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Aquaculture continues to significantly expand its production, making it the

fastest-growing food production sector globally. However, the sustainability of the

sector is at stake due to the predicted effects of climate change that are not only a

future but also a present reality. In this paper, we review the potential effects of climate

change on aquaculture production and its implications on the sector’s sustainability.

Various elements of a changing climate, such as rising temperatures, sea-level rise,

diseases and harmful algal blooms, changes in rainfall patterns, the uncertainty of

external inputs supplies, changes in sea surface salinity, and severe climatic events have

been discussed. Furthermore, several adaptation options have been presented as well

as some gaps in existing knowledge that require further investigations. Overall, climate

change effects and implications on aquaculture production sustainability are expected to

be both negative and positive although, the negative effects outweigh the positive ones.

Adapting to the predicted changes in the short-term while taking mitigation measures in

the long-term could be the only way toward sustaining the sector’s production. However,

successful adaptation will depend on the adaptive capacity of the producers in different

regions of the world.

Keywords: adaptation, aquaculture production, climate change, greenhouse gases, effects, sustainability

INTRODUCTION

The practice of aquaculture is a way to achieve sustainability in the production of aquatic products.
With the continued unsustainable harvests from capture fisheries, the sector is seen as the only
solution to meeting the rising demand for aquatic products globally (AskarySary et al., 2012; FAO,
2020). According to FAO (2020), aquaculture’s contribution to global fish production has continued
to rise, reaching 82.1 million tons (46%) out of the estimated 179 million tons of global production.
Furthermore, the share of aquaculture production out of the global fish production is expected
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to grow from the current 46 to 53% in 2030 (FAO, 2020).
However, the most urgent concern is whether the sector
is growing sustainably and fast enough to meet the future
projected demand exacerbated by a rapidly growing human
population and a changing climate. Climate change is now
considered a risk to global food production and a major
threat to the quality and quantity of production (Beach and
Viator, 2008; Hamdan et al., 2015; Myers et al., 2017). Food
security, particularly access to dietary protein, is increasingly
being threatened by the predicted effects of climate change
(Kandu, 2017).

Climate change refers to variations that occur in the statistical
distribution of weather over extended periods, typically ranging
from decades to millions of years (Yazdi and Shakouri, 2010;
IPCC, 2014). These variations may occur in the average weather
or simply in the distribution of weather events around an average,
and may be limited to a particular region, or occurring across
the whole globe (Yazdi and Shakouri, 2010). Humans have
been recognized as the major contributor to climate change
through the use of fossil fuels (coal, oil, and gas) for energy
supplies (Doubleday et al., 2013; Environmental Protection
Agency, 2016; Gao et al., 2016; Barange et al., 2018; IPCC,
2019, Palmer and Stevens, 2019) as well as deforestation and
forest degradation (Khaine and Woo, 2015; Riphah, 2015)
that emit greenhouse gases (GHGs) into the atmosphere. The
increased accumulation of GHGs including Carbon dioxide
(CO2), methane (CH4), nitrous oxides (N2O), and fluorinated
gases in the atmosphere over the years has been linked to
these human activities. Already, climate change effects have been
reported on various key economic sectors and services globally
(Troell et al., 2017; IPCC, 2018; Cook and Zolnikov, 2019; FAO,
2020). In aquaculture, the majority of recent literature indicate
that some changes in climate, such as rising temperatures,
changing precipitation patterns, and increased frequency of some
extreme events are now evident on water resources, while others
are still emerging (Fleming et al., 2014; Blanchard et al., 2017;
Troell et al., 2017; Zolnikov, 2019). Recently, climate change
effects on aquaculture sustainability have gained considerable
interest owing to the sector’s significant contribution to global
food security, nutrition, and livelihoods (Blanchard et al., 2017;
Dabbadie et al., 2018; FAO, 2020). Despite some aspects of
uncertainty, several projections show that the entire aquaculture
value chain is vulnerable to the effects of climate change
(Cochrane et al., 2009; Fleming et al., 2014; Bueno and Soto,
2017; Barange et al., 2018; Dabbadie et al., 2018). However,
the majority of the available literature is largely biased toward
showing how climate change will affect aquaculture production
systems leaving, other stages in the value chain unclear (Fleming
et al., 2014). Such biases limit our current understanding of the
various extents to which the aquaculture sector will be affected.
Additionally, the absence of global models that can take into
account both the direct and indirect effects of climate change
on aquaculture makes the quantification of the effects difficult
(Metian, 2017). What is certain, however, is that the effects will
be persistent and likely to be irreversible, resulting in severe
consequences on the economy of those engaged in the sector,
with extreme effects projected on poorer communities (IPCC,

2013, 2014; Holmyard, 2014; Barange et al., 2018; Dabbadie et al.,
2018).

The effects of climate change on aquaculture have been
extensively studied and reviewed both at regional and global
scales (De Silva and Soto, 2009; Yazdi and Shakouri, 2010;
Clements and Chopin, 2016; Bueno and Soto, 2017; Chung
et al., 2017; Ellis et al., 2017; Froehlich et al., 2017; Handisyde
et al., 2017; Harvey et al., 2017; Klinger et al., 2017; Beveridge
et al., 2018; Dabbadie et al., 2018). In the majority of these
studies, however, there has been a tendency toward exploring
the negative effects of climate change projected on aquaculture
while giving far less attention to the positive ones that
are very critical for adaptation strategies. A broader study
of both the negative and positive sides of climate change
will promote producers’ preparedness and help minimize the
risks on their production. Furthermore, the currently available
literature reviews do not investigate how the sustainability of
the aquaculture sector could be affected by the projected change
in the climate. Such information is very useful for identifying
appropriate interventions to climate change aiming to sustain
livelihood sources for aquaculture-dependent communities. In
this review, we have explored the negative and positive sides of
climate change in relation to aquaculture production, and their
implications for the sector’s sustainability. The first section of
the paper discusses the effects of climate change on aquaculture
production and sustainability implications, by highlighting how
each specific element of climate change will affect the sector.
The section that follows presents somemitigation and adaptation
options that may have a wider application as well as challenges to
successful adaption. The last section concludes the findings and
suggests the prospects for future development. To achieve this,
a review of the recently published literature related to “Climate
change and aquaculture” obtained from scientific, reputable, and
internationally recognized journals and websites was conducted.
It was beyond the aim of this paper to provide a comprehensive
review of all published literature for each section covered, rather,
it focuses on the most recent (not more than 10 years back)
and relevant literature on the subject. However, the priority in
the selection of reviewed papers was given to the most recently
published literature with a global and/or regional context with
few exceptions.

THE EFFECTS OF CLIMATE CHANGE ON
AQUACULTURE AND IMPLICATIONS ON
SUSTAINABILITY

Climate change effects on aquaculture production are expected
to be both direct and indirect (Handisyde et al., 2006; De
Silva and Soto, 2009). The direct effects include influencing
the physical and physiology of finfish and shellfish stocks in
production systems, while indirect effects may occur through
altering the primary and secondary productivity, and structure
of the ecosystems, input supplies or by affecting product prices,
fishmeal, and fish oil costs, and other goods and services needed
by fishers and aquaculture producers (Handisyde et al., 2006;
De Silva and Soto, 2009; Freeman, 2017; Adhikari et al., 2018).
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The various ways through which climate change will affect
aquaculture production and implications on the sustainability
of the sector are presented in detail later in this section. There
is a consensus that aquaculture production does not occur in
a vacuum, it has important links with other food production
systems (De Silva and Soto, 2009; Troell et al., 2014). Moreover,
Blanchard et al. (2017), observed that to sustainably meet
the ever-increasing demand for aquatic products, there is a
need to recognize the strong link existing within and across
the goals of fisheries, aquaculture, and agriculture systems.
Figure 1 provides a simple illustration of how GHG emissions
will affect aquaculture production as well as the contribution
of capture fisheries, aquaculture, and agriculture activities to
climate change.

Although aquaculture activities, such as power input,
transport, and feed production are considered themain pathways
of the sector’s contribution to GHGs (Cochrane et al., 2009;
Adhikari et al., 2018; Barange et al., 2018), the sector’s
contribution is rather relatively small despite being significant
when compared to other food production sectors (Barange et al.,
2018). For example, the contribution of aquaculture to global
GHGs particularly CO2, emission in 2010 was estimated at 385
million tons, ∼7% of the agricultural sector’s contribution that
year (Barange et al., 2018). Recent estimates by IPCC (2019)
show that agriculture, forestry, and other land uses contributed
about 13% CO2, 44% CH4, and 82% N2O emissions from
anthropogenic activities for the period 2007–2016, accounting
for 23% of net anthropogenic emissions of GHGs. It is estimated
that 45% of the total net contribution by agriculture comes from
animal production, particularly livestock farming (Preto et al.,

2015), which contributes mainly CH4, CO2, and N2O, making
it the sector’s largest contributor (De Silva and Soto, 2009; Preto
et al., 2015; Zolnikov, 2018). On the other hand, aquaculture’s
main GHGs emission is CO2 through the normal respiration
of aquatic animals (De Silva and Soto, 2009). However, there
is still a gap in existing knowledge regarding the pathways
and contribution of aquaculture production to global GHGs
emission, which requires further investigations. The contribution
of fisheries, mainly CO2 to the net food production GHGs
emission contribution was estimated at 4% in 2011, while the
percent increase of emissions from the global fisheries industry
was estimated at 28% between 1990 and 2011 mainly due to
increased fishing operations (Daw et al., 2009; Parker et al., 2018).

Recently, aquaculture has recorded significant technological
advances that enable the sector to expand its current production
toward meeting the rising demand for aquatic products
(Kobayashi et al., 2015; Morris et al., 2019; FAO, 2020). However,
climate change is increasingly becoming one of the major
issues confronting the sustainability of food production systems
and aquaculture is no exception (Lim-Camacho et al., 2014;
IPCC, 2018; FAO, 2020). According to IPCC (2018), sustainable
development which balances environmental protection,
economic prosperity, and social well-being is closely linked to
climate change effects and responses. This suggests that it is
impossible to achieve sustainability in aquaculture production
without addressing climate change effects. Sustainability, despite
many definitions available (Johnston et al., 2007), can refer
to the management of financial, technological, institutional,
natural, and social resources to ensure a constant supply of
human needs, not only for the present but also for the future

FIGURE 1 | A simple illustration of the direct and indirect pathways through which climate change will affect aquaculture production.
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generations (Valenti et al., 2018). Therefore, for aquaculture
to be sustainable, it must survive throughout generations
(Valenti et al., 2011). According to Valenti et al. (2018), the
sustainability of aquaculture systems may be assessed using
three sustainability indicators: environmental, economic,
and social indicators. Environmental sustainability indicators
include the efficient utilization of natural resources, pollution
prevention, and biodiversity conservation (Valenti et al., 2018).
Economic sustainability focuses on the efficient use of financial
resources, economic feasibility, resilience and the capacity to
absorb negative external expenses, and generation of funds
for re-investment; while social sustainability focuses on the
capacity of aquaculture to provide benefits to communities,
such as food security, employment, equality of income and
opportunity distribution, and inclusion of vulnerable population
(Valenti et al., 2011, 2018). However, the currently available
literature on aquaculture sustainability has largely focused on
environmental sustainability, with far less attention being given
to the other two equally important dimensions (Tisdell and
Leung, 1999; Ahmed et al., 2019; Engle, 2019). Future studies
should critically investigate how climate-induced changes may
affect the social and economic aspects of aquaculture production
sustainability. A case study conducted in Ghana showed that
climate-related changes could significantly lower the economic
value of aquaculture products and induce poverty especially
in rural communities (Asiedu et al., 2019). Much of what is
currently available in the literature are predictions based on
scientific models.

Numerous reports have emerged showing that climate change
effects on aquaculture may vary depending on geographical
areas, economy, climatic zones, production systems, and cultured
species (Merino et al., 2012; Bell et al., 2013; Cheung et al., 2013;
Sae-Lim et al., 2017; Adhikari et al., 2018; Barange et al., 2018;
IPCC, 2018; Zolnikov, 2019). For example, Barange et al. (2018)
predicted higher effects on producers in developing nations
and poorer economies compared with those in developed ones.
Handisyde et al. (2017) reported that climate change effects
on aquaculture producers are expected to differ depending on
the culture environments (freshwater, brackish, and marine).
Several other studies have also shown that small-scale farmers
will be more affected by climate change risks due to increased
production costs in farm management and lack of support
systems to recover from the effects compared to large-scale
producers (Schjolden, 2004; Sult et al., 2005; Hamdan et al., 2012;
King and Harrington, 2018). Furthermore, it is important to
note that climate change effects will not only affect aquaculture
production systems, but also the entire value chain (Fleming
et al., 2014; Barange et al., 2018). Hence, climate change could
be more viewed as an involuntary risk that creates vulnerability
on the socio-economic development and raises stress especially
on food demand and supply as well as the livelihood system of
the farmers.

The predicted elements of a changing climate that threatens
production and sustainability of the aquaculture sector are
summarized in Table 1, and include rising temperature, ocean
acidification, diseases and harmful algal blooms changes in
rainfall/precipitation patterns, sea-level rise, the uncertainty of

external input supplies, changes in sea surface salinity, and severe
climatic events (Handisyde et al., 2006; Brander, 2007; Ficke
et al., 2007; Barange et al., 2018). These elements will not affect
aquaculture production equally, since, like any other farming
practice, the sector is defined in time, space, and size, and
therefore, have a fair degree of maneuverability (De Silva and
Soto, 2009) while affecting fish populations at different life cycles
as well. Moreover, the current scientific knowledge regarding the
effect of individual consequences varies and is often limited to
the combined effects which make adaptation planning within the
aquaculture sector practically difficult (Seggel et al., 2016).

Rising Temperature
Temperature plays a critical role in the growth and development
of aquatic animals (Ngoan, 2018). Fish, being poikilothermic,
may particularly be sensitive to temperature variations resulting
from climate change (Sae-Lim et al., 2017; Adhikari et al., 2018).
With the predicted 1.5◦C rise in average global temperature
this century, increased mortalities are likely to occur for
most fish, especially cold-water species, such as the Atlantic
halibut, Salmon and Cod, and intertidal shellfish due to thermal
stress (Hamdan et al., 2012; Gubbins et al., 2013). Therefore,
prolonged temperature stressmay affect aquaculture productivity
through various ways centered on lowered output. For example,
chronic stressmay affect the neuroendocrine and osmoregulatory
systems, altering cardiorespiratory performance and aerobic
scope as well as immune responses of several economically
important species (Brodie et al., 2014; Gazeau et al., 2014; Paukert
et al., 2016; Stévant et al., 2017; Stewart et al., 2019; Zhang
et al., 2019). Furthermore, metabolism and physiology, as well
as feeding behavior and growth performance of most finfish
and shellfish species are likely to be affected (Marcogliese, 2008;
Akegbejo-Samsons, 2009; Lemasson et al., 2018). Additionally,
rising ocean temperatures and consequential ocean acidification
slowly weaken the ocean carbon sink capacity, giving rise to
alterations in the hydrology and hydrography of water systems,
and the occurrence of red tides (Cochrane et al., 2009). These
effects may lead to increased management costs and low
productivity that threaten the economic and social sustainability
of aquaculture production. Environmental sustainability may
also be affected by thermal stratification in deep water bodies
resulting from temperature variations which may affect the
distribution and abundance of nutrients in the water, and in
case of upwelling occurrence, aquaculture producers operating
in open waters will suffer from severe economic losses (Seggel
et al., 2016). However, information regarding the physiological
response of the most economically important species to rising
temperature is still limited to few species, and biased toward adult
stages, leaving initial ontogenetic stages, such as embryos, larvae,
and fingerlings unclear.

On the other hand, warmer periods (within species’ tolerance
conditions) may promote longer growing seasons, especially in
temperate regions, and favor the production of warmer water
species, such as the Giant tiger prawn, Tilapia, Oysters, and
Mussels (Pickering et al., 2011; Troell et al., 2017; Guyondet
et al., 2018; Collins et al., 2020). Larger-scale investors that
run hatcheries in sheltered locations may also benefit from
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TABLE 1 | Summary of the various elements of climate change and their effects on aquaculture production.

Effects

Element
Rising temperatures Ocean acidification Diseases and

harmful algal blooms

Changes in

rainfall/precipitation

patterns

Sea level rise External input

supplies uncertainty

Sea surface salinity Climatic events

Negative effects - Poor growth and

survival of cold-water

species (Hamdan

et al., 2012; Gubbins

et al., 2013)

- Water quality

deterioration (Ngoan,

2018)

- Weakened immune

system of cold-water

species (Gubbins

et al., 2013)

- Weakened ocean

carbon sink capacity

(Cochrane et al.,

2009)

- Thermal stratification

(Seggel et al., 2016)

- Increased virulence

of warmer water

pathogens (Sae-Lim

et al., 2017)

- Reduced species

growth performance

and survival

(Clements and

Chopin, 2016; IPCC,

2018)

- Poor coral skeleton

development for

shell-forming species

(Hoegh-Guldberg

et al., 2007;

Weatherdon et al.,

2016; Kibria et al.,

2017)

- Increased water

acidity levels

(Rodrigues et al.,

2015; Clements and

Chopin, 2016)

- Increased production

costs in marine areas

(Munday et al., 2011;

Frommel et al., 2012)

- Poor species growth

and reduced survival

(Marcogliese, 2008;

Sae-Lim et al., 2017)

- Deterioration of water

quality (Ngoan, 2018)

- Increased production

costs due to disease

outbreaks (Gubbins

et al., 2013).

- Increased outbreaks

of exotic diseases

(Gubbins et al.,

2013).

- Droughts could

increase production

costs (Hambal et al.,

1994)

- Competing use of

water during periods

of drought

(Handisyde et al.,

2006; Cochrane

et al., 2009)

- Flooding may

increase loss of

organisms in low land

areas (Bell et al.,

2010; Rutkayova

et al., 2017)

- Flooding could

deteriorate water

quality and pollute

the environment

(Kibria et al., 2017)

- Destruction of

production facilities

(Bell et al., 2010;

Rutkayova et al.,

2017)

- Destruction of several

coastal ecosystems

(Kibria et al., 2017)

- Possible intrusion of

saline water into

freshwater systems

and culture facilities

in some regions

(Handisyde et al.,

2006; Kibria et al.,

2017)

- May affect species

richness, abundance

and distribution, and

phonological shifts.

- Increased costs of

production due to

possible increase in

the costs of inputs,

such as fish feeds

and seed (Hardy,

2010; Blanchard

et al., 2017; Bueno

and Soto, 2017;

Khatri-Chhetri et al.,

2019)

- Reduced ocean’s

heat storage capacity

(Seggel et al., 2016)

- Reduced carbon and

nutrients circulation

(Seggel et al., 2016)

- Increased species

mortalities (Jahan

et al., 2019)

- Destruction of

production systems

(Hamdan et al., 2012)

- Increased

management costs

(Canadian Institute

for Climate Studies,

2000)

- Increased loss of

culture species

(Hamdan et al., 2012)

Positive effects - Extended growing

seasons for warmer

water species

(Pickering et al.,

2011; Gubbins et al.,

2013; Troell et al.,

2017; Guyondet

et al., 2018)

- Further

developments in

genetic breeding

possibility (Gubbins

et al., 2013;

Blanchard et al.,

2017)

- Increased production

feasibility in

hatcheries (Gubbins

et al., 2013)

- Identification of more

marine species for

culture (Gubbins

et al., 2013)

- Possible elimination

of cold-water

pathogens (Sae-Lim

et al., 2017)

- May facilitate the

development of

species with better

resistant to diseases

(Sae-Lim et al., 2017)

- Possible identification

and development of

new species

(Blanchard et al.,

2017)

- Flooding may

increase suitable

areas for aquaculture

production in some

regions (Bell et al.,

2013)

- Droughts could

promote

developments in

wastewater

management

(Beveridge et al.,

2018)

- May increase areas

suitable for brackish

water culture

species, such as

shrimps and mud

crab (Handisyde

et al., 2006; Kibria

et al., 2017)

- Possible identification

of alternative and

sustainable input

supplies, such as

protein sources to

replace conventional

sources (Hardy,

2010)

- Possible increase in

the cultivation of

tolerant species

(Jahan et al., 2019)

- Better mixing of water

column and nutrients

(Seggel et al., 2016)

- May minimize rising

temperature

pressures by

minimizing the

temperature (Seggel

et al., 2016)
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market opportunities emerging due to the decline of preferred
specimens in the wild as a result of degrading coral reefs
(Bell et al., 2010). In cold regions, such as the Arctic, warmer
periods are projected to favor the expansion of aquaculture
production (Chan et al., 2019). Besides, warmer periods may
provide opportunities to culture new species and facilitate
further developments in genetic improvements of aquatic
organisms (Gubbins et al., 2013; Bueno and Soto, 2017).
These opportunities will favor social sustainability through
increased production outputs and employment opportunities,
and economic sustainability through increased profits and
reduced management costs in these areas. However, achieving
this will require advances in molecular biology and applying
practical methods of genetic improvement in aquaculture
although this may threaten environmental sustainability in case
of hybridization with species in natural waters.

Ocean Acidification
Ocean acidification occurs due to a decline in pH levels of
ocean water for an extended period (usually over decades)
resulting from atmospheric CO2 uptake (Richards et al., 2015;
Bahri et al., 2018). The oceans are estimated to store about
50 times more CO2 than the atmosphere (Seggel et al., 2016).
The projected increase in CO2 uptake by oceans at 1.5◦C or
more global warming will have adverse effects on the growth,
development, calcification, survival, and abundance of several
aquatic species (IPCC, 2018). Increased accumulation of CO2

in water could result in increased water acidity levels (pH
decrease) (Rodrigues et al., 2015; Clements and Chopin, 2016)
which threatens the environmental sustainability of aquaculture
production systems through water quality deterioration leading
to poor productivity. Moreover, the rise in ocean acidity reduces
the availability of carbonate required for the construction of
coral skeletons (Calcification) in shell-forming organisms, such
as shrimps, mussels, oysters, or corals (Hoegh-Guldberg et al.,
2007; Weatherdon et al., 2016; Kibria et al., 2017), which
potentially threatens marine aquaculture production (Yazdi and
Shakouri, 2010; Kroeker et al., 2014; Rodrigues et al., 2015).
For example, wild spat oyster production may decline due to
increased predation rates of the juveniles following poor coral
skeleton formation which lowers the collection rates (Blanchard
et al., 2017). Consequently, this is likely to force large-scale
producers to rely on hatcheries for spat oyster production which
increases the production costs. This could lower production
outputs and profits, and pose negative implications on the social
and economic sustainability of aquaculture production in these
regions. In seawater, rising acidity levels could significantly affect
the physiology and metabolism of aquatic species by disrupting
the intercellular transport mechanisms (Pörtner et al., 2004).
Although difficult to capture at a global scale (Froehlich et al.,
2018), the ability of species to respond to changes in ocean acidity
will depend on species adaptive capacity (Thomsen et al., 2017),
rate of change (Cooley et al., 2012; Mangan et al., 2017), as
well as complex biophysical feedbacks (Silbiger and Sorte, 2018).
Macroalgal (seaweed) production may also be affected by ocean
acidification, but such effects will depend on the acquisition
kinetics of inorganic carbon by different species (Chung et al.,

2017). For example, calcifying species in locations where CO2

is not the major driver of acidification are predicted to be the
most affected (Cornwall et al., 2012; Clements and Chopin,
2016). Although seaweed is considered an important sink for
atmospheric CO2 (Chung et al., 2013, 2017; Duarte et al., 2017),
few studies have evaluated the effects of climate change on
seaweed production, probably because its production is limited
to certain regions (Sondak et al., 2016). According to Gubbins
et al. (2013), however, the future changes in ocean carbonate
chemistry are difficult to predict with any certainty and the effects
of this are hard to expound because of the difficulties associated
with monitoring long-term biological responses to very small
changes observed under experimental conditions. Furthermore,
the majority of the available reports from experiments regarding
the effects of ocean acidification on aquaculture species have
been conducted in combination with rising temperature effects
(Rodrigues et al., 2015).

A positive impact of ocean acidification is that the partial
or total dependence of large-scale aquaculture producers on
hatcheries for spat production may create huge economic
gains for the hatchery owners. Additionally, this may provide
more employment opportunities to local communities since
these hatcheries will require huge labor in response to the
growing demand, thereby favoring the social and economic
sustainability of aquaculture production. Although the effects of
ocean acidification on finfish is poorly understood (Wittmann
and Pörtner, 2013; Clements and Chopin, 2016), the presence of
calcified otoliths in finfish, especially marine species, makes them
susceptible to ocean acidification (Clements and Chopin, 2016),
and their growth and development may particularly be affected
(Frommel et al., 2014), RNA viability (Franke and Clemmesen,
2011), and damage tissues, and impairing respiration (Munday
et al., 2009; Frommel et al., 2012).

Diseases and Harmful Algal Blooms
Diseases in aquaculture, such as bacterial, parasitic, viral, and
fungal diseases are likely to be affected by a changing temperature
regime, but in a largely unpredictable manner (Collins et al.,
2020). What is certain, however, is that when cultured species
are exposed to thermal stress conditions, they become more
susceptible to diseases and that warmer conditions may result
in the establishment of exotic diseases (Collins et al., 2020).
The vulnerability of finfish and shellfish to pathogens is a major
determinant of diseases and is likely to be affected by both
direct and indirect thermal stressors (Chiaramonte et al., 2016).
Therefore, warm water disease outbreaks are predicted to occur
more frequently in addition to the possibility of discovering
new ones under a changing climate (Sae-Lim et al., 2017).
Rising temperature is likely to accelerate the replication rate,
virulence, life cycle longevity, and transmission of pathogens
among several finfish and shellfish species (Marcogliese, 2008).
Moreover, the increasing temperature pressures may promote
the emergence of epizootic diseases in aquaculture and cause
serious economic challenges. Already, the outbreak of epizootic
diseases remains one of the most important factors that limit
the success of aquaculture production systems in many countries
of the world (Maulu et al., 2019). It is also predicted that
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warm water pathogens, such as Sea lice will remain a challenge
in salmon culture and further warming is likely to worsen
the infections in cold temperate conditions, requiring more
treatments thus more expenses (Collins et al., 2020). Overall,
the increased occurrence of diseases in aquaculture production
systems will lead to reduced profits, consequently, affecting
the social and economic sustainability aspects of aquaculture
production. Conversely, cold water diseases, such as vibriosis and
winter ulcer that affects Atlantic salmon may gradually become
extinct due to the emerging unfavorable conditions (Sae-Lim
et al., 2017) which may favor the production of this fish species.

Several studies have also associated the outbreak of some
harmful algal blooms to the changes in climatic conditions
(Wasmund et al., 1998; Edwards and Richardson, 2004; Edwards
et al., 2006; Moore et al., 2008; De Silva and Soto, 2009; Lafferty,
2009; Trainer et al., 2019). Algal blooms are a serious threat
to the environmental sustainability of aquaculture production.
For example, flagellates and dinoflagellates taxonomic groups,
and other harmful species have been reported to contain
potentially toxic or nuisance species that can be responsible
for stress or kills in finfish and shellfish (Hinder et al., 2012;
Gubbins et al., 2013; Basti et al., 2019). Consequently, this
could have negative implications on the social and economic
aspects of aquaculture sustainability. Recently, an unprecedented
loss of fish ever recorded worldwide was reported in Chilean
aquaculture due to the expansion of Pseudochattonella cf.
verruculosa and Alexandrium catenella species whose outbreak
were associated with climate-induced changes in water column
stratification (Trainer et al., 2019). Furthermore, some studies
have reported pathologies, such as inflammation, atrophy, and
necrosis in several organs of bivalve mollusks resulting from
harmful algal blooms (Haberkorn et al., 2010; Basti et al., 2011;
Hégaret et al., 2012). Although there is limited information
on the mechanisms through which climate change will affect
toxic substances in aquaculture, Farrell et al. (2015) reported
that temperature variation can affect the metabolism of most
widespread harmful algae.

Changes in Rainfall (Precipitation) Pattern
Changes in rainfall patterns will affect aquaculture production
and sustainability in two directly opposite ways; increased
rainfall (Flooding) and periods of low or no rainfall (Drought).
According to the IPCC (2018), risks resulting from droughts
events are likely to be higher at 2◦C compared with 1.5◦C of
global warming in a given region, while flooding event patterns
are difficult to predict with certainty. Increased levels of rainfall,
particularly if it occurs as heavier events, will increase the
production risks in lowland areas (Bell et al., 2010). These risks
include losing fish from ponds during floods, invasion of ponds
by unwanted species, and ponds damage resulting from infilling
and washing away of walls (Rutkayova et al., 2017). The mixing
of pond water and fish with those in the wild could negatively
affect the environmental sustainability of aquaculture production
mainly through the introduction of invasive fish species and
water quality deterioration. Furthermore, fish losses from ponds
threaten the social and economic dimensions of aquaculture
sustainability by lowering the economic gains of the producers

and inducing poverty in communities. According to Rutkayova
et al. (2017), however, the percent loss of fish during periods of
extreme flooding will depend on the species and age of individual
species. The authors further observed that percent losses are
likely to decrease with increasing fish age. However, it should
be noted that heavier rainfall may increase the areas suitable for
aquaculture ponds that rely on rainwater in low-lying tropical
regions, thereby favoring the social and economic sustainability
in such regions (Bell et al., 2013). It is also reported that
macroalgal, such as kelp productivity may be affected by heavier
rainfall which may bring varied nutrient loadings to nearshore
environments (Collins et al., 2020). Variability in nutrient loading
under variable precipitation may also favor invasive short-lived
algal species rather than the longer-lived kelp species normally
considered suitable for cultivation (Gubbins et al., 2013).

Drought events may lead to water stress, such as shortages and
quality deterioration that have negative effects on aquaculture
production (Hambal et al., 1994). The predicted water shortages
driven by climate change will lead to increased conflicts for
water among the different user groups, such as aquaculture,
agriculture, domestic, and industries (Handisyde et al., 2006;
Barange et al., 2018). This will affect all the dimensions of
aquaculture sustainability. However, there is a need to further
investigate how different species and life stages of fish, especially
those of economic importance will respond to changes in the
precipitation pattern.

Sea Level Rise
Sea level rise projections by IPCC (2018) indicate that the rise
will be around 0.1 meters lower under 1.5◦C global warmings
compared with 2◦C by 2100. However, this rise is expected to
continue beyond 2100 with the magnitude and rate of the rise
likely to depend on the future GHGs pathways (IPCC, 2018).
The rise in sea level may destroy several coastal ecosystems,
such as mangroves and salt marshes, which are considered
crucial for maintaining wild fish stocks, as well as supplying
seed for aquaculture production (Kibria et al., 2017). This
will negatively affect aquaculture breeding programs and the
economic sustainability of the sector. Higher sea level is predicted
to affect aquaculture production facilities, such as ponds, cages,
tanks, and pens particularly in lowland regions through the
intrusion of saline water (Kibria et al., 2017). Salinization of
groundwater is regarded as harmful to aquaculture, freshwater
fisheries, and agricultural production (Handisyde et al., 2006;
Kibria et al., 2017). Therefore, salinization renders aquaculture
environmentally unsuitable for production leading to higher
production costs and lower economic gains. Sea level rise
is also likely to result in changes in species composition,
organisms’ abundance and distribution, ecosystem productivity,
and phenological shifts that may threaten inland and marine
aquaculture production (Doney et al., 2012). Besides, aquaculture
activities in coastal areas bring social and environmental benefits
that may be affected both directly and indirectly by rising sea
levels thereby affecting the production and sustainability of the
sector. On the positive side, sea-level rise may increase the
areas suitable for brackish water culture of high-value species,
such as shrimp and mud crab (Handisyde et al., 2006; Kibria
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et al., 2017). Thismay favor aquaculture production sustainability
by presenting new opportunities for aquaculture production
particularly those in coastal areas.

Uncertainty of External Input Supplies
Agriculture and capture fisheries are the primary sources of
external inputs for aquaculture production, suggesting a strong
relationship among these systems. According to Cochrane et al.
(2009), aquaculture is a complementary activity to capture
fisheries, and though more similar to agriculture in its practice,
it has important links with capture fisheries. While agriculture
is the main source of ingredients for energy requirements in
aquatic animal feeds and likely to be the main supplier of
protein sources in the future, capture fisheries are currently
the principal supplier of protein sources as well as wild seed
and broodstock for aquaculture (Hardy, 2010). Recently, due
to the declining fish catches from capture fisheries, there has
been an increasing channeling of cereal and soy production to
aquaculture production for feed manufacturing (Ytrestoyl et al.,
2015). However, due to its sensitivity to climate change effects,
agricultural production is under threat and hence, the supply of
these inputs to sustain aquaculture production continues to be
threatened as well (Khatri-Chhetri et al., 2019). The impact of
climate change on capture fisheries through alterations in the
abundance and distribution of fish species will have a significant
effect on fishmeal and fish oil supplies, and the sustainability
of fish breeding programs due to increased scarcity of wild
seeds (Bradley et al., 2015; Blanchard et al., 2017; Bueno and
Soto, 2017). The ineffective management of fisheries and rising
fishmeal prices are already a significant threat to aquaculture
production sustainability (Black and Hughes, 2017). Moreover,
the projected impacts of climate change on fishery resources are
likely to accelerate themismanagement of capture fisheries (Black
and Hughes, 2017; Barange, 2019).

Generally, the projected impact of climate change on
agriculture and capture fisheries is expected to lower the
availability and increase the cost of the inputs, such as fish
seed and feed ingredients required for aquaculture production.
Consequently, aquaculture production costs are expected to rise,
making it more difficult, especially for small-scale producers to
survive in the sector. On the other hand, the rising fishmeal
and fish oil prices are likely to accelerate developments in
scientific studies that seek to identify alternative protein and oil
sources to replace conventional ingredients in aquafeeds (Hardy,
2010). Recently, plant proteins, mainly oilseeds from agriculture
have attracted considerable attention for use in aquaculture
protein sources. Today, the need to replace fishmeal and fish
oils with alternative ingredients in feed formulations has become
an important developmental agenda aimed at sustaining the
aquaculture sector.

Changes in Sea Surface Salinity
Salinity is seen as a variable parameter reflecting the input of
freshwater from precipitation, ice melting, river runoff, loss of
water through evaporation, and the mixing and circulation of
ocean surface water with underground water (Koblinsky et al.,
2003; Cochrane et al., 2009). Variations in sea salinity may occur
due to increased evaporation resulting from rising temperature

and ocean circulation changes or induced directly by climate
change (Cooper, 1988; Robinson et al., 2005). These variations
may affect oceanic circulation and stratification, and hence, the
ocean’s capacity to store heat, and carbon and nutrient circulation
(Seggel et al., 2016). Since climate change is expected to cause
these variations, the environmental sustainability of aquaculture
will be affected. Most aquatic organisms have specific salinity
levels within which they can survive, any alterations may lead
to mortalities and production losses (Jahan et al., 2019). In
stripped catfish, salinity levels above optimal requirements have
been reported to cause reduced survival, growth, and red blood
cells, suggesting an effect on the fish’s immune system (Jahan
et al., 2019). Meaning that variations in sea salinity are expected
to negatively affect the economic gains for some aquaculture
species which could affect the social and economic aspects
of aquaculture production sustainability negatively. However,
the higher salinity effect has been strongly correlated with
aquaculture production systems in downstream regions of coastal
areas (Nguyen et al., 2018). For example, Ahmed (2013),
reported negative effects on the production performance of
freshwater prawns at higher salinity. Baker et al. (2005) reported
increased mortality in juvenile clams, while (Rodrick, 2008)
reported increased susceptibility to bacterial invasion in oysters
at lower water salinity. Furthermore, Rodrick (2008) observed
that variations in salinity may affect the immune system of
oysters, particularly the ability of hemocytes (blood cells) to
resist foreign bacterial invasion. Although compared to other
marine mollusks, clams are reported to have a wider tolerance
to salinity, Baker et al. (2013) noted that they cannot endure
prolonged exposure to either high or low salinity. Increased
mortalities of abalone in farms, particularly those operating in
coastal areas have also been predicted under a changing climate
through the intrusion of saline water from marine environments
(Morash and Alter, 2015). In general, variation in water salinity
will lead to increased mortalities for several species which may
affect the economic and social sustainability of the sector through
increased species’ losses and higher management costs.

However, the majority of the current knowledge on the
effect of climate-related changes on salinity in aquaculture
has been biased toward reporting the effect of higher salinity.
There is a need for studies that focus on the effect of
salinity levels lower than an optimal requirement on finfish
and shellfish. Furthermore, the response of several species of
commercial importance to climate-induced salinity changes is
poorly understood. This information is especially useful for
adaptation in aquaculture, as changes in salinity may favor the
cultivation of tolerant species (Jahan et al., 2019).

Severe Climatic Events
Severe climatic events, such as cyclones, waves, and storms are
expected to influence aquaculture development especially marine
ornamental products, and those in coastal areas (Toussaint et al.,
2018). For example, the coral and giant clam farmers in tropical
villages may face the risk of increased losses as a result of
bleaching, while those in sub-tropical regions are likely to suffer
greater risks, such as loss of production equipment and stock due
to rougher sea conditions related to stronger cyclones (Hamdan
et al., 2012). The occurrence of storm surges, waves, and coastal
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erosion are considered themost dangerous threats to aquaculture
production and other related coastal activities (Hamdan et al.,
2012). Severe storms will result in high losses to the farmers
due to damage on farms resulting in higher costs of recovering
the damaged activities (Canadian Institute for Climate Studies,
2000). For instance, cage aquaculture will likely face higher risks
from the effects of cyclones and waves. The increased storminess
projected for certain seasons in certain regions may also increase
the risk of aquatic organism escapes due to equipment failure
and may require site relocation or changes in production
practices which may seriously affect the social and economic
sustainability of aquaculture in these areas (Gubbins et al., 2013).
According to Barange et al. (2018), severe climatic events are
reported to have increased in several regions in the recent
past and are represented by at least 80% of all climate-related
disasters. However, these events are predicted to occur more
frequently in Africa, particularly in East and Southern Africa
(IPCC, 2019).

On the other hand, severe climatic events, such as storms
will likely play a significant role in mixing water columns
and nutrients that have previously been restricted to certain
columns due to thermal stratification (Seggel et al., 2016) which
could promote the environmental sustainability of aquaculture
production. Moreover, storms may be very crucial in decreasing
water temperatures and associated risks that may harm both
cultured and wild organisms (Seggel et al., 2016).

MITIGATION AND ADAPTATION OPTIONS

Climate change-related risks to health, food security, livelihood,
water supply, human security, and economic development will
increase under the projected 1.5◦C global warming, with a
further increase expected at 2◦C (IPCC, 2018). In the face of
such risks, both the industry and communities will need to
mitigate and adapt to the changing climate by taking advantage
of new opportunities emerging from altered resources (Lorenzen
et al., 2017). Mitigation and adaptation may help prepare the
farming communities, ecosystems, and populations, in general,
to build resilience and deal with climate change as effectively
and efficiently as possible (Zolnikov, 2019). Mitigation focuses
on reducing or reversing the rate of climate change (Leal Filho,
2011; ACT, 2018). This involves mainly reducing GHGs emission
with a special focus on CO2 emissions which accounts for
more than 60% of human enhanced increases (Mohanty et al.,
2010; IPCC, 2014; Environmental Protection Agency, 2016).
According to the IPCC (2018), reductions in CO2 emissions
may be achieved through a combination of new and existing
technologies and practices, including electrification, hydrogen,
sustainable bio-based feedstocks, product substitution, and
carbon capture utilization and storage. In aquaculture, producers
and other stakeholders may play a significant role in mitigating
climate change effects by making necessary adjustments in
their production practices aimed at minimizing the emission
of GHGs. Specifically, this includes the use of environmentally
friendly practices and technology, such as solar energy, proper
feeding practices, and sustainable wastewater management to

minimize air and water pollution (VGREEN, 2012; Barange et al.,
2018). Feed production in aquaculture is particularly seen as
the sector’s major contributor to GHG emissions (VGREEN,
2012). For example, the use of sinking feeds is reported to be
more environmentally friendly compared with floating feeds
(Hardy, 2010; VGREEN, 2012). However, mitigation is a long-
term solution to climate change whose benefits may take a
significant amount of time to be realized (Elum et al., 2017; ACT,
2018). Besides, effective mitigation requires collective action on
a global scale since most GHGs accumulate over time and mix
globally, resulting in a global effect (IPCC, 2014). Therefore, it
is suggested that mitigation be implemented hand in hand with
adaption strategies for better and effective results (ACT, 2018;
IPCC, 2019).

Adaptation focuses on building resilience to the consequences,
and the capacity to utilize emerging opportunities sustainably
and ethically (Bueno and Soto, 2017). It involves making
considerations in advance, the expected changes, and taking
those changes into account in short-term decision making and
long-range planning (Yazdi and Shakouri, 2010). Therefore,
it can come in various forms, including technical changes,
changes in the behavior of resource users/producers, or changes
in the governance system (Lorenzen et al., 2017). Moreover,
FAO (2018) provides three target areas upon which successful
adaptation interventions may be centered, namely: institutions
and management, livelihood adaptation, and resilience and risk
reduction. However, a combination of these areas may most
likely yield better results compared to a single area focus
looking at the strong link that exists among them and their
complementary action. Currently, adaptation is seen as the
most viable option at the producers’ disposal to cope with the
effects of climate change on aquaculture (Yazdi and Shakouri,
2010). Moreover, IPCC (2014) noted that adaptation experience
to climate change effects continues to rise across regions in
both the public and private sectors, becoming more recognized
and included in developmental plans by several governments.
Furthermore, adaptation options that can also be used for
mitigating GHG emissions are more recommended since they
can offer synergies that may lead to reduced costs in many
sectors (IPCC, 2018). Most importantly, adaptation is not a one-
size-fits-all situation, considering the dynamics of vulnerability
and exposure, and their linkage with the socio-economic and
sustainable development of various sectors (IPCC, 2014, 2018;
Clements and Chopin, 2016; Zolnikov, 2019). According to the
IPCC (2018), successful adaptation in a changing climate will
depend on the adaptive capacity of the producers in a given
nation or region. For example, more severe effects have been
predicted on the producers in developing countries due to low
adaptive capacity (Figure 2) (Handisyde et al., 2017; Barange
et al., 2018; IPCC, 2018; King and Harrington, 2018; Zolnikov,
2019). Although adaptation options are more likely to be effective
and sustainable if selected according to a country’s context and
enabling environments (Bradley et al., 2015; Blanchard et al.,
2017; IPCC, 2018), we have highlighted some options that may
have a global application (Table 2).

Diversification of livelihoods may be one of the keys to
successful adaptation because it gives the producers options from
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FIGURE 2 | World map showing the adaptive capacity of the nations to climate change effects on aquaculture. Source: Handisyde et al. (2017).

TABLE 2 | Some adaptation options to climate change effects on aquaculture

that may be applied in many regions globally.

Adaptation option References

Livelihood diversification Bell et al., 2013; Blanchard et al.,

2017; Duarte et al., 2017;

Zolnikov, 2019

Shifting to less vulnerable or more resilient

species, techniques, or regions. May also

include selective breeding for more

resistant aquaculture species

De Young et al., 2012;

Lim-Camacho et al., 2014;

Sae-Lim et al., 2017; Dabbadie

et al., 2018

Enhancing the effective management of

capture fisheries

Frusher et al., 2013; Malcorps

et al., 2019

Utilization of local and indigenous

knowledge

Leal Filho, 2011; IPCC, 2014;

Magrin et al., 2014; Shelton,

2014; Makondo and Thomas,

2018

Introduction and promotion of insurance

schemes among the producers especially

small-scale farmers

Shelton, 2014; Pongthanapanich

et al., 2016; Barange et al., 2018

which they can derive their livelihoods and build appropriate
resilience from climate change impacts (Bell et al., 2013; Duarte
et al., 2017; Zolnikov, 2019). It involves combining aquaculture
production systems with other sectors, such as agricultural
systems, either integrated or as separate systems. Diversifying
livelihood sources is extremely useful, especially in some regions
or countries where fish production is predicted to decline,
while agricultural production is expected to increase (Blanchard
et al., 2017). However, successful diversification requires that
government policies provide incentives for efficient utilization
of resources, equity, and protection of the environment (Troell
et al., 2014). Moreover, improving livelihood diversification

among aquaculture producers requires integrating indigenous
knowledge with government interventions (Leal Filho, 2011).
Unfortunately, the major factor affecting the adaptive capacity of
farmers, households, and communities at large is their access to,
control over, and ability to use productively the natural, human,
social, physical, and financial assets, i.e., the livelihood capital
(Bueno and Soto, 2017).

Aquaculture producers may also benefit from shifting to
aquaculture species, techniques, or areas that are less vulnerable
or are more resilient to a changing environment and resources
(Lim-Camacho et al., 2014). For example, Integrated Multi-
Trophic Aquaculture (IMTA) system is more environmentally
friendly, sustainable, and economically rewarding as well as
more resilient to changing climate compared to monoculture
because it combines finfish farming with other species (Osch
et al., 2019). Aquaculture producers may also make use of altered
resources, such as land by practicing new farming systems.
Furthermore, shifting to or developing aquaculture species that
are more resilient to climate change is one of the most promising
areas for adaptation (De Young et al., 2012). For example,
Sae-Lim et al. (2017) noted that selection of species based on
feed efficiency and defining a breeding goal that minimizes the
emission of GHGs will play a key role in a changing climate.
However, this requires the consideration of the environmental
and social benefits of communities compared to focusing on
short-term economic benefits (Olesen et al., 2000). Further, it is
important to note that there will be costs, such as research and
development associated with developing new aquaculture species
(Harvey et al., 2017).

Another way of adapting to climate change among the
aquaculture producers is by ensuring a continued supply of fish
from capture fisheries by promoting changes in fishers’ behavior,
changes in governance, as well as the use of effective management
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plans and strategies. For example, applying changes to the
management of the tradable quota allocated to individual fishers
(Frusher et al., 2013). Besides, there is a need to incorporate
climate variability and change in the modeling of aquaculture
undertakings to reduce the impacts of climate change in
fisheries-based livelihoods. According to FAO (2020), global
production from capture fisheries has stagnated or declined
in some years over the past few decades. The ever-increasing
global population and the consequential rising demand for
aquatic products are considered the primary cause of dwindling
production from capture fisheries (Maulu and Musuka, 2018).
Currently, aquaculture production heavily relies on resources
from capture fisheries, such as fishmeal, fish oils, broodstocks,
and wild seeds as crucial production inputs (Laffoley, 2013; FAO,
2018; Malcorps et al., 2019). Therefore, effective management of
resources from fisheries may contribute to a sustainable supply of
aquaculture inputs.

The utilization and incorporation of local and indigenous
knowledge in adaptation strategies have also been shown to offer
effective adaptation to climate change (Leal Filho, 2011; IPCC,
2014; Magrin et al., 2014; Makondo and Thomas, 2018). While
scientific understanding provides a generalized insight regarding
climate change and its potential effects, indigenous knowledge
may provide specific details about the physical environment,
infrastructure systems, livelihood status, behavior, governance
organization, and other attributes that are crucial for managing
community resources (Kettle et al., 2014). For example, the
use of traditional methods and indicators to predict changes in
weather patterns (temperature, rainfall, humidity, etc.) may help
the producers prepare for expected changes and build resilience
(Zolnikov, 2019). Information on how such incorporation has
been utilized in aquaculture production is still largely unknown.
However, in other sectors, such as agriculture, it has successfully
been used by farming communities. A good example is in
Kenya, where indigenous knowledge helped some farming
communities prepare for climate change effects and reduce
susceptibility to food insecurity (Leal Filho, 2011). Moreover, the
integration of indigenous knowledge with scientific knowledge
may be one of the most powerful tools for strengthening
other adaptation strategies, despite having been overlooked
(Kettle et al., 2014; Belfer et al., 2017; Lesperance, 2017;
Makondo and Thomas, 2018).

Another growing area that may be considered for adaptation
is building adaptive capacity in aquaculture, especially for small-
scale producers through insurance schemes. Most climate change
predictions indicate that small-scale producers will be the most
affected due to poor adaptive capacity (IPCC, 2014; Bueno
and Soto, 2017; Barange et al., 2018). Hence, an insurance
scheme could help them build resilience. Generally, insurance
for aquaculture producers globally is still relatively new despite
gaining considerable attention (Pongthanapanich et al., 2016).
In Vietnam, a pilot project conducted between 2011 and 2013
showed that farmers had a very poor understanding of the
scheme which led to poor results (Pongthanapanich et al., 2016),
suggesting that awareness among other measures may lead to
better results. Insurance schemes may especially be useful for
producers with poor adaptive capacity for building resilience

against the effects of climate change (Barange et al., 2018).
However, the viability of the aquaculture insurance business may
depend on how efficient and lower-risk aquaculture becomes,
apart from climate change risks (Barange et al., 2018). Being
a relatively new subject in aquaculture, there is a need for
investigations to expound its benefits and implications on the
economic conditions of the farmers, especially among the most
vulnerable communities.

Challenges to Successful Adaptation and
Proposed Strategies
Although adaptation is considered the most viable short-term
solution to climate change, its implementation may face several
challenges. For example, failure to acknowledge the fact that
climate change will affect the producers differently based on
their specific region, environment, knowledge regarding climate
change, population, community dynamics, economic conditions,
and present industry (Marshall et al., 2009). Unless these factors
are taken into account, adaptation strategies will probably
be of little benefit to the producers and stakeholders in the
aquaculture sector (Zolnikov, 2019). To address this, there is a
need for governments, especially in more vulnerable countries,
to ensure that policy formulations related to climate change
interventions recognize this fact to meet producer needs in their
specific situation. Therefore, more efforts and resources should
be directed toward the most vulnerable producer groups. Also,
as observed by Lorenzen et al. (2017) adaptation is more likely
to be successful if producers are made aware of the drivers and
impact pathways, monitoring a broad suite of impact indicators,
and adaptive decision-making. In recent years, several models
have been used to predict the impacts of climate change on
food production systems including aquaculture (Rosenzweig
et al., 2014; Saba et al., 2016; Tiller et al., 2016; Blanchard
et al., 2017; Galbraith et al., 2017). However, wrong projections
may affect successful adaptation to climate change effects by
the aquaculture producers. The capacity of the producers
to adapt to climate change will likely depend on accurate
future projections against different systems of the aquaculture
sector. Unrealistic and biased estimation of the potential risks
associated with climate change may mislead policymakers and
the aquaculture producers in taking necessary precautions.
The consequences of maladaptation include increased future
vulnerability and/or exposure of the target community, region,
or sector to climate change effects (IPCC, 2014). To address
biases of climate models, Palmer and Stevens (2019) note that
there is a need to reduce the dependence of these models
on subgrid parameterizations as much as possible and if not,
then report their uncertainty. The authors further suggest that
future models should be sustainable and cutting across nations,
embracing the high-performance application of computing and
technology. Another challenge to successful adaptation is the
capacity of producers in terms of preparedness. For example,
some regions of the world, such as those in western countries,
are more equipped in terms of governance, incomes, technology,
human capital, and social networks than those in sub-Saharan
African countries (Zolnikov, 2019). Besides, several projections
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show that aquaculture producers in developing countries will
be the most affected and this is due to poor adaptive capacity
(Barange et al., 2018; Zolnikov, 2019). Therefore, IPCC (2018)
strongly recommends international cooperation that promotes
enhanced access to finances and technology and enhanced local
capacities for developing nations and most vulnerable regions for
effective action. Finally, it is now becoming clearer that the entire
aquaculture value chain is vulnerable to climate change effects.
However, much of the currently available literature focuses more
on the production system leaving out other stages, such as trade
and marketing of aquatic products. Such a narrow focus of
scientific studies limits our understanding of the extent to which
the aquaculture sector will be affected and hence, adaptation
options. Therefore, future studies and models should have a
broader focus and encompass all stages of the aquaculture
value chain.

CONCLUSION AND PROSPECTS

This review has highlighted the potential effects of climate
change on aquaculture production and implications on the
sector’s sustainability. Despite being considered the only solution
to meeting the continued rise in demand for aquatic products
globally, the aquaculture sector is increasingly being threatened
by human-driven climate change effects that are both a present
and future reality. These effects on aquaculture are expected to
be both positive and negative, although the negative outweighs
the positive ones. Besides, although climate change is a global
food production risk, the associated risks on aquaculture
are expected to differ across geographical or climatic zones,
national economy, water environment, production systems, the
scale of production, and cultured species of the aquaculture
producers. To build resilience and sustain production in a
changing climate, the aquaculture producers must adapt to
the available options in the short-term while mitigating the
effects by making necessary adjustments in their production
practices in the long-term. This review has addressed important
aspects of climate change and aquaculture production; however,
several limitations were identified that presents important areas

for future consideration. For example, the review is limited
to production and input supply stages of the aquaculture
value chain and does not address the other important stages,
such as trade, processing, and consumption of the products.
In addition, within the production stage of the value chain
discussed, it was not clear how various species of economic
importance at different life stages will respond to a changing
climate. Information on this would be useful for adaptation
strategies that may require the producers to shift to species that
may be more resilient to the change in the climate. Also, there
were few practical examples of the implication climate change
is expected to have on aquaculture production sustainability,
and in most cases, studies were biased toward environmental
dimensions of sustainability while neglecting the social and
economic aspects. As the aquaculture sector continues to grow
while climate change becomes clearer, there is a need to embrace
a holistic approach in projecting climate change effects on
aquaculture and in addressing these impacts. Consequently,
mitigation and adaptation strategies would be more effective.
However, this will require developments in research, especially
in more vulnerable regions due to poor adaptive capacity.
Therefore, poorer economies could benefit more from
international cooperation.
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