
REVIEW
published: 11 January 2019

doi: 10.3389/fsufs.2018.00091

Frontiers in Sustainable Food Systems | www.frontiersin.org 1 January 2019 | Volume 2 | Article 91

Edited by:

Airton Kunz,

Embrapa Suínos e Aves, Brazil

Reviewed by:

Ariel A. Szogi,

Agricultural Research Service,

United States Department of

Agriculture, United States

Victor Riau,

Institut de Recerca i Tecnologia

Agroalimentàries (IRTA), Spain

*Correspondence:

José Luis Campos

jluis.campos@uai.cl

Specialty section:

This article was submitted to

Waste Management in

Agroecosystems,

a section of the journal

Frontiers in Sustainable Food Systems

Received: 07 October 2018

Accepted: 20 December 2018

Published: 11 January 2019

Citation:

Campos JL, Crutchik D, Franchi Ó,

Pavissich JP, Belmonte M,

Pedrouso A, Mosquera-Corral A and

Val del Río Á (2019) Nitrogen and

Phosphorus Recovery From

Anaerobically Pretreated Agro-Food

Wastes: A Review.

Front. Sustain. Food Syst. 2:91.

doi: 10.3389/fsufs.2018.00091

Nitrogen and Phosphorus Recovery
From Anaerobically Pretreated
Agro-Food Wastes: A Review

José Luis Campos 1*, Dafne Crutchik 1, Óscar Franchi 1, Juan Pablo Pavissich 1,2,
Marisol Belmonte 3, Alba Pedrouso 4, Anuska Mosquera-Corral 4 and Ángeles Val del Río 4

1 Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar, Chile, 2Center of Applied Ecology and

Sustainability (CAPES-UC), Santiago, Chile, 3 Laboratory of Biotechnology, Environment and Engineering, Faculty of

Engineering, University of Playa Ancha, Valparaíso, Chile, 4Department of Chemical Engineering, School of Engineering,

University of Santiago de Compostela, Santiago de Compostela, Spain

Anaerobic digestion (AD) is commonly used for the stabilization of agro-food wastes and

recovery of energy as methane. Since AD removes organic C but not nutrients (N and P),

additional processes to remove them are usually applied to meet the stringent effluent

criteria. However, in the past years, there was a shift from the removal to the recovery

of nutrients as a result of increasing concerns regarding limited natural resources and

the importance given to the sustainable treatment technologies. Recovering N and P

from anaerobically pretreated agro-food wastes as easily transportable and marketable

products has gained increasing importance to meet both regulatory requirements and

increase revenue. For this reason, this review paper gives a critical comparison of the

available and emerging technologies for N and P recovery from AD residues.

Keywords: ammonia combustion, ammonia hydrolysis, bioaccumulation, CANDO process, environmental benefit,

nutrient recovery, phosphorus precipitation

INTRODUCTION

Anaerobic digestion is the most widely applied technology for the treatment of agro-food industry
waste, given its proven operational reliability and the obtaining of methane as a source of renewable
energy, which generally allows amortizing the initial investment costs (Ren et al., 2017). However, it
has the drawback of generating an effluent (digestate) that has a high amount of solids and nutrients
(N and P) that do not meet the characteristics required by the regulations to be discharged directly
to water courses. During anaerobic digestion hydrolysis takes place and organic matter, ammonia,
phosphate, potassium, magnesium, calcium, and sulfur are released to the bulk liquid. Organic
matter is mainly converted into methane while both ammonia and phosphate are not consumed
during the process (Amini et al., 2017; Ma et al., 2018; Mai et al., 2018).

Phosphate is a key compound in fertilizers and its annual demand is increasing in line with the
increase in the world’s population. Therefore, it is necessary to guarantee its availability in the future
to maintain an adequate production of food. Since the main source of phosphorus is the phosphate
rock which burn time ranges from 50 to 400 years, there is now a growing interest in the technical
and economic feasibility of large scale systems for phosphorus recovery from agro/industrial
digestates (Cordell et al., 2011; Bradford-Hartke et al., 2012; Reijnders, 2014). Although phosphorus
recovery and reuse is of great importance to reduce phosphate rock dependency and also to avoid
pollution of water resources, P recovery is barely carried out currently due to the higher production
costs of recovered P compared to those of mined P (Egle et al., 2016; Peng et al., 2018). Nevertheless,
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if the social and environmental benefits of P recovery are
quantified, the economic balance turns in favor of P recovery
(Molinos-Senante et al., 2011; Mayer et al., 2016; Corbala-Robles
et al., 2018). Contrary to phosphorus, N can be considered as
a renewable resource but its conversion into fertilizer by means
of the Haber-Bosch process requires a high amount of energy,
with its cost dependent on the price and supply of natural gas
(Zarebska et al., 2015). As in the case of phosphorous, ammonia
market price makes not advisable its recovery from digestates but
the scenario changes if nitrogen pollution costs are taken into
account (Sutton et al., 2011; Alitalo et al., 2012; Peng et al., 2018).

The most economical option to manage digestates is their
direct application as fertilizer to agricultural lands which also
allows conserving their nutrients and reducing the requirement
of chemical fertilizers (Alburquerque et al., 2012; Möller and
Müller, 2012). Nevertheless, there is a surplus of nutrients
in areas with intensive agro-livestock activities and limited
agricultural land as a result of excess digestate production (Hjorth
et al., 2011). Therefore, transport of nutrient surplus over long
distances is necessary to avoid environmental problems related to
nutrient overdoses (Fuchs and Drosg, 2013; Svehla et al., 2017).
Since this strategy implies high operating costs, other ways to
manage digestates should be chosen (Sheets et al., 2015). The
separation of digestate into a liquid fraction rich in inorganic N
and a solid fraction rich in phosphorus is generally applied in
order to partly solve problems related to high costs of transport
(Figure 1). The solid fraction can be used to produce compost or
transported longer distances as a concentrated fertilizer since this
fraction suppose only the 25–35% of the original digestate but
contains 60–80% of its dry matter and almost all its phosphorus.
However, only 20–25% of the initial nitrogen is retained in the
solid fraction (Holm-Nielsen et al., 2009; Romero-Güiza et al.,
2016). Another alternative is to burn the solid fraction in order
to recover the nutrients from the ashes (Amann et al., 2018;
Gorazda et al., 2018). This alternative, although very attractive
in terms of volume reduction of solids, implies high operating
costs that makes difficult its application on an industrial scale
only interesting in countries where sewage sludge incineration is
mandatory (Egle et al., 2016).

Although the liquid fraction from separated digestate has
a low nutrient concentration that cannot be economically
transported for use as a fertilizer, its concentration levels
precludes the direct discharge. Therefore, in order to avoid that
transport costs penalize the ex-situ use of nutrients, it is necessary
to carry out their further separation, which can be achieved
by concentrating the liquid stream itself or by converting
the nutrients into solid compounds and making a subsequent
solid-liquid separation. In this way, liquid streams generated
containing high nitrogen and phosphorous concentrations could
be easily transported and could be sold and make a profit
(Meixner et al., 2015). An alternative to these traditional systems
of direct nutrients recovery is their valorization through the
generation of energy by means of their in-situ combustion using
the own infrastructure for burning the biogas. This can be applied
for the case of NH+

4 by its transfer to the gaseous phase in
the form of NH3 or its conversion to N2O (Gao et al., 2014)
(Figure 2).

NUTRIENT ACCUMULATION

The economic feasibility of using the nutrients, contained in the
liquid fraction of the digestates, as a fertilizer is conditioned
by transportation costs. Therefore, it is important to apply
to the digestate technologies that allow the concentration of
nutrients in order to reduce transport costs. There are different
technologies based on chemical, physical and biological processes
to carry out this concentration (Sengupta et al., 2015) (Table 1).
Most of them were already applied to the anaerobic sludge
digester supernatant of municipal WWTPs or to effluents
of anaerobic digesters treating industrial wastewater but few
applications related to agro-industrial effluents are reported
(Desmidt et al., 2015). According to data show in Table 1,
fertilizers sale would not cover their production which would
indicate nutrient recovery is not economically feasible. Moreover,
most of times the products obtained have only a local market due
to administrative restrictions and their sale prices are lower than
those of commercial fertilizers (Xu et al., 2018). However, the
economical balance should also take into account costs related
the environmental impact caused by nutrients disposal. For
example, nitrogen pollution costs the European Union between
70 and 100 billion euros/year (Sutton et al., 2011). Besides, the
implementation of P-recovery systems in WWTPs could avoid
the scaling problem caused by struvite. This is the case of the
AmsterdamWestWWTPwhose operating costs were reduced by
e500,000 euros/year after the installation of a struvite crystallizer
(Waternet, 2017). In any case, nutrient recovery driver is more
related to the legislation of each country than to the economic
feasibility of the process.

Full scale applications of physical technologies such as
evaporation, membranes or air stripping showed this kind of
technologies are highly expensive (5.4–7.0 Euros/m3 digestate;
Bolzonella et al., 2018) due to the high energy and material
input requirements which also entails a negative environmental
balance (Bradford-Hartke et al., 2015). Therefore, in order to
improve economy of the recovery processes and decrease their
environmental impact, the use of biological methods alone, such
as bioaccumulation, or combined with chemical precipitation is
preferable (Barbera et al., 2018; Xu et al., 2018).

Bioaccumulation
The application of heterotrophic microorganisms, such
polyphosphate-accumulating organisms, to carry out the
bioaccumulation of nutrients is not viable due the low ratio
COD/nutrients of digestates. Therefore, the use of autotrophic
organisms such as microalgae seems to be a more suitable
option. These organisms are able to remove both nitrogen and
phosphorus via assimilation for biomass growth without oxygen
consumption (Equation 1) (Park and Craggs, 2011; Rusten and
Sahu, 2011; Chen et al., 2013; Posadas et al., 2015). Application of
microalgae for wastewater treatment is generally carried out in
open raceway ponds due to their low capital costs compared to
photobioreactors (Shoener et al., 2014). These microalgae ponds
have large footprint and, then, their possible implementation is
conditioned by the availability of land. Another disadvantage of
themicroalgae application relies on their poor settling properties,
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FIGURE 1 | Management options for digestates.

FIGURE 2 | Alternatives for minimizing transport costs during the recovery and/or valorization of nutrients contained in the liquid fraction separated from digestate.

which increase the operating costs related to their harvesting
and dewatering (Fasaei et al., 2018). Despite these disadvantages,
operating costs are still lower than those of other technologies
(Xu et al., 2018). Moreover, microalgae can be used to upgrade
the quality of biogas generated during the anaerobic process
(Meier et al., 2015) or sold as high-protein animal feed (Shilton
et al., 2012).

106 CO2 + 236 H2O + 16 NH+

4 + HPO−2
4 + light

→ C106H181O45N16P + 118 O2 + 171 H2O + 14 H+ (1)

Chemical Precipitation
One of themost widely studied P recovery technologies is struvite
(MgNH4PO4·6H2O) precipitation, which is a simple method for
the simultaneous removal of ammonium and phosphate from
aqueous waste streams (Kataki et al., 2016a,b; Li et al., 2019).
Struvite can precipitate in a wide range of pH values but, its

optimum pH range is from 7.5 to 9.0 (Miles and Ellis, 2001;
Nelson et al., 2003; Rahman et al., 2014) while pH values of
anaerobic digestates streams have generally values between 7.0
and 8.2 (Wu et al., 2001; Marti et al., 2010; Lahav et al., 2013).
In the range of the optimal pH value for struvite formation the
phosphorous specie present in the liquid media is HPO−2

4 and
not PO−3

4 . This supposition is also supported by the decrease of
the pH value observed during the precipitation process (Equation
2):

NH+

4 + Mg2+ + HnPO
n−3
4 + 6H2O → MgNH4PO4 · 6H2O

+nH+ (2)

Struvite formation requires equimolar amounts of Mg2+, NH+

4 ,
and PO3−

4 . Generally, Mg2+ content in anaerobic digestates is
lesser than phosphate and ammonium concentration (Kataki
et al., 2016b). Then, if the final of objective of the process is
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to obtain a maximum efficiency of phosphorus recovery, Mg2+

should be added to the effluent of the anaerobic digester (Sheets
et al., 2015). Besides, the reaction of struvite precipitation causes
a release of protons, as shown in Equation (2), which could cause
a pH drop. Consequently, an alkali source must be added to
maintain the pH in a suitable range for struvite precipitation.

The costs of struvite precipitation are strongly dependent
on the magnesium and alkali sources used. These costs may
contribute to up to 75% of overall production costs (Dockhorn,
2009). In the literature, the use of high grade magnesium sources,
such as MgCl2, MgSO4, MgO, or Mg(OH)2 has been reported
(Kataki et al., 2016b). Nevertheless, the utilization of these
high grade and expensive magnesium sources can lead to high
operating costs compromising the viability of the process. In this
sense, the use of low cost magnesium sources, such as industrial
grade MgO or Mg(OH)2, seawater or bittern can significantly
reduce the cost of struvite precipitation. In this regard, the cost
of phosphorus precipitation by conventional processes, adding
aluminum, or iron salts, is between 2,000 and 3,000 Euros/t-
P precipitated (Dockhorn, 2009). In struvite precipitation, the
cost of the addition of an external magnesium source has been
estimated between 700 and 4,000 Euros/t-P precipitated. Indeed,
the struvite precipitation cost by adding MgCl2 and NaOH is
around of 4,000 Euros/t-P precipitated (Carballa et al., 2009);
whilst that the cost for struvite precipitation by using MgSO4 is
estimated around 2,000 Euros/t-P precipitated (Etter et al., 2011;
Sakthivel et al., 2012). Similar struvite operating cost has been
determined by using magnesium dosing by electro-dissolution
(Hug and Udert, 2013). On the other hand, Señoráns et al.
(2011) reported that the operating cost of struvite precipitation
at industrial scale was around to 2,900 Euros/t-P precipitated.
These authors have used seawater as magnesium source, in fact,
the chemical cost was mainly due to the alkali requirements.
Meanwhile, Crutchik et al. (2017) estimated that the chemical
costs associated with the use of an industrial Mg(OH)2 as
magnesium and alkali sources for struvite precipitation at
industrial scale was around to 1,000 Euros/t-P precipitated.

Moreover, the presence of other ions in solution such as
calcium or carbonate can interfere with struvite precipitation
by competing for magnesium and/or phosphate to form
other precipitates species such as calcium phosphates or
calcium/magnesium carbonate species. These ions can negatively
affect the precipitation of struvite, decreasing the availability of
the ions involved in struvite precipitation, and also affecting the
purity of the produced struvite (Le Corre et al., 2005; Hosni
et al., 2007; Song et al., 2007; Huchzermeier and Tao, 2012;
Desmidt et al., 2013). In general, the formation of calcium and/or
magnesium phosphates depends mainly on operational pH and
wastewater characteristics (Jaffer et al., 2002; Le Corre et al.,
2005; Pastor et al., 2008; Moerman et al., 2009). In this regard,
struvite precipitation is more affected by the presence of calcium
at low phosphate concentrations (<40mg PO3−

4 -P/L) than at
high phosphate concentrations (>60mg PO3−

4 -P/L) (Desmidt
et al., 2013).

Some authors found that the presence of calcium could
not affect the precipitation of struvite under certain conditions
(Wang et al., 2006; Moerman et al., 2009; Huchzermeier

and Tao, 2012). Most of these studies concluded that the
molar ratio of Ca2+:PO3−

4 is a determinative parameter to
promote struvite precipitation rather than calcium phosphates
formation, Ca2+:PO3−

4 molar ratio should be <0.5 to obtain
an efficient precipitation in terms of phosphorus recovery and
struvite purity. However, most of the aforementioned results
are restricted to the experimental conditions in which they
were specifically determined. Moreover, Stratful et al. (2001) and
Crutchik and Garrido (2011) indicated that a high ammonium
concentration could be highly beneficial to the reaction of struvite
precipitation, so to obtain a relatively pure solid phase in terms
of struvite purity. In this regard, it could be possible to obtain a
high purity in terms of struvite, instead of precipitates of calcium
phosphates in high ammonium wastewater.

The main drawback to carry out struvite precipitation for
recovering ammonia and phosphate is the high costs of chemical
compounds needed to obtain an adequate pH of struvite
precipitation, and consequently to obtain an efficient nutrients
recovery (Çelen et al., 2009; Ryu and Lee, 2010). This fact is
due to the high buffer capacity of the anaerobic digester effluent
caused by NH3/NH

+

4 and H2CO3/HCO−

3 /CO
2−
3 equilibria. In

this sense, the use of biological processes, which involve reactions
with HCO−

3 and/or ammonium consumption or pH changes,
could be considered an attractive pretreatment to reduce the
consumption of reagents during phosphorus recovery (Mañas
et al., 2011; Johansson et al., 2017; Simoes et al., 2018). For
example, the previous application of nitrification (Equation 3)
or partial nitrification-anammox processes (Equation 4) would
decrease the amount of NaOH required up to 50 and 89%,
respectively, and, in the last case, struvite recovery would be
economically profitable (Campos et al., 2017). It should be
taken into account that the liquid fraction of digestate has a
temperature around 30◦C and a low amount of organic matter
which are propitious conditions to carry out these autotrophic
processes.

NH+

4 + 2 O2 → NO−

3 + H2O + 2 H+ (3)

NH+

4 + 0.75 O2 → ½N2 + 1.5 H2O + H+ (4)

Another strategy to reduce alkali requirements during
phosphorous recovery is the application of low-rate aeration to
promote CO2 stripping (Desmidt et al., 2012; Vanotti and Szogi,
2015). Due to the consequent pH rise, a fraction of ammonia
ion is converted into NH3 which can be directly recovery from
liquid bulk by means of gas-permeable membranes. Complete
ammonia removal causes phosphates precipitate mainly as
newberyte (MgHPO4·3H2O) instead of struvite (Vanotti et al.,
2017).

NITROGEN VALORIZATION AS ENERGY
SOURCE

As it happens with organic compounds, the potential energy
available in chemical bonds of the ammonia molecule exceeds
significantly the electricity requirements of the applied
treatments (Garrido et al., 2013). Therefore, in the same
way that organic matter is removed from agroindustrial effluents
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by means of anaerobic digestion in order to obtain energy in
form of CH4, ammonia could be hydrolyzed to generate H2,
or oxidized, directly or via N2O, into N2, obtaining renewable
energy. This could be an attractive option compared to removal
alternatives such as nitrification-denitrification and partial
nitrification-anammox processes that always implies the supply
of energy to convert NH3 into N2 (Flotats et al., 2009; Morales
et al., 2015).

Ammonia Hydrolysis
Ammonia present in the effluents of the anaerobic sludge
digesters can be also considered as a source of hydrogen. NH3 can
be converted into N2 and H2 by a catalytic reaction in gas phase
after its stripping from the liquid phase (Babson et al., 2013) or
its electrolysis directly in liquid phase (Bonnin et al., 2008; Gwak
et al., 2016; Zhang et al., 2017). Electrolysis seems a more viable
way to obtain hydrogen since it can be carried out at ambient
temperature in contrast to the catalytic reaction that needs
temperatures around 800–900◦C. Theoretically, the electrolysis
of ammonia consumes 1.55Wh/gH2 (Table 2) (Boggs and Botte,
2009). However, the present energy consumption for different
ammonia electrolysis systems, which depends on the used
catalyst, support material, and electrolytic cell configuration, is
around 15W·h/g H2, that is, 1.34 kW·h/Nm3 H2generated (Bonnin
et al., 2008; Botte and Feickert, 2012).

The electrolysis process requires that ammonia is present
at its unionized form (NH3). This implies that the pH value
of the effluent should be increased up to 12.0. Taking into
account the stoichiometry of the overall ammonia electrolysis
reaction and considering that HCO−

3 is the counter anion of
NH+

4 , a consumption of 59.5mol NaOH/Nm3 H2generated can
be calculated. Then, operating costs due to NaOH and energy
required make that the production of 1 Nm3 of H2 costs 1.12
Euros which is more expensive than 0.26–0.35 Euros reported for
other technologies as steam reformed of natural gas, electrolysis
with conventional electricity or steam reforming of biomethane
(Bonnin et al., 2008). Since most part of these operating costs are
related to pH fitting, the electrolysis process could be also carry
out with NH+

4 . However, the metal of the anode is oxidized and
combined with the counter anion of NH4+, causing the electrode
corrosion on the anode (Goshome et al., 2016).

Ammonia Combustion
NH3 oxidation into nitrogen gas and water is an exothermic
reaction (Equation 5) that could be used to generate energy
without CO2 emissions (Degnan, 2018). NH3 can be directly
oxidized in the bulk liquid by means of electrochemical fuel cells
(Rees and Compton, 2011) or burned together to methane to

TABLE 2 | Electrochemical reactions for the ammonia electrolysis process.

Reaction Stoichiometry E◦

Anode 2 NH3 + 6 OH−
→ N2 + 6 H2O + 6 e− −0.770 V

Cathode 2 H2O + 2 e− → H2 + 2 OH−
−0.829 V

Overall 2 NH3 → N2 + 3 H2 −0.059 V

generate power (Valera-Medina et al., 2017). This last option
would have two drawbacks: (1) the increase of NOx during
combustion which can be avoid by using suitable burners designs
(Okafor et al., 2018) or catalyzers (Hinokuma et al., 2018); (2)
the energy required for gas stripping which is generally higher
than that energy recovered (van Eekert et al., 2012). Moreover,
costs associated to pH fitting made no economically viable
these processes to valorize ammonia from the liquid fraction of
digestates.

NH3+0.75 O2 → 1.5 H2O+0.5 N2 1H = 382
kJ

mol NH3

(5)

N2O Combustion
Recently, Scherson et al. (2013) introduced a new N removal
process called CANDO (Coupled Aerobic-anoxic Nitrous
Decomposition Operation) which involves three steps: (1)
biological conversion of NH+

4 to NO−

2 ; (2) biological or chemical
partial anoxic reduction of NO−

2 to N2O; and (3) N2O conversion
to N2 with energy recovery. Then, from steps 1 and 2 ammonia
is converted to N2O, which is used in step 3 as a co-oxidant
for CH4 combustion or decomposed over a metal oxide catalyst
to recover energy. Compared to the conventional nitrification-
denitrification processes commonly used to remove ammonia,
the CANDO process allows reducing the requirements of organic
matter consumed during denitrification and utilizing N2O as a
renewable energy source. Combustion of CH4 with N2O releases
roughly 30% more heat than using O2 (equations 6 and 7),
and, mitigates the release of N2O to the atmosphere. However,
an overall energy balance shows this process is less efficient
than the partial nitrification-anammox process (Figure 3). This
is due to the fact that this last process is totally autotrophic and
only requires the oxidation of 50% ammonia into nitrite, which
supposes more available organic matter to produce methane and
a low oxygen requirementi during ammonia oxidation.

CH4 + 4 N2O → CO2 + 2 H2O + 4 N2 1H = 1219
kJ

mol CH4
(6)

CH4 + 2 O2 → CO2 + 2 H2O 1H = 890
kJ

mol CH4
(7)

Steps 1 and 3 of the CANDO process have been already
applied at full scale while step 2 (anoxic reduction of NO−

2
to N2O) is still under study (Scherson et al., 2013, 2014;
Myung et al., 2015). In these research works, two ways of
producing nitrous oxide from nitrite are proposed: (1) abiotic
reduction by Fe (II) with conversions over 90% and; (2) partial
heterotrophic denitrification with 62–70% NO−

2 -N converted
to N2O-N when COD/N fed ratios of 3–4 are applied in the
anoxic stage (Weißbach et al., 2018a,c). Later, N2O obtained
can be recovered (3,700 ppmv) by a micro porous hollow fiber
membrane contactor with efficiencies around 77 % (Weißbach
et al., 2018b).

Frontiers in Sustainable Food Systems | www.frontiersin.org 6 January 2019 | Volume 2 | Article 91

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Campos et al. Nitrogen and Phosphorus Recovery

FIGURE 3 | Comparison of (A) conventional nitrification–denitrification, (B) CANDO, and (C) partial nitrification-anammox processes with respect to energy recovery.

Calculations were carried out considering a generic waste with inlet biodegradable COD and NH+

4 -N concentrations of 10 kg/m3 and 1 kg N/m3, respectively. To

calculate overall energy production, energy consumption associated with aeration was estimated using an average factor of 1 kW·h/kg O2 transferred while energy

production, as electricity, was estimated taken into account an efficiency factor of 35% for the biogas engine.

CONCLUSIONS

If the importance of the recovery of nutrients from the digestates
is evaluated only in terms of the current economic value of
nitrogen and phosphorus in the market, it is not attractive and,
in many cases, nutrients removal is more profitable than their
recovery. However, this perspective will change in the future

if the economic damages of the environmental impacts due to
pollution caused by the inappropriate use of the digestates and
the increase in prices that the production of chemical fertilizers
will suffer are included.

Many of the technologies used to carry out nutrient recovery
involve high reagent and/or energy requirements, which can lead
to a negative net environmental impact. In this regard, biological
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technologies should be applied alone or combined with chemical
technologies in order to generate synergistic effects that reduce
the energy and reagent needs.
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