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While the Food Safety Modernization Act established standards for the use of surface

water for produce production, water quality is known to vary over space and time.

Targeted approaches for identifying hazards in water that account for this variation

may improve growers’ ability to address pre-harvest food safety risks. Models that

utilize publicly-available data (e.g., land-use, real-time weather) may be useful for

developing these approaches. The objective of this study was to use pre-existing

datasets collected in 2017 (N = 181 samples) and 2018 (N = 191 samples) to train

and test models that predict the likelihood of detecting Salmonella and pathogenic

E. coli markers (eaeA, stx) in agricultural water. Four types of features were used to

train the models: microbial, physicochemical, spatial and weather. “Full models” were

built using all four features types, while “nested models” were built using between

one and three types. Twenty learners were used to develop separate full models

for each pathogen. Separately, to assess information gain associated with using

different feature types, six learners were randomly selected and used to develop nine,

nested models each. Performance measures for each model were then calculated

and compared against baseline models where E. coli concentration was the sole

covariate. In the methods, we outline the advantages and disadvantages of each

learner. Overall, full models built using ensemble (e.g., Node Harvest) and “black-

box” (e.g., SVMs) learners out-performed full models built using more interpretable

learners (e.g., tree- and rule-based learners) for both outcomes. However, nested eaeA-

stx models built using interpretable learners and microbial data performed almost as

well as these full models. While none of the nested Salmonella models performed

as well as the full models, nested models built using spatial data consistently out-

performed models that excluded spatial data. These findings demonstrate that machine

learning approaches can be used to predict when and where pathogens are likely

to be present in agricultural water. This study serves as a proof-of-concept that

can be built upon once larger datasets become available and provides guidance on
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the learner-data combinations that should be the foci of future efforts (e.g., tree-based

microbial models for pathogenic E. coli).

Keywords: agricultural water, stx, eaeA, Salmonella, E. coli, machine learning, predictive model

INTRODUCTION

The occurrence of multiple foodborne disease outbreaks, over
the past two decades, that were potentially linked to the use
of contaminated water to irrigate fresh produce has increased
concerns over the use of surface water for produce production
(Ackers et al., 1998; Centers for Disease Control and Prevention,
2008; Greene et al., 2008; Söderström et al., 2008; Food and Drug
Administration, 2018, 2019, 2020). For example, the outbreak
strains in three, separate E. coli O157:H7 outbreaks linked to
romaine lettuce grown in Yuma, Arizona (Food and Drug
Administration, 2018), and Salinas, California (Food and Drug
Administration, 2019, 2020) were also isolated from canals or
reservoirs used to source water for irrigation. Since outbreaks
frequently result in consumer avoidance of the implicated food,
there are both substantial public health and economic costs
associated with outbreaks (Ribera et al., 2012; Hussain and
Dawson, 2013; Hoffman, 2014). Heightened industry concerns
surrounding the food safety risks associated with preharvest
water use for produce production (Lewis Ivey et al., 2012;
Schattman et al., 2018; Wall et al., 2019) are highlighted by
a 2017 survey where 77% of the 155 Northeastern growers
surveyed cited the need for irrigation practices that ensure
produce safety as a key concern (Schattman et al., 2018). Since
70–80% of US growers rely on agricultural water (as opposed to
rain) for irrigation (Rangarajan et al., 2002; Astill et al., 2018),
water is integral to produce production. As such, science-based
strategies for identifying produce safety hazards in agricultural
water sources are needed.

To manage food safety hazards in agricultural water used
for produce production, voluntary grower agreements, such as
the Leafy Greens Marketing Agreement (Arizona Leafy Greans
Marketing Agreement, 2012; California Leafy Greens Marketing
Agreement, 2017) and federal legislation [i.e., Food Safety
Modernization Act (FSMA); Food and Drug Administration,
2015] established microbial standards for surface water used
in preharvest applications. For example, FSMA’s Produce Safety
Rule states that growers must create a microbial water quality
profile (MWQP) for each water source by collecting 20 samples
over a 2–4 years period (Food and Drug Administration, 2015).
The MWQP’s 90th percentile and geometric mean E. coli level
must be <410 and <126 CFU/100-mL, respectively (Food and
Drug Administration, 2015). However, meeting these standards
has been repeatedly cited as a critical concern among industry
stakeholders (Calvin et al., 2017; Astill et al., 2018; Wall et al.,
2019). Following a summit focused on grower concerns about the
FSMA standard, summit organizers summarized these concerns
as centering on the (i) cost of meeting the standard, (ii) value of
E. coli-based tests for assessing risk, (iii) lack of data supporting
the standard’s water sampling frequency (e.g., 5 times/year for
4 years), and (iv) difficulties in accurately assessing risk due

to the complexity of farm and freshwater environments (Wall
et al., 2019). Since this summit, multiple studies have validated
each of these concerns (e.g., Calvin et al., 2017; Havelaar et al.,
2017; Truitt et al., 2018; Weller et al., 2020a). For example,
several economic studies, including a study conducted by the
USDA (Calvin et al., 2017), found that the costs used by the
FDA to predict industry expenditures for complying with the
FSMA standard were underestimated, and that water testing may
be one of the largest FSMA-associated costs for growers (Astill
et al., 2018). Other studies have highlighted the spatiotemporal
variability in microbial water quality within and between sources,
complicating interpretation of E. coli-based test results and
suggesting that a one-size-fits-all standard fails to account for
the complexity of freshwater ecosystems (Hipsey et al., 2008;
Payment and Locas, 2011; Weller et al., 2020a). Recent studies
have also shown that the testing frequency set by FSMA (20
samples over a 2–4 year period) means that a waterway meeting
or exceeding the standard is largely dependent on when samples
are collected and is not related to the presence of food safety
hazards at the time of water use (Havelaar et al., 2017; Weller
et al., 2020a). Conflicting data on the relationship between E.
coli levels and foodborne pathogen presence has also cast doubt
on the utility of E. coli-based water quality tests for identifying
hazards in agricultural waterways (Edberg et al., 2000; Harwood
et al., 2005; Wilkes et al., 2009; Bihn, 2011; Payment and Locas,
2011; Benjamin et al., 2013; McEgan et al., 2013a; Pachepsky
et al., 2015; Antaki et al., 2016; Weller et al., 2020a). Indeed, the
direction and strength of the relationship between E. coli levels
and pathogen presence appear to be region, pathogen, and/or
waterway-specific (Francy et al., 2013; McEgan et al., 2013a;
Pachepsky et al., 2015; Bradshaw et al., 2016; Weller et al., 2020a).
For instance, a Florida study found that the correlation between
E. coli and Salmonella levels varied substantially between the 18
ponds sampled (correlation coefficients ranged between 0.0 and
0.7; McEgan et al., 2013a). Overall, the literature suggests that
alternatives to E. coli based-water quality testing and standards
are needed for assessing food safety hazards in agricultural water
used for produce production.

Past studies have suggested that physicochemical water quality
parameters (e.g., turbidity) could be used as supplementary
indicators (i.e., along with E. coli levels) of food safety hazards
being present in agricultural water (Harwood et al., 2005; Bihn,
2011; Pachepsky et al., 2015). However, a common refrain within
the food safety community is that we cannot “test our way
to food safety,” and that alternatives to test-based management
strategies are needed. A previous study that sampled six Florida
ponds used to source water for produce production, used support
vector machines (SVM), k-nearest neighbor (kNN) and neural
net learners to develop univariable models to predict Salmonella
presence or absence (i.e., nine models per algorithm; Polat
et al., 2019). This study demonstrated the potential utility of
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predictive models for managing enteric pathogen contamination
of agricultural water in the Southeast (Polat et al., 2019).
Similarly, studies conducted in the Northeastern United States
have developed and validated classification tree-based models
for predicting Listeria monocytogenes, and Listeria spp. presence
in produce field soils (Strawn et al., 2013; Weller et al., 2016).
The findings from Polat et al. (2019) and the New York studies
(Strawn et al., 2013; Weller et al., 2016) suggest that similar
approaches could be used to predict when and where enteric
pathogens are likely to be present in Northeastern streams
used to source water for produce production. The primary aim
of this study was to determine if machine learning could be
used to develop models that accurately predict enteric pathogen
presence in agricultural water sources in a different produce-
growing region (the Northeast). Due to the costs associated with
collecting certain data types (e.g., microbial water testing; Calvin
et al., 2017), a secondary aim of this study was to (i) assess
the relative information gain associated with using different
data types to build predictive models, and (ii) determine if
accurate models could be built without using microbial data.
This study also aimed to underscore the limitations and strengths
of various machine-learners and provide guidance on how
these learners can be used in future applied environmental
microbiology studies. It is important to emphasize that this study
was conducted not to develop models that could be deployed in
the field. Instead, it is a proof-of-concept that can be built upon
to develop field-ready models once larger, multi-region datasets
become available.

MATERIALS AND METHODS

Study Design
Two previously published datasets collected in 2017 (Weller
et al., 2020a) and 2018 (Weller et al., 2020b), respectively,
were used in the analyses reported here (Table 1). While
the data presented here were reported previously (Weller
et al., 2020a,b), those manuscripts focused on (i) assessing
the impact of sampling methods on pathogen detection, and
(ii) characterizing associations between microbial water quality,
and other environmental features (e.g., rainfall, turbidity). In
contrast, the objectives of this study, including the development
and comparison of predictive models using multiple machine
learners, is novel to the study reported here. The only differences
in sampling and laboratory protocols between the two datasets
are (i) the number of streams sampled, and (ii) the frequency
with which sampling occurred. Specifically, in 2017 six streams
were sampled between 15 and 34 times each (N = 181 samples
total; Weller et al., 2020a), and in 2018 sixty-eight streams
were sampled between 2 and 3 times each (N = 191 samples
total; Weller et al., 2020b; Table 1; Figure 1). At each sampling,
separate 10-L grab samples (GS) were collected and tested
for the eaeA and stx genes (biomarkers for pathogenic E.
coli; Smith et al., 2009), and Salmonella. A one 1-L GS (for
E. coli enumeration) was also collected. At each sampling,
physicochemical water quality data were also collected as
previously described (Weller et al., 2020a,b). Gloves (Nasco, Fort
Atkinson, WI) were changed for each sample collected, and

sampling materials were sprayed with 70% ethanol between all
sample collections. All samples were transported on ice, stored
at 4◦C, and processed <18 h of collection. In lab, each 10-
L GS was filtered using a modified MS (mMS) as previously
described (Sbodio et al., 2013; Weller et al., 2020a,b). After
filtration, each mMS was transferred to a sterile Whirl-Pak and
processed as described below. A 100-mL aliquot of the 1-L GS
was used for E. coli enumeration, which was performed using
the Colilert Quanti-Tray 2000 kit (IDEXX, Westbrook, ME) per
manufacturer instructions and as previously described (Weller
et al., 2020a,b).

Metadata Acquisition
Spatial data were obtained from publicly-available
sources as previously described (Weller et al., 2020b;
Supplementary Table 1). Watershed delineation and all
other spatial analyses were performed using ArcGIS version 10.2
and R version 3.5.3. Inverse-distance weighting (IDW) was used
to characterize land cover within watersheds, while accounting
for the fact that areas closer to the sampling site are more likely
to impact water quality than areas further upstream (King et al.,
2005). By weighting land use based on distance to the sample
site, this also reduces the noise in the land-use data that would
be present due to differences in watershed size. Briefly, land
cover percentages for each of the following distance intervals
around the sampling site were calculated: 0–100, 100–250,
250–500, 500–1,000, 1,000–2,000, 2,000–5,000, 5,000–10,000,
10,000–20,000, and >20,000m; intervals were constrained by
watershed boundaries (Figure 2). We then adapted the equation
from King et al. (2005) to calculate the inverse-distance weighted
percentage for each land cover class. In addition to characterizing
land cover within the sampled watersheds, we also calculated the
IDW percentage of each land cover in the flood plain and within
the stream corridor. We also determined if specific features were
present upstream of the sampling site as well as the density of
these features as previously described (Supplementary Table 1;
Weller et al., 2020b).

Weather data were obtained from the closest NEWA station
(newa.cornell.edu) to each sample site. The nearest station was
determined by drawing Thiessen polygons around each station.
The average distance of the stations to the sites was 8.9 km
(range = 0.4–25.5 km). If a sensor malfunctioned then data
for that parameter from the next nearest station was used
while themalfunction persisted. Average air temperature, average
solar radiation, and total rainfall were calculated using non-
overlapping time periods (0–1, 1–2, 2–3, 3–4, 4–5, 5–10, 10–20,
and 20–30 d before sample collection).

Salmonella and eaeA-stx Detection
Salmonella enrichment and isolation were
performed as previously described (protocol in
Supplemental Materials of Weller et al., 2020b, and at
github.com/wellerd2/Laboratory-Protocols). Briefly, 225mL of
buffered peptone water supplemented with 5mg of novobiocin
was added to each Whirl-pak. Following incubation at 35◦C for
24 h, Salmonella negative samples and presumptive Salmonella
positive samples were identified using real-time BAX Salmonella
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TABLE 1 | Foodborne pathogen prevalence and E. coli levels in New York streams used for produce production.

Year No. of Prevalence (No. of positive samples) Median MPN of E. coli/100-mL

(Min.–Max.)
Streams Samples Culture-confirmed PCR-screen positive

Salmonella eaeA stxa

2017 6 181 44% (80) 94% (171) 69% (125) 160.4 (18.5–>2,419.6)

2018 68 191 41% (79) 99% (190) 70% (133) 211.4 (2.0–>2,419.6)

Total 68 372 43% (159) 97% (361) 69% (258) 193.5 (2.0–>2,419.6)

aThe outcome of the eaeA-stx models was codetection of both the eaeA and the stx genes; in both years all stx-positive samples were also eaeA-positive, as a result the prevalence of

samples that were positive for both genes was 69% in 2017 and 68% in 2018.

FIGURE 1 | Map of land cover in watersheds sampled in both study years (No. = 6), and watersheds sampled only in 2018 (No. = 62).

assays (Hygiena, Wilmington, DE). BAX negative samples were
considered Salmonella negative, while BAX positive samples
were culture-confirmed as Salmonella-positive as previously
described (Weller et al., 2020b).

The eaeA and stx genes are considered biomarkers for
enteropathogenic E. coli, Shiga-toxin producing E. coli (STEC),
and/or enterohemorrhagic E. coli. A PCR-screen for these genes
was performed using a real-time BAX STEC) assay (Hygiena) per
manufacturer’s instructions. Samples that were positive by PCR-
screen for both genes were considered positive for pathogenic E.
coli in the study reported here.

Statistical Analyses
All analyses were performed in R (version 3.5.3; R Core Team,
Vienna, Austria). The learners used here were selected to
include common learners (e.g., regression, tree-based), novel
learners that appear promising (e.g., Node Harvest), and
learners used in past produce safety research (e.g., classification
trees; Meinshausen, 2010; Deng and Runger, 2013; Strawn
et al., 2013). Model training and testing were performed using
the mlr package1. The 2018 dataset (Weller et al., 2020b)

1Machine Learning in R [R package mlr version 2.15.0].
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FIGURE 2 | Visualization of the inverse distance weighting approach used to calculate the percent of the watershed (A), floodplain (B), and riparian buffer (C) under

different land uses. (D–F) Provide a close-up view of (A–C), respectively, for areas near the sampling site.

was used for model training and the 2017 dataset (Weller
et al., 2020a) was used for model testing (Table 1). Separate
models were developed to predict the presence or absence of
Salmonella, and of the eaeA-stx genes. Repeated 3-fold cross-
validation was used to tune hyperparameters and perform
cross-validation. Tuning was performed to optimize the area
under the curve (AUC). Following tuning, models were trained
and predictive performance assessed using the test data. Since
the values of several performance measures (e.g., sensitivity)
are dependent on the probability threshold, the threshold
was also tuned to optimize the kappa score. During model
development, four types of features were considered: microbial
water quality, physicochemical water quality, spatial, and weather
(Supplementary Table 1). Models built using all four feature
types were designated “full models,” while models built using
one, two, or three of these feature types were designated “nested
models.” Prior to model development, the training and test data
were merged, and all features were centered and scaled. The
training and test data were then split back into separate datasets.
It is better practice to first standardize the training data, and then
use the means and standard deviations from the training data to

standardize the testing data; future studies, particularly studies
aimed at developing model-based tools for use on farms, should
consider using this approach when standardizing training and
testing data.

The 20 learners used to develop the full models can be
grouped into tree-based learners, forests, instance-based learners,
Bayesian learners, regressions, rule-based learners, and support
vector machines (SVM). Although 20 learners were used to
build the full models, four variants of SVMs were implemented,
resulting in 23 full models per outcome. It is important to note
that several of the learners used here are quite similar, and would
be redundant in a study that aimed to develop a field-ready
predictive model. However, since one of the aims of this paper is
to underscore the limitations and strengths of various machine-
learners and provide guidance on how these learners can be
used in future applied environmental microbiology studies, a
large number of learners were used. Separately from the full
models, the nested models were developed to assess the relative
information gain associated with using different types of features
for model training. Prior to the start of the study, six learners
were randomly selected from the 23 learners used for full model
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development. Nine nested models were then built for each of
these six learners using: microbial features; microbial features
and turbidity; physicochemical water quality features; weather
features; microbial and physicochemical water quality features;
microbial and weather features; microbial, physicochemical
water quality, and weather features; physicochemical water
quality and weather features; and spatial features. Performance
measures for each model were calculated and visualized
graphically. The top-ranked models for each outcome were
identified by (i) ranking models based on positive and negative
likelihood ratio, diagnostic odds ratio, AUC, F1-score, and kappa
score, and (ii) averaging each model’s rank for these six measures.
A higher rank indicated better performance; models that tied
were assigned the same rank. The performance of the top-ranked
Salmonella and eaeA-stx models were visualized using density,
ROC, and split quantiles plots. Explanations on how to interpret
these plots are included in the figure legends.

Baseline Models
Baseline models were created using current or proposed
agricultural water quality standards (Steele and Odumeru, 2004;
Food and Drug Administration, 2015; Uyttendaele et al., 2015).
Each standard is based on an acceptable level of an indicator
organism being present in the sample. Samples above this cut-off
are non-compliant and samples below the cut-off are compliant.
The cut-offs considered were: 126, 235, 410, and 1,000 MPN
of E. coli/100-mL, and 1,000 MPN of coliforms/100-mL (Steele
and Odumeru, 2004; Food and Drug Administration, 2015;
Uyttendaele et al., 2015). Samples with E. coli levels below the
cut-off were predicted to be negative for the target pathogen
(Salmonella or eaeA-stx), while samples above the cut-off were
predicted to be positive. The epiR and exact 2× 2 packages were
used to calculate performance measures for each baseline model.
Boxplots were used to visually compare E. coli levels between
pathogen positive and negative samples, and between the training
and test data.

Tree-Based
Three tree-based learners were used: classification trees (CART),
conditional inference trees (cTree), and evolutionary optimal
trees (evTree). Due to their interpretability and ability to handle
non-linear relationships and interactions, tree-based models are
often used to characterize associations in datasets that may not
meet parametric assumptions (e.g., Strawn et al., 2013; Bradshaw
et al., 2016; Weller et al., 2016). Briefly, tree-based learners
hierarchically partition data into homogenous subsets; for our
data this meant generating terminal nodes that consisted of
either pathogen positive or negative samples. CART and cTree
generate locally-optimal trees via forward stepwise processes,
while evTrees generate globally optimal trees (see Grubinger
et al., 2014 for differences between locally and globally optimal
trees). The CART, cTree, and evTree models were implemented
here using the rpart, party, and evtree packages, respectively.
Maxdepth (maximum depth to which a tree can be grown)
and minbucket (minimum number of observations allowed in
terminal nodes) were tuned for all 3 learners. To minimize
the potential for overfitting, complexity parameters were tuned

during CART (cp parameter) and evTree (alpha parameter)
implementation, and mincriterion was set to 0.95 during
cTree implementation.

Forests
One of the disadvantages of tree-based learners, is that small
changes in the training data (e.g., due to sampling-induced
variability) can produce large changes in model fit (Breiman,
1996). Ensembles of tree-based learners, or forests, were
developed to overcome this limitation by aggregating predictions
across thousands of trees. Three random forest learners were used
here: the original algorithm proposed by Breiman (2001, RF),
regularized random forest (regRF; Deng and Runger, 2012, 2013),
and conditional random forest (condRF; Strobl et al., 2009).
RF models are ensembles of CART trees, and cannot handle
correlated features (Strobl et al., 2007, 2008, 2009). condRF was
developed to overcome these limitations, and is an ensemble of
cTrees (Strobl et al., 2007, 2008, 2009). While regRF was not
developed to expressly deal with the limitations of RF models,
regRF does incorporate a feature selection step, which reduces (i)
the impact of correlation on variable importance estimates, and
(ii) redundancy in the overall feature set (Deng and Runger, 2012,
2013). The minbucket and mtry parameters (number of features
included in each random subset used for building splitting rules)
were tuned for all 3 random forest learners. The coefficient
of regularization was tuned when implementing regRF, and
mincriterion was tuned when implementing condRF.

Boosting is another way of generating forests. In a boosted
forest, the input data used to train each new tree are the residuals
from the antecedent tree. New trees are added sequentially
until the addition of a new tree fails to improve performance.
Here we used extreme gradient boosting (xgBoost; Chen and
Guestrin, 2016), and tuned hyperparameters that control: (i)
learning rate and overfitting; (ii) if new splits are added to
each tree; (iii) the number of rounds of boosting performed;
(iv) maxdepth; (v) the proportion of data used to build each
tree; (vi) the number of features considered when building
each tree; and (vii) regularization. xgBoost was the most
computationally intensive learner used here, and took multiple
days to complete.

The main trade-off between tree-based learners and forests
is between interpretability and performance; tree-based models
are more interpretable but less accurate than forests (Table 2).
Node harvest was developed to reconcile these trade-offs
(Meinshausen, 2010). When creating a node harvest model, a
large set of trees is generated using a RF algorithm. However,
unlike a true RF, only a subset of the training data is used to grow
each tree. Nodes from each tree are then sequentially extracted,
and added to a “node set” (Meinshausen, 2010; Van De Put,
2017). A subset of nodes is then selected for inclusion in the final
learner and assigned weights. Model predictions are based on the
weighted average of the proportion of pathogen-positive training
samples in each node whose rules a novel observation meets (for
examples see Van De Put, 2017). For the node harvest models
reported here we tuned: (i) theminimumnumber of training data
samples to use when building each tree and (ii) maxdepth.
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TABLE 2 | List of learners used here, including advantages and disadvantages of each learner as implemented in the R package used herea.

Learners Package n < p Centering

and scaling

needed

In features it can handle Automatic

feature

selection

Interpretable

CorrelationMissingnessNear-ZeroNoiseb

Bayesian Learners

Naive Bayes e1071 (Meyer et al., 2019) Y N • Y N • N N

Tree-Based Learners

Classification treeb rpart (Therneau and Atkinson, 2019) Y N • Y Y • Y Y

Conditional tree party (Zeileis et al., 2008) Y N Y Y Y • Y Y

Evolutionary optimal tree evtree (Grubinger et al., 2014) Y N N Y • Y Y

Ensemble Learnersb

Conditional forest party (Zeileis et al., 2008) Y N Y • Y Y • •

Node harvestc nodeHarvest (Meinshausen, 2015) Y N • Y Y Y Y •

Random forestc randomForest (Liaw and Wiener, 2002) Y N • Y Y Y • •

Regularized RF RRF (Deng, 2013; Deng and Runger, 2013) Y N Y N Y Y Y •

Random fernsd rferns (Kursa, 2014) • Y Y N N Y N •

Random KNNd,e rknn (Li, 2015) • Y Y N N • N N

Extreme gradient boosting xgboost (Chen et al., 2020) Y N Y Y Y Y • •

Instance-Based Learnerse

k-Nearest neighbor kknn (Schliep and Hechenbichler, 2016) • Y N N N • N N

Weighted kKNN kknn (Schliep and Hechenbichler, 2016) • Y N N N • N N

Penalized Regression

Elastic net glmnet (Friedman et al., 2010) Y Y Y N N N Y Y

Lasso glmnet (Friedman et al., 2010) Y Y Y N N N Y Y

Ridge glmnet (Friedman et al., 2010) N Y Y N N N N Y

Rule-Based Learners

JRip RWeka (Hornik et al., 2009) Y N Y Y Y

One rule RWeka (Hornik et al., 2009) Y N Y Y Y Y

Partial decision lists RWeka (Hornik et al., 2009) Y N Y Y Y Y Y Y

SVM e1071 (Meyer et al., 2019) Y Y • N Y N N N

This table was adapted from Kuhn and Johnson (2016) to include all learners used here. The information reported here is based on the papers cited for each learner in the methods

section, and the constraints of the R packages used to implement the learners in this study (based on the version available in January 2020). Y means the learner meets the condition

in the header. N means the learner does not meet this conditional. • = the learner is in between (e.g., random forest is not as interpretable as tree-based methods but is not a 100%

black-box method like support vector machines). If the cell is blank it means there was limited information on this parameter for the given learner.
b It is important to note that although tree-based methods are relatively robust to noise in the features, they are less robust than tree-based ensembles. Theoretically, ensemble methods

are more robust to noise in the features than constituent models used to build the ensemble (rFERNS should be more robust than Naïve Bayes, rKNN should be more robust then

wKNN and kKNN, forests should be more robust than trees).
cPreferentially selects continuous variables and categorical variables with many levels as the splitting variable resulting in variable selection bias (Strobl et al., 2007, 2008, 2009).

Conditional inference trees and conditional forests were developed to overcome these limitations (Strobl et al., 2007, 2008, 2009).
dPredicts class labels but not probability of detecting a positive.
eFeature selection recommended prior to model development.

Instance-Based Learners
Three instance-based learners were used here: k-nearest neighbor
(kKNN), weighted k-nearest neighbor (wKNN), and random
k-nearest neighbor (rKNN) using the kknn, rknn, and mlr
packages. Instance-based learners use the k training samples
whose characteristics are most similar to a new sample to predict
the pathogen status of this new sample. As a result, the accuracy
of instance-based learners are highly dependent on the value of k.
The predicted pathogen status for the novel sample is determined
using either majority-voting or a probabilistic approach (e.g.,
kernel density estimation; Hechenbichler and Schliep, 2004). A

disadvantage of majority-voting, which is used by the rKNN
algorithm, is that probability-based measures like AUC cannot
be calculated. A disadvantage of both kKNN and rKNN is that
all k neighbors contribute equally to a prediction even though
these k neighbors may vary in how similar they are to the novel
sample. To overcome this disadvantage, the wKNN algorithm
converts the distance between a new sample and each neighbor to
a similarity measure, which is used to weight the contribution of
that neighbor to the prediction. Since there are multiple ways to
calculate wKNN weights (see Hechenbichler and Schliep, 2004),
the weighting algorithm was tuned in current study. For all
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three instance-based learners implemented here, the value of k
was tuned. When implementing the kKNN and wKNN learners,
the distance metric calculated (Euclidean or Manhattan) was
also tuned.

rKNN is an ensemble learner that consists of r kKNN
models, each built using a random subset of features (Li, 2009),
which should make rKNN models more robust to noise in
the dataset than kKNN models. The number of kKNNs used
in the rKNN models implemented here was set to 20,001.
Since rKNN categorizes samples as positive or negative for the
target (instead of predicting the probability of the sample being
positive), (i) AUC could not be calculated so the kappa score
was optimized during rKNN hyperparameter tuning, and (ii)
the probability threshold was not tuned when calculating rKNN
performance measures.

There are several advantages to instance-based learners,
including the fact that they (i) are non-parametric and do
not make assumptions about the distribution of features or
residuals, and (ii) use the raw training data (as opposed to a
discriminative function) to make predictions. The latter allows
the model to be updated as new data become available (Li
et al., 2011). However, instance-based learner performance is
affected by (i) biases and noise in the training data (e.g., due
to measurement error), and (ii) the features used (e.g., use of
irrelevant features increases misclassification rate). As a result,
performing feature selection prior to implementing instance-
based learners is sometimes recommended (Li et al., 2011). Since
kKNN was one of the learners used to build the nested models,
additional feature selection was not performed in the present
study but should be considered in future studies. It is important
to note that feature selection is either not required or performed
automatically for many of the other learners considered in the
current study (Table 2).

Naïve and Semi-Naïve Bayesian Learners
Two Bayesian learners were implemented here: naïve Bayes
and random Ferns (rFerns). Naïve Bayes are simple models
based on the assumption that each feature contributes
independently to the probability of a novel sample being
pathogen positive (Kuhn and Johnson, 2016). In its simplest
form (where there is one feature) Naïve Bayes works by
predicting the probability of a novel sample being pathogen
positive given that a different event occurred first (e.g., the
sample was collected from a stream with a sandy bottom;
Kuhn and Johnson, 2016). The only parameter tuned when
implementing Naïve Bayes controlled Laplace smoothing
and regularization.

rFerns is a non-hierarchical ensemble of Bayesian learners;
the constituent learners in rFerns models are called ferns as
opposed to trees (Özuysal et al., 2010; Kursa, 2014). Each fern
consists of a series of binary rules built using an arbitrary set
of features (Özuysal et al., 2010; Kursa, 2014). The pattern
of Yes/No responses for each fern is used to generate a
distribution (Özuysal et al., 2010; Kursa, 2014). This distribution
is then used to estimate the probability of a new sample
being pathogen positive given the pattern of Yes/No responses
for each single fern (Kursa, 2014). To prevent overfitting,

rFerns randomly generates the thresholds used to dichotomize
continuous and multi-class categorical features (Kursa, 2014).
The only parameter tuned when creating the rFerns models
controlled the maximum number of rules included in each
fern. The number of ferns generated per model was set to
20,001. Like rKNN, rFerns categorizes samples as pathogen
positive or negative, and (i) AUC could not be calculated and
kappa score was optimized during hyperparameter tuning, and
(ii) the probability threshold was not tuned when calculating
performance measures.

Penalized Regression
Three penalized regression learners were used here: lasso,
ridge, and elastic net. Regression analysis is commonly used
to characterize the association between environmental factors
and foodborne pathogen detection (e.g., Benjamin et al., 2015;
Ceuppens et al., 2015; Weller et al., 2015, 2020b). A key
advantage of regression over “black-box” methods (e.g., RF,
SVM) is that the output from regression is highly interpretable
(Kuhn and Johnson, 2016). However, use of correlated features
when implementing traditional regression approaches results
in overestimation of variance (Kuhn and Johnson, 2016).
Penalized regression applies a penalty to control the magnitude
of the parameter estimates and account for correlation between
features. In ridge regression a penalty is added to the sum of the
squared regression parameters so that estimates become smaller
as the penalty becomes larger. As a result, ridge regression does
not perform feature selection, instead ridge regression shrinks the
coefficient estimates of features that are not associated with the
outcome close to 0. In contrast, lasso and elastic net regression
incorporate feature selection. Lasso regression uses a similar
penalty to ridge regression but allows coefficient estimates to be 0.
Essentially ridge regression shrinks the parameters of correlated
features toward each other allowing each parameter to borrow
strength from the other, while lasso regression only retains one
feature from a group of correlated features (Friedman et al.,
2010). Elastic net combines the strengths of lasso and ridge
regression by using a ridge-type penalty for regularization and
a lasso-type penalty for feature selection. In the present study,
the cv.glmnet function (glmnet package) was used to implement
all three regression learners. For all three regression learners, the
number of cross-validated folds performed internally was set to
10, and the “s” parameter (which determines if themodel with the
min. mean cross-validated error or a model within one standard
error of the min. is retained as the final model) was tuned. The
lambda parameter was also tuned for all three models with the
package default of 100 potential lambda values being considered.
For ridge and lasso regression the alpha parameter was set to
0 and 1, respectively, while the alpha parameter was tuned for
elastic net regression.

Rule-Based Learners
Three rule-based learners were implemented here using the
RWeka package: one propositional rules (OneR), partial decision
lists (PART), and repeated incremental pruning to produce error
reduction (JRip). While tree and rule-based learners are similar
conceptually, tree-based learners take a divide-and-conquer
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approach and rule-based learners take a separate-and-conquer
approach. Divide-and-conquer learners create hierarchical rules
that make terminal nodes as homogenous as possible using
all input data. Separate-and-conquer learners recursively create
individual rules, remove observations in the training data that
were correctly classified by this rule, and then create a new
rule to classify the remaining observations. OneR uses one
feature to generate a single rule (basically a decision tree
with a single split; Holte, 1993; Parsania et al., 2014). OneR
was developed as a baseline learner; for more complex, less-
interpretable learners to be useful that learner should perform
better than the OneRmodel (Holte, 1993; von Jouanne-Diedrich,
2017). In the current study minbucket was the only parameter
tuned when implementing OneR.

The JRip learner subsets the training data into growing and
pruning data. A series of initial rules are then created using
the growing data. These rules are repeatedly simplified to yield
the greatest reduction in error for predictions made on the
pruning data (Cohen, 1995). The post-pruning rule set is then
optimized by adding new rules, or by replacing or revising
existing rules. Growth, pruning, and optimization are then
recursively repeated (Cohen, 1995; Frank and Witten, 1998).
When implementing JRip the number of folds used to split the
training data into growing and pruning subsets, the minimum
number of observations allowed in children nodes, and the
number of optimization runs to perform were tuned.

PART was developed to overcome several disadvantages of
JRip (e.g., tendency for overpruning; Frank and Witten, 1998).
As a result, JRip is a true rule-based learner that uses a separate-
and–conquer approach (Cohen, 1995), while PART combines
the divide-and-conquer and separate-and-conquer approaches.
Briefly, when implementing PART, a partial decision tree is
built using all observations in the training set. The leaf within
the tree that correctly classified the most observations is then
converted into a rule, and the rest of the tree is discarded (Frank
and Witten, 1998). This process is then recursively repeated
using only those training data points that were not classified
correctly by antecedent rules. When implementing PART the
threshold used for pruning the trees and the minimum number
of observations allowed in a leaf were tuned. The number of
separate growing and pruning sets was set to 3.

Support Vector Machines (SVM)
SVMs were implemented here using the e1071 package. SVMs
work by transforming the training data, and then finding the
optimal hyperplane in N-dimensional space that maximally
separates the training data into pathogen negative and positive
samples. By transforming the data, SVMs can be extended
to patterns that are not linearly separable; four kernels were
considered here when transforming the data: linear, radial,
sigmoid, and polynomial (i.e., 4 SVM models per pathogen).
The radial, sigmoid and polynomial kernels use different
transformations to map the data to higher (polynomial) or lower
(radial) dimensional space. The number of parameters tuned
during SVM implementation reflects the dimensionality of the
kernel. Regardless of dimensionality, a penalty parameter that
controls the trade-off between the smoothness of the hyperplane’s

decision boundary and classification accuracy was tuned. How
close a sample needs to be to the hyperplane to influence it was
tuned when implementing a SVMwith a non-linear kernel, while
a parameter that allows the hyperplane to by non-symmetric
was tuned for SVMs with sigmoid and polynomial only. The
degree of the polynomial function was tuned for the polynomial
SVMs only.

RESULTS AND DISCUSSION

In total, 82 models per target (Salmonella and eaeA-stx) were
developed here, including 23 full models (models built using all
four feature types; Supplementary Table 1), 54 nested models
(models built using between one and three feature types), and
five baseline models. Previously published datasets collected in
2017 (Weller et al., 2020a) and 2018 (Weller et al., 2020b) were
used to test and train the models, respectively (Table 1). The
prevalence of Salmonella and the eaeA-stx genes was approx.
the same in 2017 and 2018 (Table 1). While the distribution
of E. coli levels was also approx. the same in 2017 and 2018
(Table 1; Figure 2), there were several outlier values in the 2018
data. These outliers may be a product of sampling differences
between the two datasets. Specifically, six streams were intensely
sampled between May and August 2017 while 68 streams
were sampled between April and October 2018. By using two
independently collected datasets, models could be both trained
and validated here, facilitating assessment of model performance.
By comparison, past studies that developed models to predict
foodborne pathogen presence in preharvest environments either
did not perform model validation (e.g., Bradshaw et al., 2016), or
published validation results separately from the paper describing
the predictive model (e.g., Strawn et al., 2013; Weller et al., 2016).
However, the small number of streams represented in the test
data (N = 6) means that test results reported here may be limited
in generalizability. Such concerns are exacerbated by the size
of the training and test datasets, and the fact that the datasets
represent a single produce-growing region (Upstate New York;
Figure 1), one agricultural water type (streams but not canals or
ponds), and a single growing season (2017 or 2018). However,
these limitations are mediated by the large number of streams
represented in the training data (N = 68). In fact, the number of
streams sampled in 2018 is substantially greater than past studies
that developedmodels to predict foodborne pathogen presence in
farm and freshwater environments (Efstratiou et al., 2009; Shiels
and Guebert, 2010; Francy et al., 2013; McEgan et al., 2013a;
Strawn et al., 2013; Bradshaw et al., 2016; Weller et al., 2016;
Polat et al., 2019). Additionally, these past studies often used
less robust modeling approaches (e.g., unpenalized regression,
CART) and/or a limited set of features (e.g., univariable models
built using a single microbial or physicochemical water quality
feature) than the study reported here (Efstratiou et al., 2009;
Shiels and Guebert, 2010; Francy et al., 2013; McEgan et al.,
2013a; Strawn et al., 2013; Bradshaw et al., 2016; Weller et al.,
2016; Polat et al., 2019). It is also important to reiterate here
that the aim of this study was not to develop predictive models
that could be used by growers to guide on-farm decision-making,
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instead this was a proof-of-concept study that can be built
upon once larger, multiyear, and multi-region datasets become
available. Specifically, we aimed to generate findings to provide
guidance on the learners (e.g., support vectormachines, ensemble
learners) and data types (i.e., microbial for eaeA-stx, and spatial
for Salmonella) that should be the foci of future efforts. For this
reason, and becausemany of themethods used here are black-box
approaches, neither feature importance nor associations between
features, and eaeA-stx and Salmonella detection are reported
here; instead, these results can be found in papers previously
published using these datasets (Weller et al., 2020a,b).

Water Quality Standards Based on Binary E. coli

Cut-Offs Alone May Not Be Suitable for Assessing

Food Safety Hazards in Agricultural Water
Baseline models were created using five current or proposed
microbial water quality standards (Steele and Odumeru, 2004;
Food and Drug Administration, 2015; Uyttendaele et al.,
2015), which are based on an acceptable level of E. coli
or coliforms being present in a sample. The five cut-offs
considered were: 126, 235, 410, and 1,000 MPN of E. coli/100-
mL, and 1,000 MPN of coliforms/100-mL. While models based
on 1,000 MPN of E. coli and 1,000 MPN of total coliforms
per 100-mL were not able to accurately differentiate eaeA-
stx positive and negative samples, the three remaining cut-
offs (126, 235, or 410 CFU/100-mL of E. coli) were able to
accurately differentiate eaeA-stx positive and negative samples
in the test dataset (Figure 3; Supplementary Table 2). In fact,
the 126 MPN model was among the five top-ranked eaeA-
stx models (Supplementary Table 2; Supplementary Figure 3).
Conversely, all five baseline models were unable to accurately
differentiate Salmonella positive and negative samples in the
test dataset (Figure 3; Supplementary Table 2). Findings based
on the test dataset are consistent with some studies that found
evidence of a relationship between generic E. coli levels and
pathogenic E. coli presence, and/or failed to find evidence of
a relationship between generic E. coli levels and Salmonella
presence (Benjamin et al., 2013; Antaki et al., 2016; Weller et al.,
2020a). However, when predictions were made on the training
data (data used for model building) the baseline models were
unable to accurately differentiate eaeA-stx positive and negative
samples. For instance, the 126-MPN model, which was the most
accurate baseline eaeA-stxmodel when predictions were made on
the test data [False Positive Rate (FPR) = 0.27; Kappa = 0.44;
Supplementary Table 2] was unable to correctly identify eaeA-
stx negative samples in the training data (FPR = 0.55; Kappa
= 0.16). Similar results were found for the 410-MPN eaeA-stx
model (Training FPR = 0.24; Test FPR = 0.02), and the 235-
MPN eaeA-stx model (Training FPR = 0.39; Test FPR = 0.16;
Figure 3). This discrepancy in baseline model performance is
not unexpected given the conflicting data on the relationship
between E. coli levels and pathogen presence in the literature
(Edberg et al., 2000; Harwood et al., 2005; Smith et al., 2009;
Wilkes et al., 2009; Bihn, 2011; Payment and Locas, 2011;
Benjamin et al., 2013; Economou et al., 2013; McEgan et al.,
2013a; Pachepsky et al., 2015; Antaki et al., 2016; Weller et al.,
2020a) Indeed, multiple studies that examined the relationship

between E. coli levels and pathogen presence in agricultural water
sources suggest that the direction and strength of this relationship
may be region, weather, water source, and/or pathogen-specific
(Francy et al., 2013; McEgan et al., 2013a; Pachepsky et al., 2015;
Bradshaw et al., 2016; Weller et al., 2020a). It is also important
to note, that these observations are consistent with the fact
that E. coli is (i) an indicator of fecal contamination and not
an index organism for a specific pathogen, and (ii) multiple
studies have shown that generic E. coli, pathogenic E. coli, and
Salmonella can naturalize in non-host environments, including
water (Hendricks, 1967; Byappanahalli et al., 2003; Whitman
et al., 2003; Busta et al., 2006; Ksoll et al., 2007; Nautiyal et al.,
2010; Goto and Yan, 2011;McEgan et al., 2013b; NandaKafle et al.,
2018). Viewed in this context, and given the small number of
streams represented in the test data, our findings make sense.
With a small number of streams, the test dataset is more likely
to be biased by features unique to a single stream, which is
why it was used for model testing and not training in this
study. Indeed, if bovine fecal inputs into a stream were regularly
contaminated by fecal eaeA-stx and generic E. coli, the signal
from this stream would be diluted by the other 67 training data
streams but less so by the other 5 test data streams. Indeed, the
presence of cattle operations immediately upstream of two of
the test data streams, could explain the difference in baseline
model performance when predictions were made on the training
and test data. As such, our findings are illustrative of the impact
of study design on data interpretation and generalizability, and
of the importance of selecting representative training and test
data sets when building and testing predictive models. Due to
the limited number of multi-regional, multi-year studies that
surveyed food safety hazards in agricultural water, additional
surveys are needed before predictive models can be developed,
validated, and deployed to support on-farm decision-making.

Since the baseline models were built using current or
proposed microbial water quality standards (Food and Drug
Administration, 2015; California Leafy Greens Marketing
Agreement, 2017), our findings also support previous studies’
conclusions that agricultural water quality standards based on
binary E. coli cut-offs alone may not be a reliable indicator of
food safety hazards presence in agricultural water (Duris et al.,
2009; Havelaar et al., 2017; Weller et al., 2020a). In drawing this
conclusion, it has to be noted that the baseline models make
predictions using a single sample (i.e., a snapshot in time), while
most regulations apply the cut-offs to a profile consisting of
multiple samples. For example, the FSMA standard use cut-offs
of 126 and 410 MPN/100-mL but these cut-offs are applied to
the geometric mean and statistical threshold value of 20 samples
collected over 2–4 years, respectively. As a result, our findings
are not directly comparable to existing water quality standards,
but, when viewed in the context of the existing literature, do
provide hypotheses about the utility of these standards that
should be examined in future simulation studies. Specifically, this
study raises the hypothesis that water quality standards based on
binary E. coli cut-offs alone may not be appropriate for managing
food safety hazards in agricultural water, and that alternative or
supplementary management strategies (e.g., predictive models)
are needed.
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FIGURE 3 | Log 10 E. coli levels in training and test data samples that tested positive and negative for eaeA-stx and Salmonella. The colored lines represent the

thresholds for agricultural water that were considered during development of the US Food Safety Modernization Act’s Produce Safety [126 MPN/100-MmL (pink), 235

MPN/100-mL (blue), and 410 MPN/100-mL (green)].

Predictive Models May Be Useful for
Identifying When and Where Food Safety
Hazards Are Present in Agricultural Water
Sources Used for Produce Production
When all data types were used in model development (i.e., the
full models) the top-ranked model for eaeA-stx detection was
built using the node Harvest algorithm [AUC= 0.72; Diagnostic
Odds Ratio (DOR) = 3.8; Se = 0.89; Sp = 0.52; Figures 4, 5, 8,
Supplementary Figures 1–3; Supplementary Table 3]. The top-
ranked Salmonella full models were built using the SVM with a
sigmoidal kernel (AUC= 0.64; DOR= 4.4; Se= 0.80; Sp= 0.48)
and SVM with a polynomial kernel (AUC= 0.63; DOR= 5.7; Se
= 0.86; Sp = 0.52; Figures 4, 5, 7, Supplementary Figures 1–3;
Supplementary Table 2). Both the Salmonella SVMs and eaeA-
stx node Harvest full models outperformed the baseline models
built using current or proposed water quality standards and the
OneR models (Figure 4; Supplementary Tables 2, 3). In fact,
the 410-MPN baseline model was the lowest ranked Salmonella

model while the 235-MPN baseline model was third to last. This
finding suggests that predictive models, like those developed
here, may be useful (i.e., as an alternative or supplementary
strategy to microbial water quality testing) for identifying when

and where food safety hazards are likely to be present in
agricultural surface water. This conclusion is consistent with the
findings from the only other study that developed models to
predict foodborne pathogen presence in surface water sources
used for produce production (Polat et al., 2019). This study used
three learners, and nine water quality and weather features to
predict Salmonella contamination in Florida irrigation ponds
(Polat et al., 2019). The Florida study (Polat et al., 2019) found
that, instance-based models could correctly classify up to 77% of
training samples and 59% of test samples as Salmonella positive
or negative. However, like the present study, the Florida study
(Polat et al., 2019) noted that the models were only as good
as the data used to train them, and that models built using
larger, more representative datasets are needed. Since collecting
water quality data can be costly, the Florida study (Polat et al.,
2019) suggested that a cost-effective way to generate a dataset of
sufficient size would be to pool existing datasets from different
water sources (e.g., streams, ponds) and regions (e.g., Northeast,
Southeast, Southwest). We agree with this recommendation, and
think that such multi-regional and multi-year datasets are key
to the development of realistic models that can be integrated
into on-farm food safety management plans. As mentioned
in the statistical sections of the methods or in the discussion
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FIGURE 4 | Mean rank (0 = worst; 65 = best) of each learner-data combination for each outcome. To facilitate readability, full and baseline models are depicted in a

separate facet from the nested models, which were built using a subset of features. For baseline models, the letters refer to the organism the cutoff is based on (EC =

E. coli, TC = total coliforms), and the number refers to the cut-off value (e.g., EC.126 is based on a cut-off of 126 MPN of E. coli/100-mL). Models that were able to

accurately predict both Salmonella and eaeA-stx presence appear in the top right corner of each facet, while poor performing models appear in the bottom left of

each facet.

below, future studies will need to weigh trade-offs betweenmodel
interpretability and model accuracy. Despite the aforementioned
limitations of the current study and the Florida study (e.g.,
small sample size, small number of water sources in either
the training or test datasets; Polat et al., 2019), these studies
suggest that predictive models may be useful for identifying
and managing food safety hazards associated with preharvest
water use.

Although, Full Models Built Using
Ensemble and “Black-Box” Learners
Outperformed Full Models Built Using
Interpretable Learners, There Was Not a
Single Optimal Learner for Predicting Both
eaeA-stx and Salmonella Presence
The top performing models for both Salmonella and eaeA-
stx were ensemble and/or “black-box” learners (Figure 4).

A black-box model is a model that can be viewed in terms
of inputs and outputs with limited insights into the internal
workings. While some aspects of ensemble learners can be
visualized (see Weller et al., 2020a), these models are less
interpretable than tree-based (see Bradshaw et al., 2016; Weller
et al., 2020b) or regression learners (seeWeller et al., 2016), where
the exact effect of each feature retained can be estimated and
significance assessed. When all data types were used in model
development (i.e., the full models) 9 of the 10 top-performing
eaeA-stx models, and 8 of the 10 top-performing Salmonella
models were either ensemble (forests, random ferns, or node
Harvest) or black-box (instance-based or SVMs) learners. This
result was not unexpected, as many ensemble methods were
developed to overcome the limitations of interpretable tree-
based, rule-based, and regression learners (Breiman, 1996; Li,
2009; Meinshausen, 2010; Özuysal et al., 2010; Li et al., 2011;
Kursa, 2014). Indeed, the perennial debate within data science
centers on the trade-off between interpretability and performance
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FIGURE 5 | Plot showing kappa score and area under the curve for the full models.

(Meinshausen, 2010). Since previous papers have outlined these
trade-offs we will not focus on them here (e.g., Meinshausen,
2010). However, it is important to note that interpretable
learner performance can approach ensemble and “black-box”
learners’ performance when (i) there is less noise in the dataset,
and (ii) there are strong associations between the outcome
and features. Since environmental data (i.e., the data available
for use in models to predict foodborne pathogen presence
in agricultural water) is inherently noisy due to (i) natural
variation in water quality, (ii) the resolution of the spatial
data available, and (iii) the imprecision of available weather
data (i.e., most farms do not have their own weather stations
on-site) future efforts to develop predictive models that can
be used to support on-farm decision-making will therefore
need to use learners robust to this noise. However, since these
models are going to be used by stakeholders, interpretation
will also be important. As such, future studies may want
to utilize ensemble (e.g., forests) as opposed to “black-box”
methods (e.g., SVM, instance-based) since the former can handle
noise within the data but are more interpretable than the
latter (Table 2).

When we compare performance between the different
ensemble models used here there is no clear front runner.
In fact, the top-performing Salmonella full models were built
using different learners than the top-performing eaeA-stx full
models (Figures 4, 7, 8). This is demonstrative of the No
Free Lunch Theorem of machine learning, which states that
there is not a single, optimal learner that can be applied to
all prediction problems (Wolpert and Macready, 1997). Thus,
future studies that seek to develop and deploy models on-
farms (e.g., to predict the presence of food safety hazards

in agricultural water or guide development of water quality
sampling plans) should (i) consider model aims and end-user
needs (e.g., is accuracy or interpretability more important), and
(ii) the explanatory data and computational power available.
Moreover, to ensure the best performing model is developed,
these future studies should create and compare a handful
of models built using different learners and multiple test
datasets. Note, that these studies should not use similar, and
potentially redundant, learners or develop 23 models per
outcome, this was only done in the present, proof-of-concept
study to outline the advantages and disadvantages of different
machine learners available for model development. Despite
the limited overlap between the top-performing Salmonella
and eaeA-stx models, forests were top-ranked learners for
both outcomes, and should thus be considered for use in
future studies.

Additionally, future studies focused on development of
models that can be deployed on-farms should (i) use learners
that generate probabilities as opposed to binary labels, (ii) avoid
using measures that rely on binary labels during model tuning,
training, or selection, and (iii) consider using density plots or
split quantile plots as opposed to individual metrics (e.g., Se, Sp)
for visualizing model performance in GUI interfaces targeted at
end-users. The reasoning behind this recommendation becomes
evident when we examine the split-quantile plots for the top-
performing eaeA-stx model, which was built using the node
harvest learner (Figure 8). The split-quantile plot visually depicts
how good a model is at categorizing eaeA-stx positive-samples
as positive and eaeA-stx negative-samples as negative. The split-
quantile plot shows that the false positive and false negative rate
for the model is substantially lower than the sensitivity (0.89) and
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FIGURE 6 | Kappa score and AUC for the nested models. Results are faceted by model outcome and learner: Mq, microbial; MqTurb, microbial data and turbidity;

Pq, Physicochemical water quality and air temperature collected on site; W, Weather from publicly-available databases; S, Spatial. With the exception of the Mq

models, each nested model used data on site traits (e.g., stream bottom substrate). Top performing models are in the top right corner of each facet.

specificity (0.52) for the model would suggest. This discrepancy is
a due to how sensitivity and specificity are calculated. The output
from most learners is the probability of detecting the pathogen
in a given sample. To calculate sensitivity and specificity this
probability must be dichotomized (i.e., samples classified as
either pathogen positive or negative) using a tuned threshold.
Whenever a continuous variable is dichotomized information
is lost. This is why sensitivity and specificity were not used to
rank model performance in the present study. More importantly,
the discrepancy between the eaeA-stx node harvest model’s
split-quantile plot compared to its sensitivity and specificity is
illustrative of the fact that model output (i.e., probabilities vs.
binary, class labels) can affect perceived model performance,
and needs to be considered when selecting models for use in
future studies.

Nested Salmonella Models Built Using
Spatial, Physicochemical, and/or Weather
Data May Provide a Real-Time,
Cost-Effective Tool for Assessing the Food
Safety Risks Associated With Preharvest
Surface Water Use
In addition, to the full Salmonella models, we also built
a series of nested models using between one and three
feature types (Figure 6; Supplementary Figure 3). All nested
models performed worse than the top-nine full models
(Supplementary Table 2). The top-performing Salmonella
nested models were the partial decision tree (PART) built
using weather features, and the ridge regression built using
microbial and physicochemical water quality features (Figure 7).
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FIGURE 7 | Plots showing the performance of the top-ranked full and nested Salmonella models. (A) Shows how well the model can distinguish samples that tested

positive and negative for Salmonella. The x-axis of (A) is the probability of Salmonella detection generated by the model, and the y-axis is density. (B) Is the

receiver-operating curve (ROC) for the model; the x-axis is 1-Specificity and the y-axis is Sensitivity. (C) Shows how well the model is at accurately classifying positive

and negative samples. The split quantiles plot is generated by sorting the test data from lowest to highest probability of Salmonella detection based on the given

model. The test data is then divided into quantiles (based on the percentile the probability falls into). The proportion of samples in each quantile that were actually

Salmonella-positive or negative were then plotted. A good model would identify all low probability percentile samples (red) as negative (N) and all high probability

percentile samples (blue) as positive (P).

Interestingly, while none of the nested models built using spatial
data were among the top-three nested Salmonella models,
all spatial models consistently performed well-compared to
nested models that excluded spatial data (Figure 6). In fact, 4
of the top 10 nested models were built using just spatial data
(Figure 6; Supplementary Table 2). Five models built using
physicochemical water quality features were also in the top 10
nested learners, however, these models were often also built
using both weather and physicochemical features (Figure 6;
Supplementary Table 2). This is consistent with the findings of
Polat et al. (2019) who examined the ability of various models
to predict Salmonella presence in Central Florida irrigation
ponds. Polat et al. (2019) found that accurate models (>70%
classification accuracy on training data) could be achieved using
only one or two water quality or weather features. The strong
performance of the spatial, and physicochemical water quality
and weather models in the study reported here, and of similar

models in Polat et al. (2019) suggests that accurate models
for predicting Salmonella presence in agricultural water can
be developed (i) using only one or two feature types, and (ii)
without using microbial data. This is a substantial finding since
costs associated with microbial water quality testing have been
identified as a key concern among growers and it can take >24 h
to get E. coli-based water quality test results (Astill et al., 2018;
Wall et al., 2019). This 24 h lag, as well as the well-documented
spatiotemporal variability in microbial water quality, means E.
coli-based test results may not be associated with the presence of
food safety hazards in water at the time of water use (Havelaar
et al., 2017; Weller et al., 2020a). As such, models that use
physicochemical, weather and/or spatial but not microbial data
to predict when and where Salmonella is likely to be present in
agricultural water may provide a real-time, cost-effective tool for
managing the food safety risks associated with the use of surface
water contaminated by Salmonella for produce production. Such
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FIGURE 8 | Plots showing the performance of the top-ranked full and nested eaeA-stx models. (A) Shows how well the model can distinguish samples that tested

positive and negative for eaeA-stx. The x-axis of (A) is the probability of eaeA-stx detection generated by the model, and the y-axis is density. (B) Is the

receiver-operating curve (ROC) for the model; the x-axis is 1-Specificity and the y-axis is Sensitivity. (C) Shows how well the model is at accurately classifying positive

and negative samples. The split quantiles plot is generated by sorting the test data from lowest to highest probability of eaeA-stx detection based on the given model.

The test data is then divided into quantiles (based on the percentile the probability falls into). The proportion of samples in each quantile that were actually eaeA-stx

-positive or negative were plotted. A good model would identify all low probability percentile samples (red) as negative (N) and all high probability percentile samples

(blue) as positive (P).

a tool could be used as an alternative or supplement to existing
E. coli water quality testing programs.

Nested eaeA-stx Models Built Using
Learners That Employ a
Divide-and-Conquer Algorithm and
Microbial Features Outperformed Models
That Were Built Using Other Learners and
Feature Types
The top-performing nested eaeA-stx models were the RF model
built using microbial and turbidity data, and the cTree model
built using microbial data (Figure 8). It is important to note that
the models built using the cTree algorithm and (i) microbial
data, (ii) microbial and turbidity data, and (iii) microbial and
physicochemical water quality data, were exactly the same and
included a single split based on E. coli levels. These three
nested models were therefore treated as the same model when

ranking models based on performance (Supplementary Table 3;
Figure 8).While all nestedmodels performedworse than the top-
ranked full model (i.e., node harvest), the RF model built using
microbial and turbidity was the second-best model in the study
reported here (Supplementary Table 3). All eaeA-stxmodels that
included microbial data outperformed models built using the
same learner but without microbial data. This strongly suggests
that microbial data, and thus generic E. coli-based water quality
monitoring, are useful tools for predicting when and where
pathogenic E. colimay be present in New York agricultural water.
Although additional research is needed to test this conclusion for
waterways outside the study region, this finding is consistent with
past studies that reported strong associations between detection
of pathogenic E. coli (or pathogenic E. coli markers, such as
eaeA and stx), and generic E. coli levels (Bradshaw et al., 2016;
Weller et al., 2020a). For example, Bradshaw et al. (2016) used
CART learners to predict stx presence in Georgia waterways,
and found that E. coli was able to accurately identify stx-positive
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samples when air temperature ≥13◦C. Interestingly, the best
nested eaeA-stx models included E. coli levels, turbidity levels,
and site characteristics. This supports the conclusion of previous
studies (McEgan et al., 2013a; Bradshaw et al., 2016; Weller
et al., 2020a) that the relationship between E. coli levels and
pathogen presence is modified by environmental context at
time of sampling (or water use). These environmental modifiers
(e.g., turbidity and site-characteristics) may be appropriate
as supplemental indicators of potential pathogen presence;
indeed, several past studies have suggested this (McEgan et al.,
2013a; Bradshaw et al., 2016; Polat et al., 2019). Unfortunately,
the aforementioned limitations of E. coli-based models (costs
associated with microbial testing, and the potential disconnect
between E. coli levels at time of sample collection and time of
water use), may complicate the development and deployment of
predictive model-based decision-support tools that incorporate
E. coli data.

CONCLUSION

This was a proof-of-concept study designed to provide guidance
on how predictive models (e.g., different machine learners and
feature types that should be the foci of futuremodel-development
efforts) can be incorporated into on-farm decision-support tools.
For example, we highlight that inclusion of microbial features
were key to developing accurate models to predict pathogenic E.
coli presence but not Salmonella presence in New York streams
used to source water for produce production. As part of this
discussion, the current study also highlighted the advantages and
disadvantages associated with each learner, and the importance
of considering the trade-offs between model interpretability,
and accuracy. In addition to identifying learners and data
types that should be the focus of future studies, this study
also sought to determine if machine learning-based models are
likely to be useful for managing Salmonella and pathogenic E.
coli risks associated with preharvest water use. Based on the
findings of this, and the only other study (Polat et al., 2019), to
the author’s knowledge, that used machine learners to predict
enteric pathogen presence in irrigation water, predictive models
may be useful for identifying when and where pathogens are
likely to be present in agricultural water. Although predictive
models could be an alternative to E. coli water quality testing,
they could also be used to supplement ongoing E. coli-based
water quality monitoring (e.g., to target sampling to sites and
times with a higher risk of pathogen presence). Given the

importance of microbial features to the development of accurate
models for predicting eaeA-stx presence, predictive models
should specifically be considered as a supplementary, rather
than an alternative, approach for managing pathogenic E. coli
contamination of agricultural water sources.
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