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Numerous studies conducted have shown a direct relationship between the high

consumption of saturated and trans-fats and the risk of suffering from cardiovascular

diseases, diabetes, and different cancers. Oleogels, with a suitable lipid profile of mono-,

poly-unsaturated fatty acids, and similar functionality to traditional solid fat, can be

a healthy alternative in food formulation. The aim of this study is to develop edible

oleogels with a healthy and stable lipid profile, using the emulsion-template approach and

hydrocolloids as oleogelators. Oleogels were developed from sunflower oil and sunflower

oil with a high content of monounsaturated acids, using hydroxypropylmethylcellulose

(HPMC) and xanthan gum (XG) as oleogelators. The influence of two drying conditions

(60◦C for 24 h and 80◦C for 10 h 30min) along with the composition of the oil on

the structural, physical, and oxidative stability of oleogels were studied. All oleogels

presented a stable network and high physical stability with oil losses <14% after 35

days of storage. Rheological properties showed that oleogels displayed a low frequency

dependent and G′ > 105 Pa related to solid gel-like behavior. Oleogels made with

sunflower oil rich in monounsaturated fatty acids resulted in higher oxidative stability,

with those developed at drying temperatures of 80◦C for 10 h 30min having a greater

structural and physical stability.

Keywords: oleogelation, HPMC, xanthan gum, sunflower oil, rheological properties, peroxide value, light

microscopy

INTRODUCTION

Food products such as chocolate, ice cream, meat, butters, margarine, and bakery products, are
formulated with considerable amounts of solid fats, rich in saturated and/or trans-fatty acids.
Solid fats have a key role in improving quality attributes such as mouthfeel and texture. Several
studies have reported the relationship between the negative cardiovascular effects and the increased
consumption of saturated and trans-fatty acids (Mozaffarian and Clarke, 2009; Morenga and
Montez, 2017). Therefore, authorities have regulated or provided some suggestions to limit
consumption of many food products formulated with a large amount of saturated and/or trans-
fats (Health Canada, 2012; Food and Drug Administration (FDA), 2015; European Union (EU),
2019). Thus, the food industry and food scientists show great interest to find new strategies and
product formulations with a better nutritional profile, trans-fat free, low content in saturated fatty
acids, and a high content in unsaturated fats (Moghtadaei et al., 2018; Pehlivanoglu et al., 2018; Luo
et al., 2019).
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Oleogels have gained popularity for their potential application
in cosmetic and pharmaceutical industries (Vintiloiu and Leroux,
2008; Bastiat and Leroux, 2009) and with food processing (Singh
et al., 2017). Oleogelation allows structuring high concentration
liquid oil (>90%) into a “gel-like” system with viscoelastic
properties (Rogers et al., 2009).

In many of these oleogels, gelation is achieved by using low
molecular weight organogelators (LWOG) such as hydroxylated
fatty acids (Rogers et al., 2008), waxes (Lim et al., 2017; Martins
et al., 2017), and lecithin (Bodennec et al., 2016). Besides LWOG,
there are structured systems where liquid oil is organized into a
polymer network. Within polymer gelation, cellulose derivative,
ethylcellulose (EC) is a non-aqueous gelator with the ability to
produce oleogels using a direct approach (Laredo et al., 2011;
Zetzl et al., 2012; Giacintucci et al., 2018). The most common
limitations of the EC oleogels are the poor oxidative stability
because of the high temperatures (>135–140◦C) required to
induce the polymer EC gelation (Gravelle et al., 2012). Therefore,
using hydrocolloid-based oleogelators including different sources
of proteins (Patel et al., 2015; de Vries et al., 2017) and
polysaccharides like celluloses ethers, methylcellulose (MC)
(Patel et al., 2014a; Tanti et al., 2016a,b; Meng et al., 2018a), and
hydroxypropylmethylcellulose (HPMC) (Patel et al., 2013; Oh
and Lee, 2018; Oh et al., 2019; Bascuas et al., 2020), have attracted
noticeable research attention. Hydrocolloids are widely used in
food because of their commercial availability, large production,
and low cost (Scholten, 2019; Abdolmaleki et al., 2020).

HPMC is a surface-active amphiphilic biopolymer and can
be adsorbed to the oil droplet, protecting the oil droplets,
thus, decreasing the amount of oil available for separation
(Wollenweber et al., 2000; Li et al., 2013). Moreover, the addition
of thickening agents, like XG, has shown an increase of the
emulsion stability through bulk phase viscosity enhancement
and interaction between the polysaccharides (Meng et al., 2018b;
Encina-Zelada et al., 2019). Since HPMC and XG have a
predominantly hydrophilic characteristic, their dispersibilities
are limited in non-polar solvents. To overcome this problem,
HPMC and XG must first be hydrated in an aqueous solution.
Foam-template and emulsion-template are the most indirect
methods used in structuring edible oils with hydrocolloids. In
the foam-template approach, a water soluble cellulose derivative
is foamed and freeze-dried to create a porous structure and has
been shown to absorb a large amount of oil (Patel et al., 2013).
However, freeze-drying is an expensive and time-consuming
technique (do Vale Morais et al., 2016). The emulsion-template
approach, first prepared by Romoscanu and Mezzenga (2006)
using proteins, comprises an indirect multi-step process. In this
method, first, an oil-in-water emulsion is produced as a template
stabilized by a combination of water soluble biopolymers.
Second, the water phase is removed to drive the structure
formation; finally, the dried product is homogenized to obtain
an oleogel. In both methods, as the oil binding is purely physical,
it is necessary to shear the oil-sorbed polymer obtain a strong gel
(Patel et al., 2013; Oh et al., 2019).

Sunflower oil is one of the most attractive vegetable oils used
by food industry and is one of the most ingested worldwide,
with a domestic consumption of 18.07 million metric tons during

2018–2019 (United States Department of Agriculture (USDA),
2020). Because of its low cost and high overall acceptability,
sunflower oil has been used to produce oleogels (Yang et al.,
2017; Jiang et al., 2018; Okuro et al., 2018; Tavernier et al.,
2018). However, the predominant unsaturated fatty acids present
in sunflower oils are susceptible to oxidation (Kozłowska and
Gruczynska, 2018). Patel et al. (2014b) structured sunflower oil
using MC and XG into solid-like oleogels using the emulsion-
template approach; the drying of the emulsion in the oven
(80◦C for 32 h) gave oleogels with a poor oxidative stability.
Developing strategies to improve the oil oxidative stability
without influencing its nutritional and sensory properties, while
maintaining the feasibility of use by food industry, represents
an important advance in the quality of the oleogels made
with hydrocolloids. Therefore, to improve the oxidative stability
of oleogels, different strategies could optimize the processing
conditions and the oil composition of the oleogel, favoring
monounsaturated fatty acids (MUFA) with a longer oxidation
induction period (Lee et al., 2007). It would be interesting to
investigate the impact of using high MUFA oils and different
processing conditions not only on the chemical stability, but also
on the structural properties of oleogels based on water-soluble
food polymers.

The objective of this work is to structure sunflower oil and
sunflower oil with a high monounsaturated fatty acid content
using the emulsion-template method, with HPMC and XG as
oleogelators, to achieve oleogels with high structural, physical,
and oxidative stability. For this, the influence of processing
conditions and oil composition on the structure, physical, and
chemical properties of oleogel will be compared and analyzed.

MATERIALS AND METHODS

Ingredients
Hydroxypropylmethylcellulose (HPMC “K4M”; 4000 cP)
was provided by Dow Chemical Company (Midland, MI,
United States) and xanthan gum (XG; Satiaxine CX 931) by
Cargill R & D (Vilvoorde, Belgium). Water (Bezoya, Segovia,
Spain, with a calcium content 6.32mg L−1), refined sunflower
oil (fatty acids composition: SFA: 13, MUFA: 23, PUFA: 64,
Consum, España), and high oleic sunflower oil (fatty acids
composition: SFA: 10, MUFA: 65, PUFA: 25, Carrefour, España)
were purchased in local supermarkets.

Oleogels Preparation
Based on the procedures described by Patel et al. (2014a)
with some modifications, we prepared oleogels using emulsion-
template method, HPMC (1 g) was dispersed in 38.4 g cold
water and mixed using a stirrer (Heildolph RZR 1, Schwabach,
Germany) at 1,010 rpm for 30min, the resulting aqueous solution
was stored at 8◦C overnight. Subsequently, 0.6 g of XG was added
to the HPMC solution and stirred (Heildolph RZR 1, Schwabach,
Germany) for 5min at 1,010 rpm, 60 g of oil was then added
and homogenized (Ultraturrax T18, IKA, Germany) at 13,000
rpm for 6min. The emulsions were spread on aluminum foil
and dried in an oven (KB115, BINDER, Germany) using two
different drying conditions: 80◦C for 10 h 30min, and 60◦C for
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24 h. These were the minimum times needed to reach constant
dry weight (moisture: 2.31 ± 0.532% at 60◦C; 1.59 ± 0.112%
at 80◦C) at the indicated conditions. The dried products were
ground in a grinder (Moulinex A320R1, Paris, France) for 4 s to
produce the oleogels. Four oleogels S60 (sunflower oil and drying
at 60◦C), SH60 (high oleic sunflower oil and drying at 60◦C),
S80 (sunflower oil and drying at 80◦C), and SH80 (high oleic
sunflower oil and drying at 80◦C) were prepared in triplicate.

Microstructure of the Oleogels
Themicrostructure of oleogels was studied by optical microscopy
with a Nikon Eclipse 80i optical microscope (Nikon Co., Ltd.,
Tokyo, Japan) and incorporated camera (ExwaveHAD, model
No. DXC-190, Sony Electronics Inc., Park Ridge, New Jersey,
USA. UU.). The oleogels were cut with a cryostat (CM 1950,
Leica) to obtain 20 µm thick sections that were placed on a glass
slide. These sections were visualized by polarized light and by
clear fieldmicroscopy using 2% Sudan as a staining agent to study
the lipid fraction. The images were captured and stored at 1,280
× 1,024 pixels using the microscope software (NIS-Elements M,
Version 4.0, Nikon, Tokyo, Japan).

Oil Loss of Oleogels
Determination was made by measuring the percentage of oil
migration over 35 days at 20◦C, using the method of Doan
et al. (2016) with modifications. The weight of released oil was
measured at intervals of 1, 7, 14, 21, 28, and 35 days. A funnel and
filter paper was positioned above an Erlenmeyer flask collecting
the dripping liquid oil from the oleogels. The weight of the
funnel, the filter paper, and the Erlenmeyer flask were measured
(M1). Then 10 g of oleogel was weighed (M3) and set into the
funnel. Samples were removed at each time interval with a flat,
small spatula. The weight of the funnel, the filter paper, and the
flask with the liquid oil released was measured again (M2). The
results were expressed as g oil loss per 100 g oleogel, calculated
using Equation 1 andweremeasured in triplicate for each sample.

Oil loss =
M2−M1

M3
× 100 % (1)

The experimental data were fitted to a first-order equation using
Solver software (Microsoft Excel):

OL = OLmax (1− e−kt) (2)

where OLmax is the value of OL (oil loss) at sufficiently long
(infinite) time, k is the kinetic constant, and t is the chosen time.

Oxidative Stability of Oleogels
Peroxide values (PV) and specific absorption in the visible
ultraviolet (k232 and k270) were used to study the oxidative
stability of the oleogels during storage. The PV was analyzed
using the acetic acid/chloroform solution method, according
to Cho and Lee (2015), and k232 and k270 were determined
according to ISO 3656:2011 (ISO, 2011), using a UV-VIS
spectrophotometer (UV-VIS spectrophotometer, 1000, CECIL,
UK). All the samples were stored at 20◦C for 35 days and were
evaluated every 7 days.

Rheological Properties of Oleogels
The rheological behavior of oleogels was evaluated using small
amplitude oscillatory shear in a controlled stress rheometer
[AR-G2, TA Instruments (Crawley, England)] with a Peltier
heating system. A 20mm diameter plate-plate sensor geometry
with a serrated surface and a 1.5mm gap was used. The
oleogels rested for a 10min equilibration time after reaching the
measurement position.

Stress sweeps were conducted at a frequency of 1Hz to
measure the extent of the linear viscoelastic response. Frequency
sweeps from 0.1 to 10Hz at a stress wave amplitude (100 Pa)
inside the linear region were performed. Storage modulus (G′),
loss modulus (G′′), and tan δ (G′′/G′) values were recorded. The
testing temperature was always 20◦C.

Statistical Analysis
Results were statistically analyzed using analysis of variance
(ANOVA) with the least significant differences (LSD) calculated
at a level of significance p < 0.05. Statistical analyses were
conducted using XLStat 2019 (Addinsoft, Barcelona, España).

RESULTS AND DISCUSSION

Oleogel Microstructure
Figure 1 shows that the oleogel S60 constitutes a polymeric
network that extends, forming branches that compartmentalize
and trap fat globules (Figure 1A). However, accumulations of
free and unstructured fat can also be seen (Figure 1E). This
may be because of a coalescence phenomenon between fat
globules, likely because the network formed by the structuring
agents has not resisted the drying process and has not physically
trapped all the fat globules (Figure 1E). Camino et al. (2009)
and Wollenweber et al. (2000) studied the role of HPMC as a
fat structuring agent; they found that this hydrocolloid could
adsorb at the surface of fat globules, forming a viscoelastic
multilayer structure because of a train loop tail conformation.
In contrast, Patel et al. (2014a) studied the role of XG on the
structure of oleogels, finding that XG can increase the viscosity
of the emulsion by improving its stability in combination
with MC during the drying process. In fact, they observed
oil leakage on emulsions stabilized by using only cellulose
derivates. Here, in the S80 oleogel, the hydrocolloids form a
homogeneous network where most of the fat globules remain
trapped (Figure 1F). In this oleogel structuring agents have
a more homogeneous distribution and more structured fat
(Figure 1B) than in the oil of S60 (Figure 1E) is observed. In
oleogel SH60 the polymeric network formed by hydrocolloids
is observed distributed throughout the oleogel (Figures 1C,G),
surrounding the fat globules (Figure 1G). However, unstructured
fat and coalescence phenomena can also be observed. In oleogel
SH80 hydrocolloids show a uniform and homogeneous network
(Figure 1D) that surrounds and traps fat globules (Figure 1H).
In SH80 the fat appears more structured than in the other
oleogels, probably because the hydrocolloid network has a greater
stability. Comparing the same type of oil oleogels undergone
drying at 80◦C, more stable polymeric networks exist, capable of
retaining fat globules than those dried at 60◦C. Probably, drying
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FIGURE 1 | Optical microscopy micrographs of oleogels prepared with sunflower (S) and high oleic sunflower oil (SH), and developed by conventional drying at 60◦C

(S60, SH60) and 80◦C (S80, SH80), under (A–D) polarized light, (E–H) bright field with Sudan 2%.

FIGURE 2 | Oil loss curves for oleogels prepared with sunflower (S) and high

oleic sunflower oil (SH), and developed by conventional drying at 60◦C (S60,

SH60) and 80◦C (S80, SH80).

the emulsion at 60◦C, which is slower than at 80◦C, favors the
attractive interactions between the xanthan gum helix (XG-XG),
and weakens HPMC-XG interactions. This would lead to the
formation of a weaker network when drying is carried out at 60◦C
if compared to 80◦C (Carnali, 1992; Lapasin and Pricl, 1995).
Monounsaturated sunflower oil seems to be retained more in the
polymeric network than sunflower oil.

Physical Stability of Oleogels
The physical stability of oleogels is related to their ability to retain
oil during storage. Figure 2 shows the proportion of oil loss at
1, 7, 14, 21, 28, and 35 days of storage at 20◦C of all oleogels
developed in this study. The experimental data were fitted to a
first-order equation. Exponential decay kinetic model presented a

TABLE 1 | Kinetics parameters of the oil loss.

S60 S80 SH60 SH80

OLmax (%) 12.49 ± 0.43B 10.24 ± 0.19A 11.94 ± 0.63B 9.44 ± 0.42A

K (days−1) 1.70 ± 0.05A 2.91 ± 0.03B 1.88 ± 0.47A 3.41 ± 0.23B

R2 0.99 1.00 0.99 1.00

Oleogels prepared with sunflower (S) and high oleic sunflower oil (SH), developed by

drying at 60◦C (S60 and SH60) and 80◦C (S80 and SH80). Values with different capital

letters (A, B, … Z) within the same row are significantly different (p < 0.05) according to

the LSD multiple range test.

R2 more than 0.99 for all cases (Table 1), evidencing the excellent
fit between the formula and the experimental data.

Freshly made oleogels showed no oil losses, however the
greatest loss of oil took place in all the oleogels studied during
the first 24 h of storage. k values were significantly lower (p <

0.05) for S60 and SH60, indicating a slower loss of oil for these
samples within the first 24 h. However, OLmax values indicated
that oleogels S80 and SH80 presented significantly lower (p <

0.05) amount of oil exuded over the whole storage, while S60
and SH60 oleogels had the highest values, without significant
differences (p < 0.05) between them. Other authors (Meng et al.,
2018c) also developed stable oleogels with soybean oil using
the emulsion-template method, varying HPMC concentration
(0.2–1%) and constant XG concentration (0.3%); however, the
stability during storage was not studied. They suggested that
the formation of semi-crystalline structure due to the hydrogen
bonding within the chains of the polysaccharides, resulted in
oleogels with high physical stability, especially from oleogel
made with highest HPMC concentration. As explained before,
a stronger network would be obtained when drying at higher
temperature; the strength of the network would be helping to
prevent the oil release from the oleogel.
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Oxidative Stability
Table 2 shows the peroxide values (PV) of the oleogels stored for
35 days at 20◦C. The upper limit for the PV of fresh oils is <15–
20 meq kg−1 (Codex Alimentarius, 2001; Gómez-Alonso et al.,
2004). PV > 20 correspond to very poor-quality fats and oils,
which normally would have significant off flavors (O’Keefe and
Pike, 2010). The PV of sunflower and high oleic sunflower oils
used in this study were 3.24 ± 0.07 and 6.27 ± 0.29 meq kg−1,
respectively. These values indicate that both oils are suitable.

The oleogels S60, S80, SH60, and SH80 had initial PV of
12.86 ± 0.51, 16.22 ± 0.68, 7.78 ± 0.76, and 7.69 ± 0.07,
respectively (Table 2). The process of making oleogels causes
oxidative degradation of the oil, mainly in those formulated with
sunflower oil. However, all the oleogels studied showed adequate
initial PV, while oleogels made with high oleic sunflower oil
(SH60 and SH80) presented significantly lower PV (p < 0.05)
throughout storage, but with no significant differences (p <

0.05) between them. The oleogels made with sunflower oil (S60
and S80) had the highest PV, with S60 showing the highest PV
throughout storage.

Regarding the behavior of each oleogel, those made with
sunflower oil (S60 and S80) showed a significant increase (p <

0.05) in PV throughout the entire storage, reaching values >40

TABLE 2 | Peroxide value (meq kg−1) during storage at 20◦C.

Storage

(days)

S60 S80 SH60 SH80

0 12.86 ± 0.51aB 16.22 ± 0.68aC 7.78 ± 0.76aA 7.69 ± 0.07aA

7 19.62 ± 1.64bB 18.27 ± 0.42bB 8.47 ± 0.62aA 9.00 ± 0.52aA

14 27.07 ± 0.56cC 21.68 ± 0.62cB 11.08 ± 0.17bA 10.58 ± 0.18bA

21 32.69 ± 1.43dC 30.60 ± 0.96dB 11.90 ± 0.14bA 12.13 ± 1.26cA

28 39.35 ± 0.95eC 34.71 ± 0.94eB 14.63 ± 0.32cA 13.39 ± 1.29cdA

35 46.81 ± 1.70fC 44.22 ± 1.27fB 15.49 ± 1.13cA 14.66 ± 0.39dA

Oleogels prepared with sunflower (S) and high oleic sunflower oil (SH), developed by

drying at 60◦C (S60 and SH60) and 80◦C (S80 and SH80). Values with different lowercase

letters (a, b, … z) within the same column are significantly different (p < 0.05) according

to the LSD multiple range test. Values with different capital letters (A, B, … Z) within the

same row are significantly different (p < 0.05) according to the LSD multiple range test.

meq kg−1 at the end of the storage period. The oleogel made with
high oleic sunflower oil (SH60), showed significant increases (p
< 0.05) of PV on storage days 14 and 28 and SH80 on days 14,
21, and 35, with both oleogels reaching PV around 15 meq kg−1

at the end of the storage period.
The specific UV extinction coefficient (k) at 232 and 270 nm

is an estimator of fat deterioration. The k232 is normally
considered an indicator of primary oxidation products, such
as hydroperoxides and conjugated dienes. While k270 measures
conjugated trienes (as secondary oxidation products), ketones,
aldehydes, and primary oxidation products of linolenic acid
(Maskan and Bagci, 2003; Tavakoli et al., 2017). The specific
absorption values in the visible ultraviolet (k232 and k270) of the
oils used in the production of oleogels were 3.40 ± 0.28 and 3.51
± 0.14 for sunflower oil, and 2.15± 0.02 and 0.78± 0.04 for high
oleic sunflower. These values agree with Albi et al. (1997), who
reported a k232 and k270 value for fresh sunflower oil of 4.70 and
3.15, and 2.32 and 0.83 for high oleic sunflower.

The oleogels S60, S80, SH60, and SH80 had initial values
of k232 and k270 of 3.92 ± 0.50, 2.86 ± 0.01; 4.50 ± 0.23,
5.33 ± 0.15; 2.51 ± 0.05, 0.80 ± 0.08; and 2.20 ± 0.09, 0.86
± 0.06; respectively (Table 3). The SH60 and SH80 oleogels
showed significantly lower values of k232 and k270 (p < 0.05)
throughout the storage period, without significant differences (p
< 0.05) between them. While the S60 and S80 oleogels presented
the highest values, with S60 showing the highest k232 values,
and the lowest k270 values. In oleogels made with sunflower
oil (S60 and S80) a significant increase (p < 0.05) of k232
values was observed throughout storage, while the k270 values
remained stable while increasing at the end of storage, specifically
on day 28.

In oleogels made with oleic-rich sunflower oil (SH60 and
SH80), a significant increase in k232 values was observed every
14 days of storage, but from day 28 these values remained stable.
The values of k270 remained stable in oleogel SH60 until day 7 of
storage and after increased, mainly on day 14. In oleogel SH80 the
values of k270 remained stable until day 21; on day 28 there was
a significant increase (p < 0.05), but remained stable until day
35. The oleogels made with oleic-rich sunflower oil were more
stable to oxidation than the oleogels made with sunflower oil.
The high content in MUFA in SH60 and SH80 oleogels would

TABLE 3 | Oxidation spectrophotometric parameters k232 and k270 during storage at 20◦C.

Storage (days) S60 S80 SH60 SH80

232 nm 270 nm 232 nm 270 nm 232 nm 270 nm 232 nm 270 nm

0 3.92 ± 0.50aC 2.86 ± 0.01aB 4.50 ± 0.23aB 5.33 ± 0.15aC 2.51 ± 0.05Aa 0.80 ± 0.08aA 2.20 ± 0.09Aa 0.86 ± 0.06aA

7 4.74 ± 0.78bB 2.69 ± 0.19aB 4.65 ± 0.34abB 5.52 ± 0.34aC 2.63 ± 0.16aA 0.83 ± 0.11abA 2.29 ± 0.14aA 1.00 ± 0.12abA

14 5.48 ± 0.74bcB 3.06 ± 0.17abB 5.06 ± 0.09bB 5.50± 0.19aC 3.20 ± 0.04bA 1.29 ± 0.12dA 2.74 ± 0.15bA 0.90 ± 0.099aA

21 5.77 ± 0.57cB 3.05 ± 0.47abB 5.55 ± 0.40Cb 5.62 ± 0.19aC 3.20 ± 0.22bA 1.23 ± 0.16cdA 3.01 ± 0.32bA 0.97 ± 0.24aA

28 6.67± 0.06dC 3.46 ± 0.17bB 5.90 ± 0.15cdB 6.72± 0.50bC 3.71 ± 0.24cA 1.06 ± 0.12cA 3.36 ± 0.08cA 1.20 ± 0.09bA

35 6.88 ± 0.28eC 2.92 ± 0.15aB 6.19 ± 0.12dB 7.16 ± 0.62bC 3.67 ± 0.40cA 1.04 ± 0.16bcA 3.37 ± 0.21cA 1.22 ± 0.003bA

Oleogels prepared with sunflower (S) and high oleic sunflower oil (SH), developed by drying at 60◦C (S60 and SH60) and 80◦C (S80 and SH80). Values with different lowercase letters

(a, b, … z) within the same column are significantly different (p < 0.05) according to the LSD multiple range test. Values with different capital letters (A, B, … Z) within the same row are

significantly different (p < 0.05) according to the LSD multiple range test.
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FIGURE 3 | Frequency sweep (A), and tan δ as a function of frequency (B) for

oleogels prepared with sunflower (S) and high oleic sunflower oil (SH), and

developed by conventional drying at 60◦C (S60, SH60) and 80◦C (S80, SH80).

be helping to delay oxidation, as MUFA have longer induction
periods than PUFA, which are major components in S60 and
S80 oleogels.

Rheology
To better understand the structural changes, the dynamic
mechanical spectra were studied. The viscoelastic properties
of the samples are shown in Figure 3. Over the entire
frequency range studied (0.1–10Hz) (Figure 3A), a low G′

and G′′ dependence with frequency was observed, suggesting
and all oleogels presented an elastic modulus (G′) higher
than viscous modulus (G′′), indicating a typical behavior
of solid gels (Guenet, 2016). Luo et al. (2019) obtained
comparable low frequency dependent results from camellia-
oil based oleogels structured with tea polyphenol-palmitate
and varying citrus pectin concentration. Meng et al. (2018c)
dried soybean emulsions in a vacuum drying oven at 90◦C
and analyzed the frequency sweep of oleogels formulated
with 0.2–1% of HPMC (400 and 1500 cP) and 0.3% XG,
showing similar dependency on frequency, but a lower value
of G′, which may be for the viscosity of HPMC (4000 cP)

TABLE 4 | Viscoelastic rheological parameters (at 1Hz) of oleogels.

G′ (Pa) G′′ (Pa) tan δ

S60 513,040 ± 25,686a 48,291 ± 6,085a 0.094 ± 0.010ab

S80 604,043 ± 81,836a 64,035 ± 15,816a 0.105 ± 0.012b

SH60 559,315 ± 37,206a 48,100 ± 1,884a 0.086 ± 0.005a

SH80 545,941 ± 32,973a 55,753 ± 3,706a 0.102 ± 0.001b

Oleogels prepared with sunflower (S) and high oleic sunflower oil (SH), developed by

drying at 60◦C (S60 and SH60) and 80◦C (S80 and SH80). Values with different lowercase

letters (a, b, … z) within the same column are significantly different (p < 0.05) according

to the LSD multiple range test.

and the higher XG concentration (0.6%) used in our study.
The loss tangent (tan δ = G′′/G′) of oleogels, showed a
similar trend, with a tan δ ≈ 0.1, confirming the existence
of a strong internal network (Figure 3B). These results were
corroborated analyzing statistical differences at 1Hz (Table 4)
with no significant differences between oleogels for the dynamic
modulus (G′ and G′′) and tan δ values higher for the S80
and SH80 oleogels, indicating that these samples had lower
viscoelastic behavior.

CONCLUSIONS

It is possible to develop physically, chemically, and structurally
stable oleogels using sunflower oil and sunflower oil with a
high content monounsaturated fatty acids, using HPMC and
XG as structuring agents with the emulsion-template method
and the drying conditions 60◦C for 24 h and 80◦C for 10 h
30min). The stability of oleogels during storage is influenced
by the composition of the oil and the drying conditions of
the oleogel process. However, oleogels made with sunflower
oil high in monounsaturated fatty acids show better oxidative
stability during storage than those made with sunflower oil,
regardless of the drying conditions used. Furthermore, drying
at 80◦C for 10 h 30min generates oleogels with greater
structural and physical stability than drying at 60◦C for 24 h,
regardless of the oil composition of the oleogel. Therefore, the
oxidative stability of the oleogel is greatly influenced by the
type of oil, improving when the oil has a high content of
monounsaturated fatty acids, still, the drying conditions (time
and temperature) have a marked influence on the structural and
physical stability.
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