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Challenges and Prospects for
Agricultural Greenhouse Gas
Mitigation Pathways Consistent With
the Paris Agreement
Sinead Leahy*, Harry Clark and Andy Reisinger

New Zealand Agricultural Greenhouse Gas Research Centre, Palmerston North, New Zealand

Global emissions pathways that would limit warming to 1.5 or well below 2◦C, consistent

with the temperature goal of the Paris Agreement, rely on substantial reductions of

agricultural greenhouse gases (methane and nitrous oxide) along with reaching net zero

carbon dioxide emissions from fossil fuels. Failure to reduce agricultural emissions would

require even more rapid cuts of carbon dioxide emissions and could jeopardize the ability

to limit warming to 1.5◦C. Modeled pathways that achieve the necessary agricultural

emission reductions do so by pricing agricultural emissions. However, there is a large gap

between such model scenarios and reality when it comes to the agricultural sector. To

date, no single country currently exposes agricultural emissions to any mandatory carbon

price and current evidence suggests considerable reluctance to the application of other

climate policies with comparable stringency to agriculture. A more realistic view is needed

if we are to avoid modeled emission scenarios providing an overly optimistic picture of

mitigation potentials from the agricultural sector. There are entry points for mitigation of

agricultural greenhouse gases outside government price policies, but many questions

remain around their scalability and efficacy. A comprehensive and accelerated effort will

be needed to bridge the gap from modeled emissions to realistic policy pathways.
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MODELS AND REALITY FOR GLOBAL AGRICULTURE
MITIGATION

The recent IPCC Special report on Global Warming of 1.5◦C (IPCC, 2018) details a wide range of
global emission pathways that would achieve the temperature goal of the Paris Agreement but they
all include substantial reductions in agricultural greenhouse gases (methane and nitrous oxide)
below forecast baseline trends (Huppmann et al., 2018). An earlier analysis by Wollenberg et al.
(2016) suggested a global target for reducing non-CO2 emissions from agriculture of ∼1 Gt CO2-
eq below baseline by 2030 to limit warming in 2100 to about 2◦C above pre-industrial levels. The
IPCC database of scenarios that limit warming to 1.5 or well below 2◦C indicate greater median
reductions well in excess of 2 GtCO2-eq below baseline by 2030, with further significant reductions
beyond. The most ambitious scenarios assessed by the IPCC (2018) that limit warming to 1.5◦C
with limited or no overshoot reduce global agricultural emissions by 16–41% (interquartile range)
in 2050 relative to 2010, whereas baseline emission increase by 24–54% over the same period. This
amounts to a median reduction of direct global agricultural non-CO2 emissions of 4.8 Gt CO2-eq
below baseline by 2050 (Huppmann et al., 2018; Frank et al., 2019).
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These ambitious mitigation pathways achieve the necessary
emission reductions by applying prices of typically several
hundred US$/tCO2-eq by 2050 to agriculture as well as
the energy sector. Some apply more than US$100/tCO2-
eq by 2030 to all emissions sources, at least in developed
countries (Kriegler et al., 2014; Riahi et al., 2017), and
assume concurrent supply-side mitigation; reductions in
demand due to dietary change and reduced food loss and
waste (IPCC, 2018, 2019).

However, there is a large gap between such model
scenarios and current reality. While there is increasing
adoption of price-based policies to address energy, transport,
and industry related CO2 emissions, these policies do not
yet cover these sectors comprehensively and often do not
reflect the carbon prices implied in the above scenarios.
Moreover, no single country currently exposes agricultural
emissions to any mandatory carbon price or other climate
policies with comparable stringency. Wollenberg et al. (2016)
estimated that currently feasible reductions, even if agriculture
were exposed to a global emission price of US$20/tCO2-
eq, would deliver only 0.2–0.4 GtCO2-eq abatement
by 2030.

While elimination of carbon dioxide emissions remains
the global priority, failure to concurrently reduce global
agricultural emissions would make limiting warming to 1.5◦C
by 2050 all but impossible even if action on fossil carbon
dioxide emissions were to accelerate dramatically. It is well-
established that constraining global temperatures to any level
allows only a finite amount of carbon dioxide to be emitted.
For example, for a 50/50 chance of limiting warming to
1.5◦C, the remaining allowable carbon budget is about 580
GtCO2, hence the urgent need to reduce global annual carbon
dioxide from currently more than 41 GtCO2 to net zero by
2050 (IPCC, 2018).

However, this carbon budget of 580 GtCO2 is contingent
on a substantial concurrent reduction of agricultural emissions.
If agricultural emissions were to remain constant, rather than
decline as in the modeled pathways to 1.5◦C, the warming
from those additional emissions would reduce the allowable
carbon budget by about another 250 GtCO2 (Rogelj et al.,
2015, 2018; Allen et al., 2016). Achieving global net zero CO2

emissions by 2050 already presents an enormous challenge;
accomplishing this target even earlier is not a realistic prospect.
The interactions between more or less ambitious reductions of
agricultural emissions and allowable carbon dioxide emissions
are illustrated in Figure 1.

The stark conclusion is that significant reductions of
direct agricultural emissions over the next three decades is
not an optional contribution but a necessary component
of efforts to limit warming to 1.5◦C. Failure to achieve
such reductions would mean exceeding this temperature limit
even if all other sectors maximize their efforts, or would
increase reliance on carbon dioxide removal through large-
scale afforestation or use of bioenergy along with carbon
capture and storage, which in itself presents risks to food
security (IPCC, 2019).

CURRENT PROSPECTS FOR ACTION ON
AGRICULTURAL EMISSIONS

The required scale of global reductions cannot be driven by co-
benefits alone but will incur real costs somewhere to someone.
As noted by the IPCC in its recent report, “the full mitigation
potential assessed in this report will only be realized if agricultural
emissions are included in mainstream climate policy” (Hurlbert
et al., 2019).

While substantial reductions in agricultural emissions could
in theory be achieved through the widespread introduction of
price-based policies, or through equally ambitious regulations or
other measures with an implicit price, current evidence suggests
considerable reluctance to apply stringent climate policies to
agriculture even in developed countries. While more than
100 countries have included agriculture mitigation in their
Nationally Determined Contributions (Richards, 2019), New
Zealand is currently the only country actively considering a
compulsory price on agricultural emissions. The option was
discussed recently but rejected in Ireland (Joint Committee on
Climate Action, 2019). New Zealand has a strong incentive to
apply mainstream climate policy instruments to its agricultural
emissions, given that more than 48% of its gross emissions
originate from this sector (MfE, 2018).

New Zealand’s experience provides a salutary lesson in the
difficulties of pricing agricultural emissions. New Zealand’s
policy discussions on agricultural emissions began in the mid-
nineties during negotiations on the Kyoto Protocol, which New
Zealand ratified in December 2002. In 2003, the New Zealand
Government proposed a compulsory agricultural emissions
research levy on farmers to accelerate the search for mitigation
solutions while exempting the sector from exposure to an
emissions price. Dubbed the “fart tax,” the proposal was met
with fierce opposition and replaced by a voluntary joint industry-
government research investment in return for an exemption
from an emissions price. In 2008, New Zealand introduced
the first emissions trading system in the world designed
to cover all economic sectors and Kyoto gases but delayed
entry of agriculture until at least 2012. In 2012, given the
perceived absence of cost-effective mitigation options and lack
of commensurate actions by New Zealand’s competitors, entry
of agriculture into the emissions trading scheme was deferred
indefinitely. More recently, New Zealand’s Interim Climate
Change Committee recommended that agricultural emissions
should be priced with a farm level emissions pricing levy/rebate
scheme being implemented by 2025 (ICCC, 2019). This is
currently being considered by the New Zealand Government as
part of a broader Zero Carbon Bill which it hopes to have in place
by the end of 2020, but there is fierce debate about the level of
methane reduction New Zealand should aim for by 2050, which
would influence the price that agricultural methane emissions are
exposed to.

New Zealand’s example illustrates two decades of unresolved
grappling with the complexities of addressing agricultural
emissions via price-based policies against a background of
understandable concerns about their effectiveness, potential
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FIGURE 1 | Three alternative global pathways of fossil CO2 and agricultural non-CO2 (CH4 and N2O) emissions consistent with global warming of 1.5◦C. The lower

panels show fossil CO2 (left panel) and agricultural non-CO2 (right panel) emissions. The black line shows an illustrative global emissions pathway that would limit

warming to 1.5◦C with limited (0.1◦C) overshoot. The red line shows an emissions pathway where agricultural non-CO2 emissions are not mitigated, i.e., follow a

baseline projection, and fossil CO2 emissions are adjusted downwards to result in the same global average temperature change from all gases throughout the

twenty-first century, including through negative emissions from about 2045 onwards. The blue line shows an intermediate pathway where agricultural non-CO2

emissions are held constant from 2020 onwards and fossil CO2 emissions are again adjusted to produce the same overall global average temperature change.

Emissions and removals of all other gases, and for CH4 and N2O from other sectors, follow the same unchanged illustrative 1.5◦C mitigation pathway in all three

scenarios. The top panel shows observed (HadCRUT4: Morice et al., 2012) and modeled global average temperatures for all three pathways (probabilistic median and

10–90 percentile range, using MAGICC; Meinshausen et al., 2009, 2011).

social and economic impacts on farmers, loss of international
competitiveness, and the risk of emissions leakage from such a
policy (e.g., Federated Farmers, 2018).

Some other countries have adopted specific GHG emission
targets for agriculture, or targets for gases generally not covered
by existing emissions trading schemes, such as the target of 30%
reduction in non-ETS emissions across the EU by 2030. However,
policies targeting specific climate outcomes in agriculture remain
underdeveloped (Henderson and Frezal, 2019; OECD, 2019a).
Some countries have implemented market-based offset schemes
for agricultural emission sources (e.g., Australia, California,
several Canadian provinces) but their voluntary nature limits
their uptake and efficacy (Henderson and Frezal, 2019). More
stringent agricultural climate policies are hampered by concerns
about loss of competitive advantage in the absence of global
coordination and associated risk of emissions leakage (Blandford
and Hassapoyannes, 2018).

If developed countries are finding it challenging to implement
price-based or stringent regulatory policies targeting agricultural
greenhouse gas emissions, most developing countries will find
such policies even harder to implement given concerns about
food security and self-sufficiency, and rural poverty (Mbow et al.,
2019). This view is supported bymodeling studies (e.g., Hasegawa

et al., 2018) that concluded climate change mitigation actions
could have potentially adverse side effects on food security for
some populations. Many of the negative consequences arising
from blunt price-based policies could be avoided by more
nuanced implementation and targeted support mechanisms for
vulnerable groups (Fujimori et al., 2018; Roy et al., 2018;
Loboguerrero et al., 2019), but the question arises whether
finance, governance and institutional capacity exist along with
political will to deliver such complex policy arrangements at the
necessary scales (Grewer et al., 2018).

Novel agricultural mitigation technologies, such as inhibitors
(Hristov et al., 2015; Di and Cameron, 2017) or vaccines
(Wedlock et al., 2013), are not generally represented in
mitigation pathways by integrated assessment models (Rogelj
et al., 2018). This means that some future mitigations
might become easier to achieve, or emission reductions
could be even more significant than envisaged in those
modeled pathways. However, the efficacy and adoption of
such technologies remains speculative at this stage and will
likely be limited to specific production systems. Even if
highly efficacious, adoption of such technologies will still
depend on financial incentives or regulatory requirements from
governments or companies.
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Achieving agricultural mitigation pathways in line with 1.5◦C
pathways is thus likely to require integrated policy interventions
spanning supply and demand approaches (IPCC, 2019).
International coordination is critical to address concerns about
competitiveness, ensure environmentally effective outcomes
and avoid perverse consequences at the trans-national scale
(Blandford and Hassapoyannes, 2018). Agricultural trade is
subject to a wide range of barriers and distortionary subsidies
that reflect powerful special interests as well as developing
countries’ desire for food self-sufficiency and protection from
food price spikes, some of which have been linked to increased
biofuel demand driven by climate policies in the energy sector
of developed countries (Tadesse et al., 2014; Anderson, 2016;
OECD, 2019b). This means that increasing concern about
climate change will not necessarily translate into more ambitious
and coordinated mitigation policies in agriculture. A more
realistic view is needed of feasible and socially, as well as
politically, sustainable agriculture policies to avoid modeled
emission scenarios providing an overly optimistic picture of
mitigation potentials.

ENTRY POINTS FOR MITIGATION
IN AGRICULTURE OUTSIDE
GOVERNMENT POLICIES

In the current absence of ambitious agricultural mitigation
policies from national governments, are there prospects for
action from other actors? We suggest that there are, but whether
these will drive meaningful reductions in global emissions
remains an open question.

Governments are potentially being outflanked by targets and
requirements set by large international food companies, whose
on-farm supply chain emissions often account for significant
proportions of their total GHG footprint. For example, 57.4%
of Danone’s scope 3 GHG emissions are related to the purchase
of agricultural products i.e., due to milk buying (Danone, 2017).
Many international food and beverage companies (Table 1) are
setting ambitious emissions targets and increasingly mandating
even their suppliers to provide a product that meets the
company’s stated climate goals. Total GHG emissions from
livestock supply chains are estimated at around 7.1 Gt CO2eq/yr
(Gerber et al., 2013). A report on the GHG emissions of 35
of the world’s largest meat and dairy companies suggest that
these companies could be responsible for up to 1 Gt CO2eq/yr
(14%). A major source of emissions for these companies are
those that come from their on-farm supply chains (GRAIN the
Institute for Agriculture Trade Policy, 2018). These company
goals, alongside global market dynamics, will increasingly shape
production systems of the future. However, while this approach
may influence internationally traded products it may have limited
impact on subsistence and small-holder farmers that in many
developing countries provide more than half of total food
production (Rapsomanikis, 2015). Rough estimates suggest that
small-holder farming contributes agriculture sector emissions of
about 1.7 Gt CO2eq/yr (Vermeulen and Wollenberg, 2017).

TABLE 1 | Greenhouse gas targets for selected major food companies.

Company Base year Target

Danone 2015 -Reduce Scope 1, 2, and 3 emission intensity by

50% by 2030

-Achieve a 30% absolute reduction of scope 1

and 2 emissions by 2030

-Achieve net zero (Scope 1+2+3) by 2050

Mars Inc. 2015 -Reduce total emissions (Scope 1+2+3) 27%

by 2025 and 67% by 2050

-Achieve net-zero GHG emissions in direct

operations by 2040

Nestle 2010 2014 -Reduce GHG emissions (Scope 1 and 2)

per ton of product in every product category

to achieve an overall reduction of 35% in

manufacturing operations vs. 2010

-Reduce GHG emissions per ton of product by

10% in distribution operations vs. 2014

-Reduce Scope 3 emissions by 8% by 2020

from base year 2014

Synlait Milk Limited – Reduce emissions per kilogram of milk solids

on-farm by 35% (consisting of −50% nitrous

oxide, −30% methane, and −30% carbon

dioxide) and off-farm by 50% by 2028

Tesco 2015 Reduce Scope 3 emissions by 17% by 2030

Reduce Scope 1 and 2 emissions 60%

by 2025

Coca-Cola Co. 2010 Reduce scope 1+2+3 emissions 25% by 2020

General Mills Inc. 2010 Reduce absolute GHG emissions across full

value chain (Scope 1+2+3) by 28% by 2025

Kellogg 2015 Reduce Scope 3 emissions by 50% by 2050

PepsiCo. 2015 Reduce Scope 1+2+3 emissions by 20% by

2030

Unilever PLC 2010 Reduce emissions from the life-cycle of their

products 50% per consumer use by 2030

Sources: www.sciencebasedtargets.org; https://www.nestle.com/csv/impact/climate-

change/climate-change; https://www.synlait.com/sustainability/#env.

Consumer choice has the potential to both drive and respond
to food company climate targets. Product labeling incorporating
carbon footprints is increasing but highly differentiated by
markets; their effectiveness to drive actual change in behavior
depends on society’s broader disposition toward environmental
vs. economic goals (O’Neill et al., 2015; Valdivia et al., 2015).
A perceived climate friendly product may allow a producer
to gain access to the high value-added product market, but
evidence remains limited whether a broad enough range of
consumers is willing to change consumption patterns and/or
consistently pay a price-premium for products labeled as climate-
friendly (Feucht and Zander, 2017). Rising awareness of the
nexus between dietary patterns and human health could provide
another avenue for changes in demand (IPCC, 2019) as could
the potential large disruptive changes arising from synthetic meat
and milk products. However, the competitiveness, sustainability,
and consumer acceptance of synthetic products remains largely
speculative at this point (Stephens et al., 2018; Bryant and
Dillard, 2019; Lynch and Pierrehumbert, 2019). By 2050, the
technical potential of dietary changes ranges from 0.7 to 8 Gt
CO2eq/yr making it a substantial mitigation option. However,
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limited studies exist which evaluate the economic mitigation
potential and plausible policy pathways for large-scale dietary
change, including how to manage trade-offs with food security
and livelihoods of livestock producers (IPCC, 2019).

Focusing on reducing emissions intensity via productivity
improvements and addressing yield gaps is generally accepted
as a useful entry point for mitigation (Shafer et al., 2011; Mbow
et al., 2019), as this can simultaneously meet food security, rural
development, and climate change mitigation goals (Vermeulen
et al., 2012; Wollenberg, 2017). The adoption and use of best
practices and technologies by the bulk of the worlds agricultural
producers could result in significant reductions in emissions.
The technical potential, based on a set of regional case studies,
is estimated between 1.1 and 1.8 Gt CO2eq (Gerber et al.,
2013). However, whether reducing emissions intensity results in
reductions of absolute emissions depends on changes in total
production. If increased productivity is used to generate more
food to meet nutritional or economic goals, absolute emissions
will generally rise. Reducing emissions intensity will only reduce
absolute emissions if total production does not increase at a faster
rate (Gerber et al., 2013). However, recent studies suggest that in
the absence of changes to technological progress, dietary patterns,
food distribution and markets, agricultural, land could expand
further (Bajzelj et al., 2014; Popp et al., 2017; Roos et al., 2017; Gil
et al., 2019).

A focus on productivity improvement as a mitigation
strategy can also have important indirect effects on emissions.
Productivity improvements often reduce the cost of production
and as a result, lead to additional land-use change, water
use and related emissions at the margin of intensive systems
(Grafton et al., 2018; Phalan, 2018). By contrast, productivity
can directly support afforestation or agroforestry through land
sparing/sharing if it is undertaken within a sustainability context
rather than a production growth context (Ceddia et al., 2014;
Cohn et al., 2014).

The success of “sustainable intensification” and emissions
intensity as a metric depend strongly on whether productivity
gains go hand in hand with constraints on the total amount of
food produced; fewer animals, less land and lower emissions,
rather than more food with the same or more land and higher
emissions. The climate benefits of intensification are thus tied
inextricably to concurrent and coordinated changes in food
demand, dietary choices, and broader land-use policies (Yu et al.,
2015; Zomer et al., 2016; Hurlbert et al., 2019; Mbow et al., 2019).

Disruptive change from novel mitigation technologies, such
as methane vaccines and methane and nitrous oxide inhibitors,
could produce significant global benefits but thought needs to
be given early to pathways for adoption in developing countries.
Most of the development of a methane inhibitor is being carried
out in developed countries, with the most advanced product (3-
NOP) so far showing high efficacy (>30% reduction) in feedlot
systems (Hristov et al., 2015) but limited suitability in grazing
based systems (Reisinger et al., 2018). Efforts are underway
to produce inhibitors suitable for grazing based systems and
alternative formulations containing 3-NOP can extend the time
that methane formation is inhibited (Muetzel et al., 2019) but the

delivery of inhibitors to animals is likely to still rely on intensively
managed systems. While detailed data on the distribution of
intensive livestock production units are not readily available for
most countries, rough estimates in developing countries suggest
that mixed intensifying potential systems occupy 13 percent of
the land area (Robinson et al., 2011). To deliver global benefits,
it will be important to consider options for delivery, along with
market chains and training, and means of finance, to create
opportunities for success in a wider range of countries.

CONCLUSION

Achieving the temperature goal of the Paris Agreement will rely
on substantial reductions in agricultural GHGs below forecast
baseline trends. Currentmodeled pathways give an unrealistically
optimistic picture of the mitigation potential from agriculture,
because they all assume directly a price on emissions or actions
being taken that have an equivalent shadow price. The reality
is that climate policy for agriculture lags far behind climate
policy in the energy sector—partly for good reasons related
to food security and livelihoods, partly because vested and
political interests are strong, and partly because it is a particularly
challenging problem that requires coordination of action across
multiple and disparate domains, ranging from nutritional health
to rural economic development to biodiversity. These barriers
won’t go away in a hurry, and increasing concern about climate
change impacts, as well as flow-on effects of climate policies
in other sectors, could even harden some of those barriers.
Alternative entry points for action do exist and some of them
have the potential to outflank government policies and targets,
but large questions remain about their scalability and efficacy.
Focusing on emissions intensity is a useful entry point but
its actual success in delivering emissions reductions depends
strongly on a coordinated set of demand-side policies that
currently are not in place. More comprehensive effort is needed
to bridge the gap from modeled emissions to realistic policy
pathways. Future modeling studies by the integrated assessment
community would benefit from testing the consequences of
bottom-up intervention strategies and technologies as outlined
here and contrast them with first-best, global price-based
mitigation outcomes assumed in many model studies to date. It
is essential that the agricultural sector contribute to emissions
reductions if the Paris agreement 1.5 or well below 2◦C target is
to be achieved. But such actions are only meaningful if efforts
are upscaled significantly in the energy (fossil CO2) sector—
agriculture can only complement but not substitute for failure to
rapidly reduce CO2 emissions.
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