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Agricultural practices can either contribute to pollinator decline or provide opportunities

to support pollinator communities. At the landscape-scale, agriculture can have negative

impacts on pollinators, especially pollinators that specialize on limited floral or nesting

resources. While increasing floral resources at the field-scale is positive for pollinator

communities, little is known about how it affects specialist bees that depend on a specific

pollen source (oligoleges). We studied pollinators on small-scale farms that contrasted

in crop diversity (monocultures vs. polycultures), embedded in the intensively managed

agriculture region of the San Joaquin Valley in California, to understand how wild bee

communities and specialist bees would respond to field-scale diversification practices.

We used squash (Cucurbita pepo) as our focal crop, because it is visited by both

specialist pollinators, “squash bees” in the genera Peponapis and Xenoglossa, and by

generalist bees like those in the genera Apis and Agapostemon. We hypothesized that

there would be a greater number of squash bees on monoculture farms, which have

abundant squash flowers, than on polyculture farms. Contrary to our predictions, we

found that increasing the number of non-squash floral resources at the field-scale in

agroecosystems supports a greater abundance of squash bees but has no effect on

the diversity of bees visiting squash flowers. This pattern of increased abundance was

consistent for other wild bees and the total number of bees (i.e., including honey bees),

but not for honey bee abundance alone. Further, the abundance of pollinators increased

or remained the same on polyculture farms throughout the morning while decreasing

on monoculture farms, suggesting that as squash flowers start to close in midmorning,

bees on the monocultures go elsewhere because no other floral resources co-occur.

However, they remain on the polycultures where other resources co-occur. Thus, on-farm

diversification may be an important refuge for both specialist bees and other pollinator

species that are vulnerable to floral resource simplification as a result of development,

especially through monoculture agriculture.
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INTRODUCTION

Global change patterns, including habitat alteration and climate
change, are transforming ecosystems with negative effects on
biodiversity and, thus, reducing ecosystem functioning and
compromising ecosystem services (IPBES, 2019). Agriculture,
nature’s double-edge sword, can either contribute to biodiversity
loss or provide opportunities to support biodiversity (Kremen
and Merenlender, 2018). Large-scale agriculture intensification
in landscapes, including (semi-) natural habitat loss and
agrochemical use, have caused insect pollinator decline (Kremen
et al., 2002; Biesmeijer et al., 2006; Carvell et al., 2006; Rundlöf
et al., 2008; Brittain et al., 2010; Williams et al., 2010; Dupont
et al., 2011; Bartomeus et al., 2013; Grab et al., 2019) whereas
diversification practices in agricultural landscapes have been
shown to support wild bees by providing nesting and foraging
resources (Steffan-Dewenter and Leschke, 2003; Morandin and
Kremen, 2013; Sardiñas and Kremen, 2015; Kovács-Hostyánszki
et al., 2017; Quinn et al., 2017). On-farm diversification practices
that provide spatiotemporal floral resource continuity can
support pollinator communities (Westphal et al., 2003; Ullmann,
2015), yet little is known about how it affects the diversity and
abundance of rarer specialist bees.

Wild bees play a huge role in the pollination of agricultural
crops and can be used as a supplement or replacement to
managed Apis mellifera (honey bee) colonies, reducing risk
associated with honey bee decline or increasing expense for
honey bee rentals (Klein et al., 2007; Garibaldi et al., 2013).
Specialist wild bees, more notably Peponapis and Xenoglossa
spp. (the squash bees), Nomia melanderi (the alfalfa bee), and
Diadasia spp. (the sunflower bees), rely on specific crops for
floral resources (Cane and Sipes, 2006; Patrício-Roberto and
Campos, 2014). In fact, squash bees, specifically Peponapis spp.,
expanded their range with the domestication and cultivation
of squash throughout North America (Giannini et al., 2010;
López-Uribe et al., 2016). These squash bees are solitary ground-
nesting species that require ground space near to their preferred
pollen source for suitable nesting habitat (Hurd et al., 1974).
Male bees will sometimes sleep in the flower, while females
exclusively rely on Cucurbita spp. in order to provide their
offspring an adequate pollen source throughout development
(Hurd et al., 1971). Squash plants also depend on squash bees.
While both the generalistA.mellifera (non-native to theU.S.) and
specialist Peponapis pruinosa (native) are effective pollinators of
squash plants, P. pruinosa females synchronize their crepuscular
emergence with the opening of the flower, unlike honey bees
allowing for sufficient pollination of squash plants without honey
bee colonies (Tepedino, 1981).While the importance of specialist
pollinators to pollination has long been questioned (e.g., Waser
et al., 1996; Larsson, 2005; Maldonado et al., 2013), studies
indicate that bees with a narrow pollen diet (oligolecty) are rarer
on agroecosystems (Wood et al., 2016; Amy et al., 2018).

Mass-flowering crops are large monocultures that bloom
concurrently, providing a bountiful, albeit time-limited, source
of nectar and pollen. Research has shown that mass-flowering
crops can attract and support their associated specialist and
generalist pollinators (Westphal et al., 2003), perhaps even more

than surrounding floral resources. Other studies suggest that
floral diversity in surrounding landscapes, such as semi-natural
areas, or in the immediate field margins, such as hedgerows,
are still important in promoting specialist pollinators (Garibaldi
et al., 2014; Stanley and Stout, 2014; Kremen and M’Gonigle,
2015; M’Gonigle et al., 2015). Yet, increasing floral diversity in
the surrounding landscape to supplement mass-flowering crops
may be impossible in landscapes dominated by agriculture or
depauperate semi-natural habitats, and on-farm restoration of
floral diversity, such as hedgerows, can be difficult for farmers
that lack capital to pay for the labor, supplies, and equipment,
and time involved in their implementation (Brodt et al., 2006;
Garbach and Long, 2017).

A small number of studies of on-farm or field-scale
diversification practices across space and time demonstrate that
increasing floral resources support a more abundant and diverse
pollinator community (Kennedy et al., 2013; Pereira et al., 2015;
Venturini et al., 2016; Lindborg et al., 2017; Quinn et al., 2017).
However, little is known about how diversification at the field-
scale and, thus, greater floral resource diversity, would specifically
influence specialist pollinator species of crops. Thus, the lack of
previous research provides inconclusive information and point
to the importance of investigating whether mass-flowering crops
or a diverse crop mixture would better support more specialized
crop pollinators.

We therefore explored the role of on-farm diversification in an
agriculturally dominated landscape on pollinator communities,
with an emphasis on specialists. We compared farms that only
provide one floral resource (i.e., squash flowers) and farms that
provide a wide range of floral resources (i.e., squash and other
flowers). Specifically, we asked: How does farm type (polyculture
vs. monoculture) affect specialist pollinators and other groups
of bees? How do pollinator communities visiting squash flowers
change throughout the day on these two types of farms? We
predicted that we would observe a higher number of squash bees
on farms that provide a greater amount of squash flowers (i.e.,
monoculture farms) than those that provide a limited amount
of squash flowers (i.e., polyculture farms). We further predicted
that the monoculture farms would host lower numbers and
diversity of other wild bees (non-squash specializing) compared
to polyculture farms, and these trends would be consistent
throughout the morning. Lastly, we expected that proportion of
surrounding agricultural land would have a minimal effect on
the pollinator abundance and diversity given the high proportion
of agriculture in the landscape and the low variability of the
surrounding landscape among sites.

MATERIALS AND METHODS

Study System
Field sites were located in Fresno County in California’s San
Joaquin Valley, an agriculturally dominated region containing
a wide range of annual and perennial crops, including row
crops and orchards. Natural or semi-natural habitats are sparse
or nearly non-existent, except in the foothills of the Coastal
Range and Sierra Nevada Range in this region (Kelly et al.,
2005). While this region is dominated by large-scale farms, our
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FIGURE 1 | Example photos and hand-digitized crop maps, in which each color represents a different crop type, of (A) a monoculture farm and (B) a polyculture farm

to visualize the field-scale variation in the (C) landscape-scale maps (hand-digitized aerial imagery at 500m buffer from the farm center) of the monoculture and

polyculture sites.

research focused on small-scale farms (<40 acres) embedded
in this landscape. Some of these small-scale farms grow a high
diversity of specialty crop together (e.g., squash, Thai peppers,
jujube, bittermelon; Molinar, 2012) and frequently rotate these
crops over space and time (i.e., “polycultures”). Other small-
scale farmers grow only one crop per season of squash or other
row crops (i.e., “monocultures”). We sampled on 10 farm sites
(5 polyculture farms and 5 monoculture farms) during the late
spring of 2018 (May 28 to June 14, 2018; Figures 1A,B). Farms
were considered polycultures if they grew 2 or more different
crop types and monoculture if they grew 1 crop type at the time
of data collection.

Farm sites were selected if they grew at least two rows of a
dominant summer squash variety (zucchini, Cucurbita pepo var.
cylindrica) and were at minimum 1 km apart from each other, to
maintain independence relative to typical bee foraging distances
(Greenleaf et al., 2007). Squash plants are entirely dependent on
insect pollination (but see possibility of parthenocarpy, Knapp
et al., 2017), and have specialist pollinators, known as squash
bees (Peponapis spp. and Xenoglossa spp.), allowing us to study
the effect of on-farm diversification on specialist and generalist
pollinators, separately. In addition, all farm sites had grown
squash in monoculture or polyculture the previous year (2017).

Sampling Methods
At each site, we established two parallel 30m transects
perpendicular to the field edge, running along adjacent rows of
squash, ∼2m apart (Figure S1). We were limited in where and

how far apart our transects could be since some polyculture farms
only contained two rows of summer squash and, therefore, the
two transects were always on adjacent rows across all sites. In all
other cases, all transects were located 5m from the edge.

We surveyed pollinators during two periods in the morning:
just after sunrise (∼05:30 a.m.; hereafter “early morning”), when
squash bees first become active, and later in the morning
(∼08:30 a.m.; hereafter “late morning”). Each site was sampled
once on 1 day, during squash bloom, on clear days with low
wind speeds (∼0.5 mph) and cool to warm temperatures (∼60
to ∼70◦F, early to late mornings, respectively). We surveyed
bees for 8min along each transect, not including time needed
for voucher specimen handling. Our survey only recorded floral
visitors that contacted the anthers and stigmas of squash flowers
(i.e., potential pollinators). While we also surveyed other non-
bee floral visitors, we did not include them in these analyses. Bees
were identified as squash bees (Peponapis spp. and Xenoglossa
spp.), honey bees (A. mellifera), or within six categories for
observational surveys of wild bees following Kremen et al.
(2011). Additionally, we did not distinguish between feral and
managed honey bees as there is no physical marker that permits
the distinction of these two categories. We netted voucher bee
specimens to confirm in-field identification. Voucher specimens
were identified by M. Chase.

Landscape Classification
The surrounding landscape at each farm was characterized
using the following land-use categories: developed (including
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home developments, animal feeding operations, warehouses and
packing houses, and roads), water (including irrigation canals
and streams), vegetation (including home gardens with flowering
plants and trees and wind breaks), polyculture agriculture,
and monoculture agriculture (Figure 1C). We hand-digitized
National Agriculture Imagery Program (NAIP) 2016 imagery
for Fresno County within a 500m buffer around farm sites
in ArcGIS 10.6.1 (ESRI, 2011), and classified each polygon
according to one of these five categories. To determine the
effect of agricultural intensity on pollinator communities visiting
squash flowers across different farm types, we examined the
proportion of agriculture (including both polyculture and
monoculture categories) within each buffer per farm site. The
proportion of agriculture in the surrounding landscape at the
farm sites varied from ∼60 to 95%, with a median of 84%
(Figure 1B). In this study, we did not choose farm sites based on
landscape context.

Statistical Analyses
We analyzed the influence of farm type (polyculture and
monoculture farms), landscape context (proportion of
agriculture in the surrounding landscape), and time of day
(early and late morning) on the abundance and diversity of bee
groups using general linear mixed effects models with a random
effect of farm site to account for site differences. Specifically,
for each of these bee groups [squash bees, wild bees (except
honey and squash bees), honey bees, and total bees], we used
visits to squash flowers within 8min to estimate abundances
and diversity indices, which included richness (using Chao1
estimator; Chao, 1987), evenness (Evar; Petchey and Gaston,
2006), and Shannon diversity (Magurran, 1988). Bee abundance
models assumed a Poisson error distribution and diversity
models assumed a Gaussian error distribution. We transformed
the diversity indices responses by ln(d+ 1) to ensure residuals
of fitted models met assumptions of homoscedasticity and
normality. In addition, the residuals of the fitted models had no
strong pattern of over-dispersion.

We developed two candidate model sets to test the importance
of fixed effects on all response variables: (1) “landscapemodels”—
farm type and landscape context (proportion of agricultural
land) as fixed effects (Table S1) and (2) “time of day models”—
time of day and farm type as fixed effects (Table S2). The full
models included both main effects and a two-way interaction
term between both main effects and were compared to simpler
models without the interaction, and with one of the two fixed
effects alone (Tables S1, S2). All competing models were ranked
based on Akaike Information Criterion (AICc). The model from
each set with the lowest AICc (i.e.,1AICc = 0) was considered to
be the overall best-fit model. Additionally, models with 1AICc

< 2 were considered important and competing models. For all
models, AICc values were used to calculate associated Akaike
weights (w), which represent the likelihood the model would be
the best-fit model in repeated runs of the experiment (Anderson
and Burnham, 2002). We report statistics and Akaike weights for
covariates of the overall best-fit models and competing models.
All statistical analyses were performed using R software version
3.5.2 (R Core Team, 2018) and model selection for mixed models

was conducted using a combination of the “lme4” package (Bates
et al., 2017) and the “MuMIn” package for model averaging of
coefficients (Barton and Barton, 2015).

RESULTS

Bee Abundance
A total of 590 bees, of which 31% were squash bees, 13% were
other wild bees, and 56% were honey bees, were observed across
all farm sites and survey rounds (early and late morning). Squash
bee abundance ranged from 0 to 37, other wild bee abundance
ranged from 0 to 50, and honey bee abundance ranged from 0 to
58 across all farm sites and survey rounds.

Landscape Models

Bee abundances were affected by farm type, proportion of
agriculture land, and their interaction. Squash bee abundance
was best explained by the model that included only farm type (w
= 0.506) and a competing model that included the interaction
between farm type and the proportion of agriculture (w= 0.331).
There was a greater number of squash bees visiting squash
flowers on polyculture farms than monoculture farms (farm
type: β = 2.126 ± 0.541, P < 0.001; Figure 2A). In addition,
as the proportion of agriculture in the surrounding landscape
increased, more squash bees visited squash flowers on polyculture
farms than monoculture farms (farm type x proportion of
agricultural land:: β = 8.122± 3.427, P= 0.018; Figure 3A).

For wild bees (i.e., all bees except squash and honey
bees), all models in the wild bee model set were strongly
supported (1AICc = 0–1.730; w = 0.121–0.287; Figures 2–4
and Figures S2, S3). The top model included main effects of

FIGURE 2 | The mean relative abundances ± standard error of (A) squash

bees, (B) wild bees, (C) honey bees, and (D) total bees per minute along a

30m transect between two farm types (polyculture and monoculture).
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FIGURE 3 | The mean relative abundances ± standard error of (A) squash

bees, (B) wild bees, (C) honey bees, and (D) total bees per minute along a

30m transect between two farm types (polyculture and monoculture) across

the proportion of surrounding agricultural land.

both farm type and proportion of agricultural land (w = 0.326;
Table S1), but no interaction. There was a greater number of wild
bees visiting squash flowers on polyculture farms (farm type: β

= 1.488 ± 0.745, P = 0.046; Figure 2B) and a positive marginal
effect of the proportion of agricultural land on the number of
wild bees (proportion of agricultural land: β = 6.356 ± 3.442,
P = 0.065; Figure S2B).

Honey bee abundance was best supported by both the null
model (w= 0.373) and the model with proportion of agricultural
land only (w = 0.339; Table S1). However, the effect of the
proportion of agricultural land on honey bee abundance was
marginal at best (proportion of agricultural land: β = −4.079 ±

2.586, P = 0.115; Figure S2C).
The models that best explained total bee abundance included

the effect of farm type only (w = 0.635; Table S1). The top
model demonstrated a strong effect of farm type on total bee
abundance, in which the number of total bees visiting squash
flowers was greater on polyculture farms than monoculture
farms (farm type: β =0.839 ± 0.217, P < 0.001; Figure 2D).
A competing model with both main effects of farm type and
the proportion of agricultural land (w = 0.264; Table S1) also
provided support that total bee abundance was greater on
polyculture than monoculture farm sites (farm type: β = 0.906
± 0.219, P < 0.001).

Time of Day Models

The models that included the effect of time of day and farm
type plus their interaction best predicted squash bee (w= 0.672),
honey bee (w= 1.000), and total bee (w= 0.969) but not wild bee
(w = 0.165) abundances (Table S2). The number of squash bees

FIGURE 4 | The mean relative abundances ± standard error of (A) squash

bees, (B) wild bees, (C) honey bees, and (D) total bees per minute along a

30m transect between two farm types (polyculture and monoculture) across

early morning (sunrise) and late morning (∼8:30 a.m.).

remained the same throughout out the morning (from early to
late morning) on polyculture farms while decreasing in numbers
onmonoculture farms (interaction: β= 1.428± 0.764, P= 0.062;
Figure 4A). The number of honey bees and total bees remained
the same from early to late morning on monoculture farms,
while increasing on polyculture farms (interaction: β = 1.634 ±

0.277, P < 0.001 and β = 0.654 ± 0.206, P = 0.002, respectively;
Figures 4C,D). Wild bee abundance was best explained by the
model with time of day only (w = 0.636; Table S2), which
predicted that there was no difference in the number of wild bees
from early to late morning (time of day: β = −0.015 ± 0.124,
P = 0.905; Figure S3B).

Bee Community Diversity
Apart from squash bees and honey bees, a total of six different
groups of wild bees were observed in the pollinator survey
conducted across farm sites. Based on these groups, Shannon
diversity ranged from 0.245 to 0.836, richness ranged from 2
to 4, and evenness ranged from 0.332 to 0.998 across all farm
sites surveyed.

Landscape Models

The effect of farm type, proportion of agricultural land, or the
interaction had little support when compared to the null models
for richness, Shannon diversity, and evenness (respectively, w =

0.564, w = 0.663, w = 0.615; Table S2). For the richness and
evenness of bees visiting squash flowers, the model testing only
the effect proportion of agricultural land was within two AICc
units of the null model although this effect was not significant
(proportion of agricultural land: β = 0.426 ± 0.366, P = 0.841
and β =−0.002± 0.638, P = 0.808, respectively).
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Time of Day Models

For time of day models, we did not find support for the effect
of time of day, farm type, and the interaction when compared
to the null model on richness, Shannon diversity, and evenness
(respectively, w = 0.798, w = 0.809, w = 0.864; Table S2). In
addition, none of the models were within two AICc units of the
null model (Table S2).

DISCUSSION

Although we hypothesized that squash monoculture fields would
provide a substantial amount of pollen resources for specialist
squash bees and thus have high squash bee abundances, in
contrast, our results suggest that on-farm diversification supports
a higher abundance of squash specialist bees (Peponapis spp.
and Xenoglossa spp.), other wild bees, and honey bees. Even
in an intensively managed landscape like California’s San
Joaquin Valley, on-farm diversification may support pollinator
communities, including native bees, despite the absence of
natural habitats and the high dependence on managed honey
bees for pollination (Kremen et al., 2002; Durant, 2018; Goodrich,
2019). Most likely a combination of factors, including floral
resource availability through space and time, potentially other
management practices such as reduced tillage and agrochemical
use, promoted pollinator abundances on polyculture farms.

Our results suggest that multiple floral resources through
space and time, as exhibited in our study system on squash
polyculture farms, is beneficial even for rarer, specialist bees.
These findings confirm a previous meta-analysis showing that
agriculture intensity decreases specialist pollinator communities
(Williams et al., 2010); our results, to the best of our knowledge,
further demonstrate that on-farm diversification, despite
high agricultural intensification in the surrounding landscape
promotes pollinator abundance for squash in polycultures. The
polyculture farms, in this study system, consist of many non-
squash flowering crops intercropped during the same growing
season (diversity in space) and across growing seasons (diversity
in time). Therefore, while polycultures have less squash plants
per farm area potentially aggregating squash bees, polycultures
also provide squash bees and other wild bees other non-squash
flower resources. Pereira et al. (2015) and Norris et al. (2017) did
not study specialist pollinator communities, but the authors did
show that intercropping increases the abundance of pollinators
by providing additional floral resources. Furthermore, Moeller
(2004) proposed that a more temporally continuous supply
of diverse floral resources promote pollinator community
diversity and stability. This has been supported in several other
observational (Burkle et al., 2013; Leong et al., 2015; Ponisio et al.,
2015; Aleixo et al., 2017; Kremen et al., 2018) and experimental
studies (e.g., Venjakob et al., 2016). Thus, higher and continuous
diversity of non-squash floral resources on polycultures could
explain our finding that a greater abundance of bees but not
diversity are visiting squash flowers.

While a continuous supply of floral resources supports the
abundance and diversity of pollinator communities, temporal
shifts of the specialized floral resource may still pose challenges

for oligolectic bees (Mayer and Kuhlmann, 2004; Minckley
et al., 2013; Ogilvie and Forrest, 2017). Instead, some studies
suggest that the constancy of a specialized floral resource through
time could be important to the stability of specialist pollinators
(Greenleaf and Kremen, 2006; Minckley et al., 2013; Scheper
et al., 2014; Ullmann, 2015). For example, Ullmann (2015) found
higher densities of squash bees (i.e., P. pruinosa) at farm sties with
increased connectivity to other squash fields between years. In
our study system, both squash monocultures and polycultures
should have experienced a boost in the squash bee population
given that squash was grown on each farm site the prior year. Yet,
we still observe a higher abundance of squash bees and other wild
bees visiting squash flowers on polycultures. Therefore, we do not
expect that a population boost effect may be playing a role in the
result that a higher abundance of squash and other wild bees are
visiting squash flowers on polycultures than monocultures.

Throughout the morning, we observed that the number of
pollinators (i.e., squash, wild, honey, and total bees) increased
or remained the same on polyculture farms, while decreasing
on monoculture farms. This suggests that as squash flowers
close on monoculture farms, bees travel elsewhere for floral
resources, but on polyculture farms, bees stay on the farm
and visit other flowers. Bees seek and travel to floral resources
because it is important for bees to have sufficient resources
(pollen and nectar) to support their caloric plus dietary needs
and provide for their young (Fewell andWinston, 1992; Roulston
et al., 2000; Francis et al., 2016; Arenas and Kohlmaier, 2019).
Similar to our results, other studies have found that bees in more
diversified landscapes travel less to obtain the needed resources
and conversely, they travel further in more simplified landscapes
(Steffan-Dewenter et al., 2002; Jha and Kremen, 2013; Ogilvie and
Forrest, 2017; Pope and Jha, 2017). Floral diversity of non-squash
crops on polyculture farms likely underlie the positive of effect
of polycultures on the abundance of squash bees and other wild
pollinators visiting squash plants.

In our study, we also found an interactive effect of the
surrounding landscape (i.e., the proportion of agricultural land)
and farm type (i.e., polyculture vs. monoculture) on squash bees
and honey bees. While our study was not designed to vary
surrounding landscape, our models accounted for this variable.
We would have included landscape explicitly in the experimental
design, but the region of our research, the San Joaquin Valley in
California, does not have expansive patches of natural habitat
and lacks landscape complexity (Kelly et al., 2005). Thus, the
farm at ∼60% of surrounding agricultural land was notably
exceptional given that the non-agricultural components in that
landscape were largely chicken broilers (i.e., a concentrated
chicken feeding operations), largely paved and lacked vegetation,
and a horse barn, neither agriculture nor housing development.
While studies on the effect of landscape composition on bees
are substantial (e.g., Kennedy et al., 2013; Motzke et al.,
2016), in this study we treat the effect of landscape on the
pollinator measurements with caution and caveats because of this
potential limitation.

Farm management is important in order to maintain and
support biodiversity in agricultural landscapes. In this study,
we found a strong effect of diversification in farm practices
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(i.e., intercropping with squash) on the number of wild
pollinators. While we speculate that the driving force in
these results is the positive effect of on-farm diversification
on pollinator communities, other farming practices such as
agrochemical use and tillage could have also been shown
to influence the composition of pollinator communities and
nesting habitats (Shuler et al., 2005; Bernauer et al., 2015;
Goulson et al., 2015; Ullmann, 2015; Hladik et al., 2016;
Potts et al., 2016; Kratschmer et al., 2018) including Peponapis
(Shuler et al., 2005; Williams et al., 2010; Ullmann et al.,
2016). Although our study did not explore these farming
practices, polyculture farms in our squash study system tended
to disturb the soil less (i.e., reduced tillage) as a result of their
intercropping practice. Further, polyculture farmers spot-treated
pest outbreaks with pesticides and hand-weeded whereas the
monoculture farmers used broadcast pesticide application for
pests and weeds.

Agricultural intensification from the field- to the landscape-
scale is on the rise (Rudel et al., 2009) and will continue to have
adverse effects on pollinator communities. Our results show that
on-farm diversification may provide important floral resources
for squash specialist bees, and other wild bee communities
that face challenges in landscapes dominated by agriculture.
In order to reconcile biodiversity conservation and agriculture,
agroecosystem management approaches are needed across
varying scales to support ecosystem functioning and ecosystem
services (Kremen and Merenlender, 2018). Importantly, our
results provide evidence that diversifying farmlands in an
agriculturally-dominated landscape creates a more suitable
matrix for pollinator communities. These findings support that
agricultural diversification benefits bee communities, however,
few studies, including this study (but see Kremen andM’Gonigle,
2015; M’Gonigle et al., 2015), have examined how wild bee
communities differentially respond to a range of agricultural
practices, from simplification to diversification, across varying
landscapes contexts.
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Table S1 | Model parameter estimates (β ± SE) and model selection statistics

(1AICc and Akaike weights, w) for the “landscape” candidate model set for each

response variable (bee group abundances and diversity indices). The model from

each set with the lowest AICc (i.e., 1AICc = 0) was considered to be the overall

best-fit model. Akaike weights (w) indicate the likelihood the model would be the

best-fit model in repeated runs of the experiment. Bolded values represent overall

best-fit model and competing models (1AICc < 2). ∗P < 0.1, ∗∗P < 0.05,
∗∗∗P < 0.001.

Table S2 | Model parameter estimates (β ± SE) and model selection statistics

(1AICc and Akaike weights, w) for the “time of day” candidate model set for each

response variable (diversity indices and bee group abundances). The model from

each set with the lowest AICc (i.e., 1AICc = 0) was considered to be the overall

best-fit model. Akaike weights (w) indicate the likelihood the model would be the

best-fit model in repeated runs of the experiment. Bolded values represent overall

best-fit model and competing models (1AICc < 2). ∗P < 0.1, ∗∗P < 0.05,
∗∗∗P < 0.001.

Figure S1 | (A,B) illustrate the sampling scheme, which consistent of two

transects ∼2m apart, depicted by black arrows, on two rows of squash between

two farm types (polyculture and monoculture).

Figure S2 | The mean relative abundances ± standard error of (A) squash bees,

(B) wild bees, (C) honey bees, and (D) total bees per minute along a 30m

transect across the proportion of surrounding agricultural land.

Figure S3 | The mean relative abundances ± standard error of (A) squash bees,

(B) wild bees, (C) honey bees, and (D) total bees per minute along a 30m

transect across early morning (sunrise) and late morning (∼8:30 a.m.).
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