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Manure and slurry may contain a range of bacterial, viral, and parasitic pathogens

and land application of these organic fertilizers typically occurs without prior treatment.

In-situ treatment through farm-based anaerobic digestion (AD) of such organic fertilizers

co-digested with food-production wastes is multi-beneficial due to energy recovery,

increased farm incomes and noxious gas reduction. Before risk assessment can be

carried out at field scale an investigation of the fate of relevant target pathogens

during the actual AD process must be undertaken, requiring the development of

practical test systems for evaluation of pathogen survival. The present study examines

miniature (50mL) and laboratory (10 L) scale AD systems. Treatments included slurry

co-digested with fats, oils, and grease (FOG) under typical operating and pasteurization

conditions used in farm-based AD, in batch-fed miniature and laboratory mesophilic

(37◦C) continuously stirred tank reactors. Biogas production, pH, chemical oxygen

demand, volatile solids, and ammonia concentration were measured throughout the

trial, as were fecal indicator bacteria (FIB) i.e., total coliforms, Escherichia coli, and

Enterococcus species. The miniature and laboratory bioreactors performed similarly in

terms of physicochemical parameters and FIB die-off. In the absence of pasteurization,

after 28 days, enterococci numbers were below the<1,000 cfu g−1 threshold required for

land application, while E. coli was no longer detectable in the digestate. For comparison,

FIB survival in slurry was examined and after 60 days of storage, none of the FIB tested

was <1,000 cfu g−1, suggesting that slurry would not be considered safe for land

application if FIB thresholds required for AD digestate were to be applied. Taken together
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we demonstrate that (i) miniature-scale bioreactors are valid proxies of farm-based AD

to carry out targeted pathogen survival studies and (ii) in situ AD treatment of slurry prior

to land application reduces the level of FIB, independently of pasteurization, which in

turn might be indicative of a decreased potential pathogen load to the environment and

associated public health risks.

Keywords: anaerobic digestion, fats, oils and grease, fecal indicator bacteria survival, miniature bioreactors, slurry

INTRODUCTION

Approximately 1.4 billion tons ofmanure are produced in Europe
each year, 80% of which is in the form of slurry, predominantly
from cattle (Crowe et al., 2000; Foged et al., 2011). Manure
and slurry represents valuable organic fertilizers, but typically
contain a broad range of bacterial, viral, and parasitic pathogens
(Bicudo and Goyal, 2003; Alam and Zurek, 2006; Ferens
and Hovde, 2011). Human and animal pathogens commonly
isolated from manure include E. coli O157, Salmonella, Listeria,
Campylobacter, Cryptosporidium, Ascaris,Mycobacterium avium
subspecies paratuberculosis, and Giardia (Nicholson et al., 2004;
Olson et al., 2004; Grewal et al., 2006). These pathogens
can be transferred to the environment as bioaerosols during
landspreading (Millner, 2009; Dungan, 2010), ingested directly
from grass or vegetables (Baloda et al., 2001; Braden and
Tauxe, 2013), or may be washed off into connected water
bodies, posing a significant threat to human and animal health
(Douwes et al., 2003; Gerba and Smith, 2005; Venglovsky et al.,
2009). Furthermore, manure is a potent source of noxious and
greenhouse gases (GHG), which are released to the atmosphere
during storage in slatted tanks and subsequent landspreading
(Chadwick et al., 2011). A number of methods for limiting the
impact of manure storage and landspreading, both in terms
of GHG capture or mitigation and pathogen reduction have
been examined, including aeration, and acidification during
storage, animal diet manipulation, or alternative landspreading
techniques (Nicholson et al., 2004; Franz et al., 2005; Webb et al.,
2010). Typically these proposed solutions, however, consider
either pathogens or GHG in isolation. Composting, for example,
is suggested as an effective solution to reduce pathogens in
manure (Ros et al., 2006; Vinnerås, 2007; Mc Carthy et al., 2011;
Millner et al., 2014), with scant reference to gaseous N or CH4

loss to the environment (Rao et al., 2007). Conversely, methods
for reduction of ammonia or other GHG losses from manure,
such as acidification, rarely consider the fate of pathogens during
such treatments (Kai et al., 2008; Petersen et al., 2012). In fact,
in this context, the recommended direct incorporation of slurry
into soil might lead to increased pathogen survival, as it inevitably
reduces UV exposure (Avery et al., 2004; Hutchison et al., 2004).

Rather than tackling pathogen survival or GHG emissions

from manure in isolation, a technological solution that addresses
both would clearly be preferable. To that end, biogas production
as a treatment for manure holds great promise (Monteny
et al., 2006). In addition to the obvious benefits of energy

recovery, noxious gas and GHG mitigation, farm-based AD
could potentially reduce pathogen loads in the environment

and the associated public health risks (Olsen and Larsen, 1987;
Kearney et al., 1993; Sahlström, 2003; Jiang et al., 2018).
Pathogen survival may be significantly impacted, positively
or negatively, by a variety of factors. These include: pH,
ammonia production, microbial competition, initial pathogen
load, operating conditions of farm-based AD plants and addition
of co-digestion substrates such as food production waste with
varying pathogen risks (Smith et al., 2005; Orzi et al., 2015).
Indeed, the AD of slurry alone is hindered by an imbalanced
C:N ratio resulting in low potential methane yields of 25–30
m3 ton−1 (Weiland, 2010). To overcome this limitation, co-
digestion of slurry with locally sourced organic waste is typically
implemented. This in turn helps to balance the C:N ratio and thus
improves the relatively low methane yield of slurry alone, whilst
taking advantage of its inherent buffering capacity, microbial
populations, nutrients, and moisture content (Hamelin et al.,
2014; Moset et al., 2017; Neshat et al., 2017).

Congealed fats, oils, and grease (FOG) are a significant
problematic food production waste internationally, causing
environmental and human health issues when allowed to
form “fatbergs” in municipal sewage systems (Wallace et al.,
2017). Grease-traps required for licensing in the food-processing
industry as well as those in restaurants mitigate the problem, but
create large quantities of organic waste, which requires further
treatment. The typical biogas yield of FOG (4–8 m3 kg VS
−1) dwarfs that of slurry alone (0.148 m3 kg VS −1), making
co-digestion of FOG with slurry in farm-based AD plants a
sustainable treatment option, cheaply increasing methane output
(Møller et al., 2004; Weiland, 2010; Long et al., 2012). In Ireland,
successful implementation of grease-trap legislation provides a
steady supply of organic waste in the form of FOG, which is
used as a feedstock in the majority of Irish farm-based AD
plants. The co-digestion of slurry with organic waste, however,
typically requires some pasteurization treatment to be carried out
as stipulated by the legislation. In that context, two pasteurization
processes are available in Ireland, set out by (i) the European
Union Commission (Directive No. 142/2011) as 60 continuous
minutes at 70◦C and (ii) the Irish Department of Agriculture,
Food and the Marine as a total of 96 h at 60◦C (DAFM, 2014).
Pasteurization can be applied either pre- or post-AD processing
with the corresponding digestate quality being assessed using
fecal indicator bacteria, typically E. coli and/or enterococci.
According to Regulation (EC) No.1069/2009 and Regulation
(EU) No. 142/2011, for AD digestate to be deemed safe for
landspreading FIB levels must <1,000 cfu g−1. As highlighted
by Dennehy et al. (2018), further investigations into the effect
of AD processing on pathogen loads must be carried out to
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determine the need for pasteurization. In addition, in order
to meaningfully and accurately carry out risk assessment of
digestate landspreading, the determination of the fate of relevant
target pathogens during AD processing is necessary. Although
previous studies of farm-based AD have reported reductions in
target pathogen numbers (Olsen and Larsen, 1987; Kearney et al.,
1993; Sahlström, 2003; Dennehy et al., 2018; Jiang et al., 2018),
investigations into pathogen survival are typically hampered by
difficulties in cultivating sufficient pathogen quantities and the
public health concerns associated with spiking large volume
bioreactors. Some solutions have been deployed in an effort to
overcome this, including the containment of pathogens using
sentinel chambers or filters held in steel baskets and submerged
into digesters (Gray and Hake, 2004; Wagner et al., 2008).
While this may successfully contain the pathogens and thus
reduce the associated public health risks, such an experimental
set-up greatly limits the interactions of the target pathogens
with the surrounding matrix. There is, therefore a crucial need
to develop an alternative solution closely mimicking real-life
scenarios whereby interactions between pathogens and the AD
liquor are not hindered.

Thus the aims of this study were to: (i) propose and validate
the use of miniature-scale (50mL) bioreactors as proxies for 10 L
bioreactors; (ii) determine FIB survival under typical operating
and pasteurization conditions used in farm-based AD systems;
and (iii) assess the suitability of AD as a means of reducing the
environmental impact of slurry management.

MATERIALS AND METHODS

Feedstock Selection, Collection, and
Storage
In order to determine feedstock composition and operating
conditions, a characterization of current Irish AD facilities was
carried out. All Irish farm-based AD plants currently operate
at mesophilic temperatures and process slurry co-digested with
food production waste, including FOG (Auer et al., 2016). By
visiting these AD facilities and utilizing knowledge gained in
Auer et al., the following operation conditions and feedstock
composition were determined.

First, a cattle slurry:FOG ratio of 2:1 was used, with a view to
replicating full-scale farm-based AD. The FOGwas sourced from
the Bioenergy and Organic Fertilizer Services (BEOFS) AD plant
in Camphill, County Kilkenny, Ireland, collected in a 25 L drum,
stored at 4◦C, and mixed thoroughly before use. Cattle slurry for
feeding the bioreactors was collected from a dairy farm in County
Galway, Ireland in October, 2016. The slatted housing storage
tanks were agitated to homogenize the slurry before collection of
the sample using a bucket attached to a pole, in accordance with
Brennan et al. (2011) and Peyton et al. (2016). Slurry was stored in
a 25 L sealed container at 4◦C for 2 days prior to use as feedstock,
at which time it was mixed thoroughly. In order to establish levels
of farm to farm variation, dairy cattle slurry was collected from
two additional farms in County Galway during October 2016.
For comparison between digestate and stored slurry, triplicate
slurry samples for each farm were stored in a shed at ambient

Irish environmental temperatures during October–December, to
mimic on-farm storage.

Inoculum Development
Digestate from the BEOFS full-scale mesophilic continuously-
stirred tank reactors (CSTR) co-digesting FOG with slurry
was used as the starting inoculum, as it was adapted to the
chosen substrate. This inoculum was found, through biomethane
potential assays (BMP, data not shown), to be sub-optimal for
biogas production. Therefore, augmentation with a mixture of
slurry and methanogenic anaerobic granular sludge was deemed
necessary to bolster both hydrolysis andmethanogenesis. A series
of specific methanogenic assays (SMA) were carried out using
non-gaseous (acetate, ethanol, propionate, butyrate) and gaseous
substrates (H2/CO2) as described by Coates et al. (1996). Based
on the SMA results, a 2:1:1 ratio of granular sludge:BEOFS:slurry
was selected as the optimum inoculum mixture (Figure S1).

Miniature- and Laboratory-Scale
Bioreactors Operation
Three 10-L CSTRs (R1–R3) were operated at 37◦C in batch
with a 28-day solid retention time. Prior to operation, the
inoculum and starting liquor were adjusted to pH 7 by adding
NaHCO3. The organic loading rate for each bioreactor was
30 g VS L−1 in a 2:1 inoculum to feedstock ratio with a 7 L
working volume. Submerged, motor-propelled axial stirrers with
large scale paddles were centrally installed in the bioreactor
ceilings, with an externally positioned motor, as is typical of
agricultural biogas plants (Weiland, 2010). Miniature batch tests
(33mL in 50mL glass bottles) using identical inoculum and
feedstock ratios to the 10 L bioreactors were run simultaneously
at 37◦C under shaking conditions in a New Brunswick Scientific
Innova◦44 incubator and destructively sampled in triplicate at
regular intervals (days 0, 7, 14, 21, 28), for comparison. Their
contents, as well as samples collected from the 10 L bioreactors
were analyzed as described below.

Analytical Methods
Biogas volume from the 10 L and 50mL bioreactors was
determined using the water displacement method and 10mL
syringes attached with a stopcock, respectively. Methane content
of the biogas was analyzed using a Varian gas chromatograph
equipped with a flame ionization detector. The carrier gas
was nitrogen and the flow rate was 25mL min−1. Analysis
of TS and VS was performed gravimetrically according to
standard methods (APHA., 2005). Soluble chemical oxygen
demand (sCOD) was determined by analyzing the supernatant
of centrifuged samples. Total chemical oxygen demand (tCOD)
and sCOD analyses were performed according to the Standing
Committee of Analysts. (1985). NH3 concentrations (mg
L−1) were determined using the HACH AmVer High-Range
Ammonia test, available from HACH.

Pasteurization
In addition to the unpasteurized 50mL bioreactors used for
comparison with the 10 L CSTRs, four pasteurization conditions
were examined at the miniature scale to determine the impact on
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bioreactor performance and FIB survival. At each time point, two
pre-AD pasteurization conditions (P1: 60◦C for 96 h; P2: 70◦C for
1 h) were used on the food production waste, and two post-AD
pasteurization conditions (P3: 60◦C for 96 h; P4: 70◦C for 1 h)
were applied to the digestate. These assays were carried out in
triplicate for each time point, totaling 75 miniature-scale assays.
Water baths set to the appropriate temperatures were used for
pasteurization, and temperature probes were employed to ensure
the designated temperature was achieved.

Fecal Indicator Bacteria Monitoring
In line with the EU Regulation, total coliforms, E. coli, and
enterococci numbers were monitored throughout the trial. Most
probable numbers (MPN) of total coliforms and Escherichia coli
were quantified using IDEXX Colisure with Quanti-Tray/2000
incubated at 35◦C for 24 h. MPN of enterococci were determined
using IDEXX Enterolert kit with Quanti-Tray/2000 incubated
at 41◦C for 24 h. Slurry and digestate samples were diluted as
necessary to fall within the detection range (1 - 2419.6 cfu 100
mL−1) in sterilized phosphate buffered saline (Colisure) and
sterilized distilled water (Enterolert).

Assessing Treatment Effects on FIB Die-Off
With Bayesian Hierarchical Modeling
Bayesian hierarchical modeling was used to compare the effects of
vessel volume and pasteurization conditions on FIB die-off.Weak
Cauchy-distributed priors were used for the pooled parameter
estimates of the regression, to allow for outliers (Gelman and
Hill, 2006). Stan version 2.17.0 (Carpenter et al., 2017) was
used to generate samples from the model using the Rstan
interface (Stan Development Team, 2017). The data, model,
analysis scripts, and interpretation of the results can be found
at https://github.com/nickp60/SI_Nolan_etal_2018. A difference
in parameter estimates was considered significant if the 95%
confidence intervals were exclusive.

RESULTS

Slurry Characterization
The slurry collected from the three farms was tested prior to
AD, for initial FIB levels as well as total solids and volatile solids
(Table 1). TS and VS were consistent across the samples tested,
whilst coliforms and E. coli numbers were highest in samples
from Farm C. In all cases, enterococci numbers were lower than
coliforms and E. coli.

Miniature- (50ml) and Laboratory-Scale
(10 L) Bioreactor Performance Is Similar
The recorded performance data in the comparative trial displayed
similar trends for miniature- and laboratory-scale bioreactors.
The pH for both bioreactor scales remained between 7.6 and
8.1 throughout the experiment (Figure S2). Volatile solids (VS)
degradation was comparable for the 50mL and 10 L bioreactors
with 64 and 61% VS removal, respectively within the first 7
days (Figure 1A). Similar trends in ammonia concentration
(Figure 1B) were also observed across the two scales, with an
increase over the first 2 weeks of the trial from 937 to 1,233mg

L−1 in the 10 L bioreactors and from 865 to 1,038mg L−1

in the 50mL bioreactors. This increase likely results from the
breakdown of organic compounds. As ammonia concentration
has been identified as an important factor in pathogen reduction
(Watcharasukarn et al., 2009, the similarity between the scaled
bioreactors is of particular relevance.

Soluble and total chemical oxygen demand (sCOD and
tCOD) concentrations were also consistent across the two
bioreactor scales (Figures 1C,D). Soluble COD and tCOD
removal primarily occurred within the first 7 days, reaching
a maximum of 87–88% by Day 28 for both bioreactor scales
(Figures 1C,D). The majority of methane production occurred
within 14 days, reaching 77.5 and 82% of the total recorded
in the 10 L and 50mL bioreactors within that time frame
(Figure S3A). Although similar methane production trends were
observed at both bioreactor scales, the larger scale bioreactors
approached the theoretical yield proposed by Batstone et al.
(2002) of 350mL CH4 g

−1 of COD at Day 21 compared to Day
28 for the 50mL bioreactors (Figure 1E). This could partly be
attributed to the more thorough mixing occurring in the larger
bioreactors.

Bayesian Hierarchical Modeling
A Bayesian hierarchical model was developed to compare the
effects of vessel volume and pasteurization conditions on FIB
survival. In short, both the initial effect (from day 0 to day 7) and
the latter effect (from day 7 to day 28) of the conditions were
considered in relation to the underlying behavior of the data.
This piece-wise approach was able to accurately model both the
initial perturbation (the addition of feedstock to the inoculum)
and the recovery of the system (https://github.com/nickp60/SI_
Nolan_etal_2018).

Fecal Indicator Bacteria Survival Is
Comparable in 50ml and 10L Bioreactors
Fecal indicator bacteria levels should be reduced to <1,000
cfu g−1 for the safe landspreading of digestate (Regulation
(EC) No.1069/2009 and Regulation (EU) No. 142/2011). Total
coliforms survival showed similar trends in both 50mL and
10 L bioreactors, with a 3.7 and 4.3 log10 reduction after 7 days
(Figure 2A). A similar trend in E coli die-off was also observed
in both bioreactor scales (Figure 2B). The initial 3.5–4.3 log10
reductions of both coliforms and E. coli occurring within 7
days (Figures 2A,B), followed by relatively stable survival until
21 days suggests the presence of resilient cells with increased
ability to survive under mesophilic AD conditions. Although
enterococci numbers were slightly above 1,000 cfu g−1 after
21 days, greater than 3.0 log10 reduction was observed after
28 days in both bioreactor scales (Figure 2C). The parameter
estimates obtained from piece-wise modeling of the FIB die-off
data showed well-overlapping confidence intervals, indicating no
significant difference between the two bioreactor volumes.

Pre-pasteurization Impacts Scod Removal
and Methane Yield
Two pre-AD (P1: 60◦C for 96 h and P2: 70◦C for 60min)
and two post-AD pasteurization regimes (P3: 60◦C for 96 h
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TABLE 1 | Slurry characterization.

Farm Coliforms E. coli Enterococci TS VS

A 6.90 ± 0.09 6.48 ± 0.08 5.31 ± 0.11 7.47 ± 0.36 5.83 ± 0.52

B 7.13 ± 0.13 6.95 ± 0.39 6.12 ± 0.38 7.59 ± 0.1 5.80 ± 0.27

C 7.48 ± 0.21 7.43 ± 0.19 5.76 ± 0.48 7.27 ± 0.45 5.65 ± 0.83

Mean (n = 3) slurry pathogen indicator numbers (log10 cfu g
−1) and TS/VS% from 3 cattle farms.

FIGURE 1 | Comparison of means (n = 3) of key process performance indicators in 10 L and 50mL mesophilic continuously stirred bioreactors, with standard

deviation error bars. (A) Volatile solids degradation %. (B) Ammonia concentration (mg L−1). (C) Soluble COD removal (g L−1). (D) Total COD removal (g L−1). (E)

Volume of methane produced per gram of COD removed, with dashed line denoting theoretical methane yield (Batstone et al., 2002). (F) Volume of methane

produced per gram VS.

FIGURE 2 | Comparison of average fecal indicator bacteria survival in 10 L and 50mL bioreactors (n = 3), with standard deviation error bars. (A) Total coliforms; (B) E.

coli; (C) Enterococci. Blue line denotes EU digestate standard requirement, dashed line represents the limit of detection.

and P4: 70◦C for 60min) were tested at the miniature scale.
Volatile solids degradation was relatively consistent across all
conditions, as was ammonia concentration (Figures 3A,B). For
both total COD and soluble COD, the rate of removal within
the first 7 days was notably higher for AD of feedstock that
had been pre-pasteurized at 60◦C for 96 h (89 vs. 74–80%
for sCOD, Figure 3; and 93 vs. 82–85% for tCOD; data not

shown). The impact of P1 on COD removal was observed at
the first time point only, as by Day 14, the other conditions
displayed similar results (Figure 3C). Although the total volume
of methane produced for P1 was similar to the other conditions,
high levels of COD removal combined with low biogas quality
(22–40% CH4 Day 2, 54–68% CH4 Day 5; Figure S3B) resulted
in lower yields of 146mL CH4 g COD−1 by Day 7 (Figure 3D),
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FIGURE 3 | Comparison of means (n = 3) of key process performance indicators following four pasteurization treatments, with standard deviation error bars.

(A) Volatile solids degradation %; (B) Ammonia concentration (mg L−1); (C) Soluble COD removal (g L−1); (D) Volume of methane produced per gram of COD

removed, with dashed line denoting theoretical methane yield (Batstone et al., 2002); (E) Volume of methane produced per gram VS.

compared with 227mL CH4 g COD−1 for no pasteurization.
Pre- pasteurization at the EU standard (P2) improved methane
yield, approaching the maximum theoretical methane yield of
350mL CH4 g COD−1 within 7 days (Figure 3D; Batstone
et al., 2002). As expected, the two post-AD conditions had
no impact on the AD process itself and the results for key
performance indicator data recorded for P3 and P4 (Figure 3)
were comparable to those of the unpasteurized condition
presented in Figure 1.

Post-AD Pasteurization Decreases Fecal
Indicator Bacteria Survival
Pre-AD pasteurization (P1 and P2) was carried out on the
food production waste prior to mixing with slurry and feeding
into bioreactors, as is standard practice. This resulted in a
reduction in E. coli (1.19–1.33 log10) numbers on Day 0,
particularly for P1, but had minimal impact on total coliform
numbers compared with no pasteurization (Figures 2, 4).
Overall, the effect of pre-pasteurization treatments (P1
and P2) on FIB survival was not statistically significant.
Post-AD treatment under Irish and EU transformation
parameters (P3 and P4) resulted in lower coliform and E. coli
numbers in the digestate, when compared with unpasteurized
(Figures 2, 4). When comparing pre-pasteurization with
post pasteurization, the post-pasteurized treatments showed
significantly lower coliform counts; whilst the other indicators
shared similar trends (P1 and P2; Figure 4). At all post-AD
pasteurization time-points, coliforms and E. coli were below
the limit of detection in the majority of replicates, while
enterococci numbers were below 1,000 cfu g−1 within 7 days
(Figure 4).

AD Treatment Effectively Reduces Fecal
Indicator Bacteria Levels Compared to
Stored Slurry
Cattle slurry from three dairy farms was stored in a shed
at ambient environmental temperature for 56 days (between
4 and 13◦C in Galway, Ireland). Over the first 7 days of
storage there was a 0.32 and 0.36 log10 reduction in coliforms
and E. coli numbers respectively, and a slight increase in
enterococci numbers. Hence, within 7 days of AD treatment,
the resulting digestate was superior to stored slurry in terms
of FIB inactivation (Figure 5). It is worth noting that an initial
dilution factor of 1–1.5 log10 is evident in the digestate when
compared with unprocessed slurry. This is due to the mixing of
slurry with FOG andmicrobial inoculum prior to AD processing.
After 2 months of storage, none of the FIB tested in slurry had
dropped below the EU minimum digestate quality standards of
1,000 cfu g−1 (Figure 5).

DISCUSSION

Systematic examination of the fate of key viral, bacterial and
protozoan pathogens in farm-based anaerobic co-digestion of
various wastes is hampered by availability of sufficient pathogenic
biomass as well as health and safety concerns associated with
spiking large-volume bioreactors. This makes the use of larger
scale bioreactors for pathogen survival studies impractical. Here,
we carried out a comparative trial across two bioreactor scales, of
50mL and 10 L, in order to assess the potential use of miniature-
scale AD bioreactors as proxies for larger scales. Across all the
major physicochemical parameters recorded, both bioreactor
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FIGURE 4 | Comparison of means (n = 3) of fecal indicator bacteria survival, presented as log10 colony forming units per gram following four pasteurization

treatments, with standard deviation error bars. P1: Pre-AD, 60◦C for 96 h; P2: Pre-AD, 70◦C for 1 h; P3: Post-AD, 60◦C for 96 h; P4: Post-AD, 70◦C for 1 h. (A) Total

coliforms; (B) E. coli; (C) Enterococci. Blue line denotes EU digestate standard requirement, dashed line represents the limit of detection.

FIGURE 5 | Comparison of FIB removal in 10 L mesophilic continuously stirred tank bioreactors (n = 3) and stored slurry (n = 9), with standard deviation error bars. All

FIB survived 56 days storage at ambient temperature at levels exceeding EU limits; 1 week of AD processing was sufficient to bring FIB counts beneath the EU limits,

and eventually beneath the limit of detection. Blue line denotes EU digestate standard requirement, dashed line represents the limit of detection. (A) Total coliforms

(log10 cfu g−1); (B) E. coli (log10 cfu g−1); (C) Enterococci (log10 cfu g−1).

scales displayed similar trends. The volatile solids removals
obtained in the present study were in line with those reported in
the literature (64–67%—Neves et al., 2009; Luste et al., 2012). The
majority (61–64%) of the volatile solids degradation at both scales
occurred within 7 days (Figure 1A), demonstrating the potential
for reduced retention time of the substrate in the bioreactors.
Reported methane yields vary significantly, depending on
feedstock mixtures and ratios, retention time, and temperatures,
but a range between 200 and 489mL g VS−1 is typical of co-
digestion containing manure as the primary constituent with
food production waste (200–350mL g VS−1–Neves et al., 2009;
470mL g VS−1–Creamer et al., 2010; 260mL g VS−1–Luste
et al., 2012; 320–489mL g VS−1 Dennehy et al., 2016). The
range of 220–488mL CH4 g VS

−1 recorded in the present work
falls within those previously reported. Here we demonstrate,
at 50mL and 10 L bioreactor scales, that mesophilic AD of
slurry co-digested with FOG effectively reduces coliforms and
E. coli numbers within 7 days (Figures 2A,B). Similarly, whilst
examining the effect of varying ratios of pig slurry co-digested
with food waste in dry-AD, Jiang et al. (2018) recently reported
coliform and E. coli inactivation within 7 days, identifying free
VFA concentration as a primary factor in inactivation. Dennehy
et al. (2018) found similarly reduced levels of E. coli (1.2–2.2
log10 cfu g−1) in mesophilic CSTR co-digesting pig manure

with food waste, although higher total coliform values were
reported (4–6 log10). The higher total coliforms reported by
Dennehy et al. (2018) may be due to reduced mixing (1 h per
day), decreased hydraulic retention time and feeding regime
employed (daily feeding vs. batch) when compared to the present
study.

Using Bayesian hierarchical modeling provided a flexible
framework for assessing the statistical significance of the
indicator die-off rates. As the vast majority of change in FIB
numbers occurred within the initial 7 days, taking a piecewise
approach allowed assessment of both the initial effect of the
feedstock addition under the different pasteurization schemes,
and also the long-term effect on FIB counts in the system as it
stabilized over time. We hope that by releasing both the data and
models used to assess the data, such an approach will become a
regular tool in assessing bioreactor performance, particularly in
relation to pathogen survival.

The results obtained for both bioreactor scales indicate
higher enterococci survival in mesophilic anaerobic co-digestion
of slurry with FOG, compared with coliforms or E. coli.
This observation is in agreement with the previously reported
examination of four full-scale Swedish biogas plants, one
thermophilic and three mesophilic, co-digesting manure with
kitchen, and food-processing waste, where higher numbers
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of enterococci than coliforms were consistently found in the
digestate, despite the use of pre-AD pasteurization in all four
plants (Bagge et al., 2005). Furthermore, the enterococci survival
results of Bagge et al. (2005)mirror closely those of Dennehy et al.
(2018), whereby ∼3 log10 cfu g−1 were consistently recorded,
using a continuously fed system and three different ratios of pig
manure to food waste. Based on these observations, enterococci
are recommended as a better indicator for pathogen survival
during AD processes (Larsen et al., 1994; Sahlström, 2003).

Numerous studies have examined the impact of pre-AD
pasteurization on process performance, typically anticipating
improved methane yield caused by preliminary hydrolysis of
the feedstock (Luste and Luostarinen, 2010). The corresponding
results have however varied widely, ranging from a methane
production reduction of up to 34% during the co-digestion
of slaughterhouse waste (SHW) with the organic fraction of
municipal solid waste (Cuetos et al., 2010) to no significant effect
during the AD of SHW (Hejnfelt and Angelidaki, 2009; Ware
and Power, 2016), through 14–25% improvements during the
co-digestion of SHW and slurry (Paavola et al., 2006; Luste and
Luostarinen, 2010). Edström et al. (2003) initially reported a
400% increase in BMPs of pasteurized vs. unpasteurized SHW,
although this yield was not achieved in laboratory or pilot-
scale trials. The variability of these results is likely due to
differences in biochemical properties of the feedstocks used, as
demonstrated in a study examining the effects of pre-treatment
on five different components of SHW (Luste et al., 2009). In
the present study, the methane output when FOG was pre-
pasteurized at 70◦C for 1 h was statistically higher than the
other conditions in the first 7 days of this trial (Figure 3D,E),
although Carrere et al. (2016) advise against extrapolating such
results to full-scale plants without complex modeling. Although
methanogenesis appears to have been impacted differentially
by the two pre-AD pasteurization conditions tested, FIB
survival was similar for both conditions. Slightly higher FIB
numbers were recorded after 28 days in systems processing
pre-pasteurized feedstock (P1 and P2; Figure 4). This may
be indicative of reduced competition for resources, whereby
pre-pasteurization reduced the microbial populations in the
feedstock, enabling increased FIB survival and/or regrowth of
resilient strains or cells.

A number of pasteurization conditions were examined by
Coultry et al. (2013) to determine the energy consumption and
consequent economic impact on viability of AD plants. Pre-AD
pasteurization was demonstrated to be prohibitively expensive;
most notably, the energy required to meet the Irish national
transformation standard (P1) equates to 4,544% of the digester’s
output, which is an 80-fold increase in energy consumption when
compared with the already prohibitive EU requirement (P2).
These numbers are likely to be lower in practice however, as
only the imported materials are pasteurized before mixing in
with indigenous slurry, reducing the pasteurization treatment
efficacy as seen in the FIB survival results for P1 and P2.
The energy cost of post-AD pasteurization is mitigated by
the mesophilic digestate, but was still found by Coultry et al.
(2013) to be substantial, at 30 and 1,893% of the digester’s
annual energy output for EU (P4) and national standards (P3)

respectively. Although some measures could be taken to reduce
these costs, such as separation of liquid and solids, they are clearly
a substantial burden to the economic viability of bioreactor
operation. This burden hinders adoption of farm-based AD
and is worth reconsideration in light of the reduction in FIB
numbers in unpasteurized trials and the absence of hygienization
requirements for unprocessed slurry. The FIB survival rates
monitored in the stored slurry are in line with previous studies
such as that of Nicholson et al. (2005), who found that E.
coli O157, Salmonella and Campylobacter survived for up to 3
months during dairy slurry storage. Similarly, Mycobacterium
avium subspecies paratuberculosis has been found to survive
beyond 56 days in stored slurry at ambient temperatures (Grewal
et al., 2006). Furthermore, survival of pathogens in stored slurry
increases with temperatures below 10◦C, such as those typical
of winter storage months in north-western European climates
(Kudva et al., 1998). In terms of potential pathogen load to
the environment, as assessed via the monitoring of FIB levels,
we have demonstrated that mesophilic anaerobic co-digestion
of slurry with food production waste is superior to simple
slurry storage without treatment. Moreover, the slight increase
in numbers of enterococci over the first 7 day period of slurry
storage (Figure 5) highlights the potential risk of pathogens
thriving in this environment. Based on these findings, if the EU
standard for digestate was applied to slurry (<1,000 cfu g−1),
all livestock farms would be required to adopt some form of
treatment.

Previous studies have examined the agronomic benefits of
anaerobic digestion (AD) of slurry. Benefits include increased
homogeneity and decreased viscosity, due to the reduction
in volatile solids, resulting in more uniform landspreading
(Massé et al., 1997). As detailed by Massé et al. (2011),
other studies have demonstrated the added fertilizer value of
digestate compared with slurry and mineral fertilizer, resulting
from improved plant N uptake and increases in N and P
mineralization (Massé et al., 2007; Chantigny et al., 2009).
When these agronomic improvements, energy production, waste
reduction and mitigation of GHG emissions are considered
together with reduced pathogen load to the environment,
widespread adoption of AD as a means of slurry amendment
prior to landspreading should be encouraged (Clemens et al.,
2006). The enterococci survival observed in this study highlights
however the scope for future work to improve pathogen
inactivation during farm-based AD. Optimization of operational
conditions for FIB reduction is currently underway. Future
work focusing on landspreading field trials will be necessary to
assess further comparative risk from digestate and unprocessed
slurry.

CONCLUSION

In this study we demonstrate that (i) miniature 50mL bioreactors
are valid proxies of farm-based AD to carry out targeted pathogen
survival investigations and (ii) in situ AD treatment of slurry
prior to land application reduces the level of FIB compared to
slurry storage alone, independently of pasteurization, which in
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turn might be indicative of a decreased potential pathogen load
to the environment and associated public health risks. While
pathogen indicator die-off was observed, enterococci survival
highlights the opportunity for process optimization with a focus
on hygienization.
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Figure S1 | Comparison of methanogenic activity performance of various ratios of

granular sludge:BEOFS digestate:slurry for development of inoculum (n = 3).

FOG: Fats, oils and grease; PRO: Propionate; BUT: Butyrate; ETH: Ethanol; ACE:

Acetate.

Figure S2 | Recorded pH for (A) 10 L and 50mL bioreactors processing

unpasteurized slurry and FOG; (B) 50mL bioreactors testing pasteurization

conditions.

Figure S3 | Mean methane percentages for 10 L and 50mL (A) and

P1-P4 (B) at all timepoints (n = 3), with standard deviation error bars.

Detailed information about the models used, in addition to the data and

analysis script, can be found at http://nickp60.github.io/SI_Nolan_etal_

2018.
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