The training loss of the proposed model over epochs.

4.3 Experimental results and analysis

As shown in Figure 9, the training loss decreases rapidly during
the initial epochs, dropping from approximately 1.02 to below
0.3, indicating that the model quickly learns meaningful feature
representations at an early stage. As training continues, the loss
gradually declines and stabilizes around 0.13 after about 60 epochs,
suggesting a stable training process without significant oscillations
or signs of overfitting. It is worth noting that the loss curve
exhibits some fluctuations between epochs 10 and 40, which may be

FIGURE 10

The training accuracy of the proposed model over epochs.

caused by factors such as optimizer hyperparameters (e.g., learning
rate) or gradient noise from mini-batch training. However, these
variations are minor and diminish in later stages, demonstrating
good overall convergence.

Figure 10 illustrates the trend of training accuracy over
epochs. In the early stages, accuracy increases significantly from
approximately 0.42 to around 0.70, indicating that the model
quickly learns key discriminative patterns. As training progresses,
accuracy continues to improve gradually and begins to plateau after
about 60 epochs, eventually stabilizing at around 0.82.
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TABLE 4 Performance comparison of different models for NEV accident risk prediction.

Model Feature input Accuracy Recall Precision F1 score FNR AUC

RF Dynamic-static 81.3% 82.2% 80.4% 81.3% 17.8% 0.849

SVM Dynamic-static 56.3% 53.5% 60.2% 56.7% 46.5% 0.607

XGBoost Dynamic-static 84.1% 82.2% 83.7% 82.9% 17.8% 0.875

Proposed Dynamic-static 85.4% 82.9% 84.5% 83.7% 17.1% 0.891

TABLE 5 Model configurations for ablation study.

Model ID Model name Feature input Feature type Uses LSTM Static feature fusion

A Static-only baseline Weather + road type Static No No

B Dynamic-only baseline Speed + alarm Dynamic Yes No

C All sequential features only Weather + road + speed + alarm Dynamic Yes No

D Static + sequential (no LSTM) All features Static + dynamic No Yes

E Proposed (LSTM + fusion) All features Static + dynamic Yes Yes (fusion of static and dynamic)

TABLE 6 Ablation study results of different feature and architecture configurations.

Model Accuracy Recall Precision F1 score FNR AUC

A 61.5% 72.5% 58.2% 64.6% 27.5% 0.652

B 75.0% 74.3% 73.7% 73.4% 25.7 0.791

C 78.2% 76.6% 77.2% 76.9% 23.4% 0.823

D 82.3% 80.5% 81.4% 80.9% 19.5% 0.861

E 85.4% 82.9% 84.5% 83.7% 17.1% 0.891

The consistent improvement and eventual convergence in
accuracy closely align with the trend observed in the loss
curve, further confirming the effectiveness and stability of the
training process. Additionally, the absence of accuracy degradation
indicates that the model does not exhibit signs of overfitting
during training.

To evaluate the effectiveness of temporal modeling and
feature integration, we compared our proposed LSTM-based
approach with several classical machine learning models, including
Random Forest, Support Vector Machine (SVM), and XGBoost.
As summarized in Table 4, XGBoost achieves relatively high
performance with an accuracy of 84.1%, F1-score of 82.99%, and an
AUC of 0.875. This indicates that tree-based ensemble methods can
efficiently exploit static and momentary dynamic features to make
accurate predictions.

However, XGBoost lacks the ability to capture temporal
dependencies, which limits its performance in scenarios involving
evolving risk over time. In contrast, the LSTM-based model
demonstrates superior capability in modeling sequential patterns.
By learning from historical behavior trajectories, LSTM enhances
the model’s sensitivity to risk fluctuations and improves real-time
accident prediction.

As shown in Table 4, the proposed dynamic-static feature
fusion LSTM model demonstrates outstanding performance across
all key metrics. First, the model achieves an accuracy of 85.4%,
significantly outperforming both RF (81.3%) and SVM (56.3%),
and slightly exceeding the high-performing XGBoost (84.1%),

indicating its superior overall prediction accuracy. Additionally,
the model attains a recall of 82.9%, comparable to RF (82.2%)
and XGBoost (82.2%), and significantly higher than SVM (53.5%),
highlighting its reliable ability to identify potential accident risks.
At the same time, the precision of the model is 84.5%, surpassing
all comparison models (RF: 80.4%, SVM: 60.2%, XGBoost: 83.7%),
demonstrating the high reliability of its triggered risk alerts and
minimizing the risk of false positives.

The model also achieves an F1 score of 83.7%, outperforming
RF (81.3%), SVM (56.7%), and XGBoost (82.9%), effectively
balancing the trade-off between accuracy and recall. The low False
Negative Rate (FNR) of 17.1% is another notable advantage, slightly
better than both RF (17.8%) and XGBoost (17.8%), and significantly
improving upon SVM (46.5%), thus reducing the risk of missed
accidents and enhancing the safety of the prediction system. Finally,
the AUC value of the model is 0.891, surpassing all comparison
models (RF: 0.849, SVM: 0.607, XGBoost: 0.875), indicating its
superior ability to distinguish between accident and non-accident
states across various classification thresholds.

In conclusion, the proposed LSTM model, integrating both
dynamic and static features, not only excels in accuracy, precision,
F1 score, and AUC, but also ensures efficient accident prediction
through a lower FNR. The model’s exceptional performance
confirms the effectiveness of the LSTM architecture in capturing
temporal features of vehicle dynamics and emphasizes the
importance of the feature fusion mechanism in integrating
static and dynamic information. These advantages make the
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model highly applicable to the safety prediction tasks for new
energy vehicles.

4.4 Ablation study on feature and
architecture contributions

To validate the contribution of different feature types and
network components, we conducted an ablation study across five
model configurations. The settings for each model are shown in
Table 5. As shown in Table 6, using only static features (Model
A) yields the weakest performance (F1 score = 64.6%, AUC =
0.652), suggesting their limited predictive value. Incorporating
dynamic features with temporal modeling (Model B) significantly
improves both AUC (0.791) and recall, reducing the false negative
rate (FNR) from 27.5% to 25.7%.When all sequential features
are used (Model C), performance further improves (F1 = 76.9%,
AUC = 0.823), highlighting the benefit of comprehensive temporal
input. A purely feed forward model (Model D) that fuses static
and dynamic features, but without LSTM, performs better than
the sequential-only model, achieving an F1 score of 80.9% and
reducing FNR to 19.5%.Our proposed model (Model E) achieves
the best overall performance across all metrics: F1 = 83.7%, FNR
= 17.1%, and AUC = 0.891, confirming that both LSTM-based
temporal modeling and feature fusion are critical to accurate
accident risk prediction.

5 Conclusion

This paper presents an accident risk prediction model for new
energy vehicles based on dynamic-static feature fusion. First, both
direct and indirect features strongly associated with accident risk
are extracted from a full year of provincial accident data from
2021. Then, LSTM layers are employed to construct dynamic and
static feature vectors that capture potential risk characteristics.
Moreover, the accident risk probability is estimated using fully
connected layers with a sigmoid activation function. Finally, the
model is validated using real-world accident data. The results
demonstrate that the model achieves an F1-score of 83.7% for
accident prediction, enabling real-time identification of potential
risks and timely driver warnings. This approach provides valuable
data support for safety management and accident prevention in
new energy vehicles, promoting the low-carbon and sustainable
development of the automotive industry.

In the future, this study will collect accident data from multiple
regions to verify and enhance the robustness of the proposed
algorithm across different areas. Additionally, embedded encoding
will replace one-hot encoding to better handle large-scale data
processing, aiming to provide traffic management authorities with
more accurate and comprehensive accident warning information
for new energy vehicles.
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