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Nitrogen (N) is an essential but generally limiting nutrient for biological systems.

Development of the Haber-Bosch industrial process for ammonia synthesis helped

to relieve N limitation of agricultural production, fueling the Green Revolution and

reducing hunger. However, the massive use of industrial N fertilizer has doubled the

N moving through the global N cycle with dramatic environmental consequences that

threaten planetary health. Thus, there is an urgent need to reduce losses of reactive

N from agriculture, while ensuring sufficient N inputs for food security. Here we review

current knowledge related to N use efficiency (NUE) in agriculture and identify research

opportunities in the areas of agronomy, plant breeding, biological N fixation (BNF), soil

N cycling, and modeling to achieve responsible, sustainable use of N in agriculture.

Amongst these opportunities, improved agricultural practices that synchronize crop N

demand with soil N availability are low-hanging fruit. Crop breeding that targets root

and shoot physiological processes will likely increase N uptake and utilization of soil

N, while breeding for BNF effectiveness in legumes will enhance overall system NUE.

Likewise, engineering of novel N-fixing symbioses in non-legumes could reduce the

need for chemical fertilizers in agroecosystems but is a much longer-term goal. The

use of simulation modeling to conceptualize the complex, interwoven processes that

affect agroecosystem NUE, along with multi-objective optimization, will also accelerate

NUE gains.

Keywords: agronomy, biological nitrogen fixation, breeding, microbiome, nitrogen use efficiency, policy, soil
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INTRODUCTION

Protein availability has shaped human settlement across the
globe for millennia (Diamond, 1997). The development of
agriculture as a reliable, localized source of protein and other
foodstuffs enabled civilization as we know it, including the
scientific enterprise that now underpins it. Nitrogen (N) is a
crucial element of proteins and other essential biomolecules,
and soil N availability is a key limiting factor for both natural
and agricultural productivity in terrestrial ecosystems (O’Neill
et al., 2004; Elser et al., 2007). Development of the Haber-Bosch
process to convert atmospheric dinitrogen (N2) to ammonia
(NH3) in the early twentieth century gave rise to the N fertilizer
industry. This synthetic N fertilizer, together with improved
crop genetics and agronomy, fueled the Green Revolution that
led to several-fold increases in crop productivity in many parts
of the world, averting starvation for large numbers of people
(Smil, 2002; Godfray et al., 2010). Today, over 120 Tg (million
metric tons) of synthetic N fertilizer are used in agriculture
each year (FAO, 2019). In 2010, total N inputs from synthetic
N fertilizers, biological N fixation (BNF) by leguminous crops,
atmospheric deposition, and manure amounted to 174 Tg N,
yet only 74 Tg N were captured in harvested products (Zhang
et al., 2015). Much of the remaining N is lost from agricultural
land to the surrounding environment, where it damages sensitive
ecosystems, reduces air quality, and contributes to climate
change, with costs to biodiversity, fisheries, human health,
and societal infrastructure (Sutton et al., 2013). Anthropogenic
reactive-N compounds are readily assimilated by plants and other
organisms, and have doubled the flux of N in the global N cycle,
taking us beyond what is considered a safe operating space for
humanity (Rockstrom et al., 2009; Canfield et al., 2010; Steffen
et al., 2015; Kanter et al., 2020). The United Nations (UN)
Environment Programme has identified excessive reactive N as
one of five emerging threats facing the planet (Sutton et al., 2019),
such that the fourth UN Environment Assembly (March 2019)
adopted a resolution on “Sustainable N management.”

Fertilizer N is a “double-edged sword” that ensures food
security for much of humanity, while having enormous negative
impacts on the environment and human health (Sutton et al.,
2011). Globally, it is also the single largest source of nitrous
oxide (N2O), a potent (∼300-times the global warming potential
of carbon dioxide) and long-lived greenhouse gas (Winiwarter
et al., 2018) that has increased by 0.8 parts per billion (ppb)
per annum from 300 ppb in 1980 to 332 ppb in 2020 (NOAA,
2021). Thus, in many agricultural systems too much N is used
and there is a need to rein-in the amounts of N fertilizer used
to reduce environmental pollution. In contrast, in regions such
as the sub-Saharan Africa, limited access to N fertilizer results
in poor crop yields and food insecurity (Mueller et al., 2012),
requiring increased N inputs from either biological or industrial
sources. Overall, cropping systems worldwide would benefit from
practices that increase agricultural N use efficiency (NUE) while
sustaining or building soil organic matter and soil fertility.

Nitrogen use efficiency is an umbrella term to broadly
compare agronomic, physiological, and environmental effects of
N use in agroecosystems. At least 18 numerical permutations

of NUE appear in the literature (Ladha et al., 2005), which
highlights that there is no standard definition. Three NUE
terms are widely used to quantify efficiency: (1) partial factor
productivity (PFP), defined as the ratio of yield to N inputs
from fertilizer, BNF, crop residues, manure, and atmospheric
deposition (Figure 1); (2) N removal efficiency, defined as the
ratio of harvested plant N to N inputs; and (3) N utilization
efficiency (NUtE), defined as the ratio of yield to plant N. Other
terms such as system NUE (Martinez-Feria et al., 2018) and N
surplus or balance (McLellan et al., 2018; Basso et al., 2019) have
also proved useful for assessing environmental and production
outcomes. We focus on N removal efficiency as it is amongst the
easiest to measure and calculate from data available from many
crop species and countries. This definition of NUE allows for
global comparisons, trend analysis, identification and diffusion
of best practices, and provides the impetus for this article. The
average NUE of cropping systems has been estimated to be only
42% globally (Zhang et al., 2015), and further losses of N occur
along the food chain before it is consumed. Boosting NUE is one
of four major areas of intervention identified to reduce N losses
to the environment; the other three are dietary shifts toward
more plant-based foods in high-income countries, reductions
in food loss and waste, and reduced biofuel production from
human-edible foods (Bodirsky et al., 2014; Cassman andGrassini,
2020). Here, we focus on opportunities to increase NUE by
improving technologies and agricultural management strategies
for high-input and low-input cropping systems.

CURRENT STATUS OF NUE FROM A
GLOBAL PERSPECTIVE

Globally, NUE for major crops averaged between 30% and 50%
from 1970 to 2010 (Smil, 1999; Sheldrick et al., 2002; Tilman
et al., 2002; Ladha et al., 2005; Liu et al., 2010; Robinson et al.,
2011). While NUE improved significantly in parts of Europe and
the USA from 1980 to 2010 due to increases in productivity for
a given N rate (e.g., USA) or coupled with decreases in N use
(e.g., Europe; Lassaletta et al., 2014), it decreased (with high N
surplus) in many developing countries, notably China and India,
from 1960 to 2014 due to increases in N fertilizer use exceeding
N harvest rates (Lassaletta et al., 2014; Zhang et al., 2015; He
et al., 2018). Trends of NUE in other regions with low yields and
low N fertilization rates have been inconsistent, such as in many
countries in sub-Saharan Africa (Lassaletta et al., 2014).

The NUE of cropping systems ranges from as little as 14%
for fruits and vegetables, because they are relatively low-protein
but high-value foods (motivating farmers to use large amounts
of fertilizer), to as high as 80% for legumes, as exemplified
by soybean (Zhang et al., 2015). Most of the N assimilated by
legumes is derived from BNF by symbiotic bacteria (rhizobia)
within plant root nodules, and much of this N is transferred
eventually to harvested grains rather than lost to the surrounding
environment (Córdova et al., 2019). Cereal NUE falls between
these extremes, with the three primary cereals, wheat, rice,
and maize, exhibiting global averages of 42%, 39%, and 46%
NUE, respectively, in 2010. Because cereal production accounts
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FIGURE 1 | Nitrogen use efficiency (NUE) is the ratio of N outputs in the harvested product to N inputs, including from fertilizer and natural processes, and has also

been called N removal efficiency. Nitrogen inputs to the system (red arrow, BNF is biological nitrogen fixation) will cycle through the soil (purple arrows), are susceptible

to environmental losses (blue arrows), and are eventually used by crops (green arrows) with a portion harvested or removed (red arrow). We propose simultaneously

targeting these different processes to increase NUE and agricultural sustainability.

for approximately half of all N fertilizer use and half of all
agricultural N pollution, it represents a high priority target for
NUE improvement. For individual cropping systems, NUE varies
widely, and highly mechanized, broad-acre, precision agriculture
generally achieves higher NUE than some small-holder farms in
countries such as China and India that are over-supplied with
highly-subsidized synthetic N fertilizer (Abrol et al., 2017). Thus,
there are opportunities to increase NUE in many agricultural
systems by applying up-to-date best practices with appropriate
support from social, economic, and environmental policies
(Kanter et al., 2020).

AGRICULTURAL N FLOW AND SOIL
CYCLING

The view of soil as principally a supportmedium for plants, rather
than a complex biogeochemical system driven by soil biota,
dominates soil management decisions in agronomic practice
globally. To a large extent, the success of the Green Revolution
is based on new technologies that provide, via inputs external to
the system, ecological services traditionally supplied by soil—N
supply among them (Robertson and Grandy, 2006). The result
has been an agricultural enterprise that often values soil largely
as a porous media that supports plants and drains excess rainfall,
ignoring its crucial role in nutrient cycle regulation. Agricultural
N flows are illustrated in Figure 1, in which nitrogen inputs

enter the system through synthetic fertilizer, biological nitrogen
fixation, manure, or atmospheric deposition. This nitrogen, in
various chemical forms, enters the soil N cycle with pools
and fluxes from soil organic matter, microbes, and dissolved
N molecules in soil water. Plant uptake of N is mostly from
inorganic forms in the soil water. This N is utilized by the plant
for growth and seed production, and some amount is harvested
with the agricultural product and removed from the system.

Less than 50% of the N taken up by most cereal crops is
derived from N inputs from that planting season, a percentage
unchanged from the 1930s to 2010 (Allison, 1955; Cassman
et al., 2002; Gardner and Drinkwater, 2009). The remaining N
is derived from soil organic matter, crop residues or residual
inorganic N present in the system, itself the product of soil
biota partially consuming plant inputs dating from last year to
past millennia. Soil organic N is a significant contributor to
plant nutrition, satisfying much of the plant N demand (Olson
et al., 1979; Sowers et al., 1994; Corbeels et al., 1999; López-
Bellido et al., 2006; Jayasundara et al., 2007). Even high-yielding
soybean can derive a significant amount of its N from the soil
(Salvagiotti et al., 2008, 2009), particularly where high amounts of
residual inorganic N limit BNF. Although soil N mineralization
can provide sufficient N to support the N demands of modern
cropping systems in some individual years (Lory and Scharf,
2003), over the long-term, it is apparent from using simple mass
balance calculations that a highly productive maize crop with
an annual grain yield of 16Mg ha−1 removes ∼184 kg N ha−1
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(Tenorio et al., 2020) or ∼3.68Mg N over 20 years of cropping.
The N stores of many highly productive, rainfed arable soils can
be as high as 10Mg N ha−1. Thus, continuous cropping has the
potential to remove, within 20 years, 1/3 of the N in the original
soil organic N stock, demonstrating the potential for rapid soil
organic matter depletion and the consequent dependence of
cropping systems on external N sources in order to mitigate
such risks (Poffenbarger et al., 2017). This is why ’zero budget
natural farming’, as promoted by the Indian government and
some international agencies, carries a serious risk of long-term
soil nutrient mining and soil health decline (Smith et al., 2020).

Regardless of the source of N, whether derived from N2

fixation, fertilizer, or other exogenous source, N cycles through
soil, and the rate and manner in which it cycles matters
fundamentally to its availability and loss (Figure 1). Soil has
the capacity to not only provide plant-available N through soil
organic matter turnover, but also to buffer its supply to plants—
whether internal N or exogenous N—and control the loss of
unused N to the environment by storing N as organic matter or
binding N in the soil mineral matrix. As a result, accounting for
soil N is integral to optimizing N use (Stanford, 1973; Cassman
et al., 2002). Perhaps the single most important impact of the
soil N cycle on NUE is the soil’s capacity for helping to match
the timing of soil N availability with periods of plant N demand.
In natural ecosystems, the presence of diverse plant species
having different life histories, including perenniality, means that

at least some species will be actively demanding N whenever soil
conditions permit N release from soil organic matter. The result
is a relatively tight N cycle: when N available for loss is instead
taken up by plants, loss is at least partially averted. For example,
fertilized perennial biofuel crops lose little-to-no nitrate-(NO−

3 )-
N to drainage, yet NO−

3 loss in drainage of fertilized corn (maize)
is no different from unfertilized soybean (Christianson et al.,
2012; Daigh et al., 2015). This highlights that a lack of synchrony
between crop N demand and soil N availability is the primary
reason for environmental N losses.

STRATEGIES TO INCREASE NUE

How can the agricultural N flow be managed to improve NUE?
The various processes depicted in Figure 1 serve as reminders
of the major interventions that can be used as levers to adjust
the flow of N through the system in such a way as to minimize
inputs and losses while maximizing N capture and output. We
held a workshop in 2019 to discuss problems associated with
N in different agricultural cropping systems and to examine
promising research and development (R&D) avenues to solve
these problems. Four broad areas of needed endeavor were
identified: soil N cycling, systems agronomy, BNF, and plant
breeding as shown in Figure 2. Strategies in each of these areas
were organized into a matrix from low-to-high risk and low-to-
high reward (Table 1). In the sections below, we review briefly the

FIGURE 2 | We propose a systematic roadmap for improving NUE using improved agronomy (i.e., agricultural practices), plant breeding, biological N fixation, and

controlled soil N cycling.
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TABLE 1 | A risk-reward matrix organizes possible solutions to the nitrogen

problem in four groups based on high or low risk and high or low reward.

Low reward High reward

Low risk Incremental improvements of

current extension

Incremental improvements of

weather forecasting and N

models

Pollution swapping

Optimize N applications:

Source, rate, timing,

placement

Optimize system agronomy:

Rotation, tillage, diversity,

residue management

Proven bio-inoculants, e.g.,

Rhizobia

Incentives:

Farmer education/extension

Public education/acceptance

High risk Novel bio-inoculants

Improper subsidies

Policies that encourage misuse

Genomic advances

Trait-based breeding

BNF in cereals

Microbiome management

Advanced fertilizer formulation

state-of-the art in these areas, consider current frontiers in R&D,
and propose an integrated set of strategies to increase by 2050
global cropping system NUE and protein yield by 50%, while
simultaneously reducing N losses from crop production by 50%.

Improving Synchrony of Soil N Supply and
Crop Demand
As discussed above, N is usedmost efficiently when its availability
in soil is synchronized with crop demand (Robertson, 1997;
Ladha et al., 2005). Nitrogen synchrony is rare and difficult
to achieve in annual monocultures typical of most high-
productivity agriculture. Most grain crops, for example, have
a 90–100 day growing season and accumulate biomass and
N at a significant rate only for 30–40 days mid-season. In
the maize example above, N uptake can reach the astonishing
rate of 5 kg N ha−1 day−1 (Osterholz et al., 2017). This
high rate is sustained for only 3–4 weeks and it falls to nil
quickly.Meanwhile, soil microbial processes that cycle N between
various organic and inorganic forms are active whenever soils
are not too dry or too cold to support biological activity,
i.e., much of the rest of the year. This asynchrony between
when N is available and when N is needed creates windows
of N loss and is a principal cause of low NUE in most
cropping systems (Robertson, 1997; Robertson and Vitousek,
2009).

Depending upon cropping system and environment,
achieving synchrony can be challenging as a result of variable
weather, timing of equipment and labor availability, and other
limitations and sources of uncertainty. First, plant N demand
can be difficult to predict based on the data available at fertilizer
decision time points and possible future weather scenarios.
Nitrogen demand can strongly vary across complex landscapes
in a given year and even from year-to-year in a single location
(Basso et al., 2019). Second, estimating the N-supplying power
of the system is difficult, particularly in mesic climates where
N inputs from mineralization of soil organic matter and N
outputs/losses to denitrification (reduction of NO−

3 and other

oxides of N to N2) and leaching into groundwater exhibit large
variation from year-to-year and field-to-field. Addressing these
issues inherent to cropping systems remains challenging. The
most commonly used N fertilizers readily dissolve into soil
solution as mobile N ions (ammonium or NH+

4 ; NO
−
3 ) that

are subject to loss if not acquired by crops or retained by soils.
Low NUE characterizes crop systems where (i) transient or
permanent N supply exceeds crop demand (for example when
low crop N demand coincides with large amounts of soluble
N in soil); (ii) soil has a low capacity for N retention due to
low organic matter content, coarse texture, and/or presence of
weathered clay minerals with low ion exchange capacity; and (iii)
climate and agronomic management promote N loss when there
is high rainfall, heavy irrigation, or temporary waterlogging.

The difficulty in synchronizing N supply and demand is
exemplified by mechanized sugarcane cropping, where farmers
apply all fertilizer early in the crop season because crop height
and summer rain prevent field access later. Sugarcane grows over
10 months or longer. Large pools of soluble N, high rainfall
and/or irrigation, and an initial low crop N demand drive N
losses from sugarcane soils in the first months (Allen et al.,
2010). To compensate for this risk, sugarcane farmers in themain
producer countries apply, on average, twice as much N fertilizer
as is required by the crop (Robinson et al., 2011). The range
of N fertilizer use spans from near perfect use of fertilizer N at
100% (Thailand), 60% (Brazil) to only 10% (China) (Robinson
et al., 2011). Fertilizer timing with most or all fertilizer applied
before the cropping season is also common with maize in the
US Corn Belt, where crop height and wet fields can also hamper
in-season applications.

There are many management options available for increasing
NUE through matching N supply with crop demand and thereby
mitigating loss of N from agroecosystems. Many tools and
best management practices are intended to help farmers apply
nutrients in a “4R” management framework—using the right N
source at the right rate, right time and in the right place. Basic, or
low-tech, approaches involve adjusting timing or rates without
needing different equipment. Beyond that, a range of precision
N tools that detect chlorophyll and other crop vigor-related
measures (e.g., hand-held and remote spectral sensors) and
agronomic techniques (e.g., variable rate fertilizer applications,
direct drilling, deep placement of fertilizer, and fertigation)
combined with weather forecasting are now available to support
improved nutrient management.

Spatial synchrony can be as important as temporal synchrony
for matching soil N availability to plant demand. This is true
both at the plant scale, ensuring soil N is most available
close to growing plants, as occurs with furrow mulching and
fertilizer banding, and at the field scale, where erosion and other
geomorphological processes have created subfield regions of low
fertility. Using satellite images with 30× 30m subfield resolution
in 8M cornfields across 30 Mha of the U.S. Midwest, Basso et al.
(2019) identified that low-yield subfield areas covering over half
of the region had low NUE (as little as 48% N removed with
harvest), in contrast with high-yield, high-NUE areas (up to 88%
fertilizer N removed with harvest). The N losses from low-yield
areas could explain a major portion of the average annual 1.12
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Tg NO−
3 -N loss from the Mississippi Basin (Basso et al., 2019).

Spatial synchrony can be partially optimized using precision
agriculture techniques, discussed below.

Although much progress has been made in developing
technologies for efficient N management, good systems
agronomy is critical to enhance crop N harvest and NUE with
less surplus N (Chen et al., 2011, 2014; Grassini and Cassman,
2012). While certain approaches have relatively higher relevance
and impact in different regions and crops, the most successful
are those that adopt a “systems approach” that considers the
complexity and interactions between practices, weather, and
outcomes. Holistic management approaches will maximize crop
N uptake, minimize N losses, and optimize endogenous soil N
supply by maintaining soil health.

Fertilizer Type, Inhibitors, and Manure
Management
New fertilizer formulations are a target for improving NUE of
crop systems, primarily aiming to slow solubilization and the
conversion of fertilizer N to more mobile forms while plant N
demand is low. Globally, efforts are accelerating to improve N
fertilizers, from nanotechnology formulations to achieve targeted
release profiles, to supplying N as part of organic matter to slow
the N release (Bindraban et al., 2015). Fertilizers and application
technologies are being designed to take the physiological needs
of crops (such as nutrient uptake, redistribution, and utilization)
as an entry point for fertilizer development (Bindraban et al.,
2020). Enhanced efficiency fertilizers (EEFs) are formulations
with coatings that consist of polymers or other materials that
prevent immediate solubilization, or with added inhibitors
to temporarily slow the activity of urease enzymes and that
of nitrifying microbes. Several meta-analyses have reported
small, but consistent, positive yield responses to N fertilizers
treated with urease inhibitors, nitrification inhibitors, or a
combination of both (Linquist et al., 2013; Abalos et al., 2014;
Burzaco et al., 2014; Qiao et al., 2015; Thapa et al., 2016;
Li et al., 2018). The variability in yield response to these
treatments has been attributed to interactions among genetics,
environment, and management (Hatfield and Walthall, 2015).
EEFs containing urease inhibitors were successful in paddy
rice systems, increasing average NUE by 29% and reducing
N losses by 41%, while the various types of EEFs in wheat
and maize systems are generally less effective (Li et al., 2018),
and yield responses may be site-specific (Linquist et al., 2013;
Abalos et al., 2014; Thapa et al., 2016). However, meta-analyses
have also exposed possible pollution swapping when applying
nitrification inhibitors, where a decrease in N2O emissions (Qiao
et al., 2015; Pan et al., 2016; Li et al., 2018) coincides with
an increase in NH3 volatilization (Lam et al., 2017; Li et al.,
2018). Of additional concern is that some enzyme inhibitors can
be transported to surface waters (Woodward et al., 2016) and
non-biodegradable polymer coatings can impact soil biota such
as earthworms (Huerta Lwanga et al., 2016). Alternative slow-
release fertilizer formulations are being developed, for example
with biodegradable polymers that soil microbes can consume
(Zumstein et al., 2018).

Crop N physiology must be considered in all N fertilizer
regimes. While NO−

3 and NH+
4 are considered the main N

sources for crops, all plants that have been examined can
use organic N (e.g., amino acids, oligopeptides). The exact
proportion of inorganic and organic N acquired by plants
remains unknown (reviewed by Näsholm et al., 2009), but the
presence of soluble organic N in soils is well-documented.
Soluble organic N is associated with reduced losses, which
might motivate the development of alternative, organic N-based
fertilizers, nutrient management, and crop breeding (reviewed
by Paungfoo-Lonhienne et al., 2012). Comparing the fluxes of
inorganic and organic N forms in differently fertilized sugarcane
soil, the estimated root intake rate for amino acids matched soil
fluxes, while fluxes of NH+

4 and NO−
3 exceeded the root intake

rate (Brackin et al., 2015). To maximize NUE, the release rate
and forms of N should match the crop’s N acquisition capacity
(discussed below).

Organic matter, including recycled organic wastes (i.e.,
manures, crop residues, green waste, humanure), has potential
as an N source, and is widely used, though not always
with the aim to supply nutrients (Bindraban et al., 2015,
2020). The overall effects of organic fertilizers are difficult
to disentangle because soil physical, chemical, and biological
properties are altered. Compared to inorganic fertilizer only,
field experimentation often shows benefits when organic and
inorganic fertilizers are supplied together due to interacting
effects of improved micronutrient and soil microbial community
status (e.g., Adediran et al., 2007). In a global meta-analysis, Xia
et al. (2017) found that substituting up to 50% of the mineral
fertilizer N with fresh or composted manure increased grain crop
yields, crop N uptake, and N use efficiency, but substituting more
than 75% ofmineral fertilizer Nwithmanure negatively impacted
yields. The authors also reported environmental benefits of
integrative management, including a reduction in N losses (e.g.,
leaching, runoff, and NH3 emission) and improvement in soil
organic carbon content. On the other hand, regional trends for
NUE in the USA are negatively associated with the proportion
of total N from livestock excreted N, largely because manure
is treated as waste rather than a nutrient (Swaney et al., 2018).
Net anthropogenic N balances for these regions are also high,
indicating elevated risk of environmentally-concerning losses
(Howarth et al., 2012). Thus, there is both need and opportunity
to repurpose nutrient-rich wastes as fertilizers, which requires
formulating suitable nutrient stoichiometry andN release profiles
to avoid N over- or under-supply of target crops.

Soil Management for Controlling N
Processes
Managing the release of N from crop residue and as well
from endogenous soil organic matter stores during the growing
season is a difficult proposition. Tillage, developed primarily for
weed control, has been traditionally used for this purpose but
inefficiently so—tillage occurs 6–8 weeks prior to high plant
demand forN, leaving a significant intervening window forN loss
as accelerated microbial activity mineralizes soil organic N stores.
A purported advantage of no-till is to avoid this quick release of
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N, and while subsequently slower mineralization rates avoid the
early pulses of N associated with tillage, there is little evidence
that no-till reduces exogenous N needs and, by inference,
improves NUE. No-till does, however, appear to reduce off-
season N losses (e.g., Syswerda et al., 2012 and references therein)
as more of the N immobilized in crop residues persists in
accumulating soil organic matter until a new equilibrium is met.
Improvements to soil porosity and other physical properties
related to soil structure can also keep inorganic N from being
easily leached (Hess et al., 2019), though beneficial effects on
gaseous N losses are less clear (van Kessel et al., 2013; Gelfand
et al., 2016).

Improving the adsorption capacity of soils, or the ability
to bind ions to soil components, is another approach used to
control soil N cycling. NUE of maize and rice systems improved
substantially when adding clay, such as zeolite, most likely due
to enhanced NH+

4 retention (Perrin et al., 1998; Kavoosi, 2007).
Whether these ameliorants, or sorbents, such as zeolites or
biochar, are effective agronomic treatments will depend on the
system’s vulnerability to N losses. Experiments in controlled
conditions have shown that sorbents can optimize NH+

4 release
considerably (Chin et al., 2018).

Other technological interventions currently available
include plastic mulch, now in widespread use in parts of
China (Liu et al., 2003; Yang et al., 2015). While developed
as a water conservation measure, plastic also heats soil
and thereby accelerates N mineralization as the growing
season progresses (Fan et al., 2005). However, the long-
term application of plastic mulching can lead to pollution
that damages soil health and threatens long-term food
security (Zhang et al., 2019).

Manipulating the microbes responsible for soil N cycling
could be a fruitful frontier for future research. We are only
now learning the functional importance of the myriad plant-
microbe associations that form the plant microbiome, and
emerging evidence that plants can stimulate rhizosphere (the
soil adjacent to and influenced by roots) microbes to oxidize
soil carbon (Kumar et al., 2016) implies that plants might
also be bred or engineered to harness the microbiome for
N release. Or that the microbiome might be intentionally
composed to include microbes capable of mineralizing soil
organic N when triggered by plant N demand. Additionally,
slow-release N fertilizers or even cover crops might be
created with an enhanced ability to release organic N when
similarly triggered.

N Management in Flooded Soils
Management of fertilizer N in paddy soils is notoriously
difficult due to loss of N through NH3 volatilization from
the floodwaters. The deep placement of urea granules is one
technology to enhance N capture by rice and reduce losses,
although demanding in terms of labor (Giller et al., 2004; Liu
et al., 2005). Climate mitigation practices to reduce methane
emissions from paddy rice call for periodic drainage (Wassmann
et al., 2004), which will make N management all the more
difficult as organic N mineralizes to NH+

4 that will then undergo
nitrification to NO−

3 during drained periods with subsequent

loss via denitrification upon re-wetting. Losses can be mitigated
with management that avoids the presence of excessive mineral
N pools in the soil at these high risk time periods, such as split
N applications, retaining crop residue, and keeping N balances
in check.

Precision Agriculture and NUE
Precision agriculture is a farm management approach that seeks
to identify practices that optimize the use of farm inputs (Mulla,
2013). As a result, precision management relies on technologies
that enable intensive data collection, processing, and evaluation
needed to properly characterize and synthesize temporal and
spatial variability. Theoretically, the variance in yield and
environmental outcomes is attributable to measurable climatic,
edaphic, and management factors. Precision agriculture is not
exclusively focused upon N management, but improving NUE is
a common goal given the potential variance of crop N demand
across the landscape and with time. Site-specific management
can help tailor N applications, improve NUE, increase profits,
and/or minimize risk of N loss (Balafoutis et al., 2017; Cao et al.,
2017; Muschietti-Piana et al., 2018; McNunn et al., 2019; Wang
et al., 2020). NUE, as a performance outcome, can also be used
to evaluate management decisions in fields characterized by high
spatial and temporal variability in biophysical conditions (Li
et al., 2019).

The calculation of field or subfield level NUE requires spatial
tools to estimate crop N content. Coincidently, a cornerstone of
tactical N management is fine-tuning in-season N management
to meet crop N needs based upon the status of the plant. For
example, the N nutritional index can be used to determine
whether the crop N concentration is suboptimal relative to the
critical N dilution curve at maximum yield (Justes et al., 1994),
while the N sufficiency index can assess status by referencing a
well-fertilized area (Varvel et al., 1997). A rapid, non-destructive
assessment of field or subfield NUE depends upon the remote or
proximal sensing tools and algorithms that reliably monitor N
concentrations in the crop (Pinter et al., 2003; Ladha et al., 2005;
Yao et al., 2015; Magney et al., 2017). The working assumption
is that crop N sufficiency status is functionally related to plant N
either expressed as a concentration (%) or accumulation (kg N
ha−1) in the leaf or plant.

Though not always consistent across growth stage and
fertilizer rate, chlorophyll or protein indicators can be used as
proxies for N status due to the strong relationship between N-
containing compounds and N content (Fu et al., 2021). Many
different vegetation indices are widely used to estimate crop N
content or accumulation, alleviating confounding factors from
soils or water, which are generally calculated from the leaf or
canopy reflectance values of wavebands in the visible and near-
infrared regions (Zhang et al., 2018; Caballero et al., 2020; Fu
et al., 2021). Rapid developments in sensing technologies coupled
with machine learning (and other techniques) have increased
our abilities to accurately predict yield and non-destructively
estimate plant N status (Yao et al., 2015; Chlingaryan et al.,
2018). However, challenges persist for practitioners (Fu et al.,
2021), including the influence of growth stage, cultivars, and
N management across space and time, as well as the limitation
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imposed as indices approach saturation levels. Furthermore,
canopy sensing data is often instantaneous, infrequent, and
does not capture the N status of the entire plant (i.e., vertical
distribution), thus potentially missing dynamic N behavior in the
plant pertinent to making timely recommendations. To combat
these limitations, Fu et al. (2021) recommends that hyperspectral
data be integrated with crop growthmodels and radiative transfer
models to improve assessments.

The variance in crop and soil data can also be used to delineate
subfield management zones through the combination of sensing,
geostatistical, and interpolation techniques (Chlingaryan et al.,
2018; Basso et al., 2019). However, when developing site-
specific N recommendations, precision agriculture tools must
also account for the dynamic nature of soil N and crop uptake
efficiencies across landscapes (Chlingaryan et al., 2018; Morris
et al., 2018; Qin et al., 2018). Furthermore, recommendations that
rely primarily on vegetation indices cannot guide pre-planting
or pre-emergent N decisions. Therefore, an integrative site-
specific N management approach links georeferenced decision
support models to dynamic biogeochemical models that simulate
outcomes based upon relevant crop, soil, weather, management,
and enterprise factors (Morris et al., 2018; Sela and van
Es, 2018; Sharma and Bali, 2018; Schroeck et al., 2019).
Models that simulate N status can then be validated through
field measurements collected throughout the growing season.
Therefore, precision agriculture technologies are compatible
within an adaptive N management framework, in which site-
specific empirical data is used to improve model accuracy on
a field or subfield level (Morris et al., 2018). Ultimately, data
from these various sources can be fused through machine
learning or other techniques to provide on-the-go assessments
and automated recommendations (Chlingaryan et al., 2018).

Crop sensing and georeferenced management data could
be used to calculate and map NUE spatially and temporally
for assessment purposes. As a performance indicator, NUE
can help evaluate fertilizer management within the context
of yield and crop quality goals, and even diagnose factors
contributing to inefficiencies of fertilizer use (Maaz et al., 2018).
As an environmental indicator, NUE estimates can help farmers
assess the risk of N losses from farms or fields, or relative
to regional or supply chain estimates (Lassaletta et al., 2014,
2016; Erisman et al., 2018). Variable rate N fertilizer technology
could substantially reduce N losses by matching the low plant
N demand in low fertility subfield areas with appropriately
reduced fertilizer rates, as could planting these areas to perennial
conservation or bioenergy species. With current technology, the
best way to capture unused N after the main crop’s growing
season is by using cover crops planted to grow quickly following
senescence of themain crop. The N that cover crops remove from
the soil solution is N that is not lost to the environment and
instead can be remobilized from cover crop biomass to provide
N to the following year’s main crop.

Biological N Fixation (BNF) and
Incorporation of Legumes
Although plants cannot use atmospheric N2 directly, it has been
known for over a century that diverse bacteria and archaea,
known as diazotrophs, can convert atmospheric N2 to NH3

through BNF and that the NH3 produced can be utilized directly
or indirectly by plants for growth (Leigh, 2004; Gorman, 2013;
Bottomley and Myrold, 2015). Diazotrophs can be found in
bulk soil, within the rhizosphere of plants, physically-associated
with plant roots and other organs, and even inside plants
within specialized, N fixing organs called nodules (Roy et al.,
2020). Rates of BNF by free-living diazotrophs in soil are
typically low, between 1 and 20 kg N ha−1 yr−1 (Vadakattu and
Paterson, 2006), although associative N fixation by microbes in
the rhizosphere or on plant surfaces may contribute significantly
to plant growth in low-N input systems (e.g., Ladha and Reddy,
2003; Martins et al., 2020). In contrast, BNF in nodules is highly
efficient, and in high-yield environments can exceed 300 kg N
ha−1yr−1 (Giller, 2001; Peoples et al., 2009; Cafaro La Menza
et al., 2020) as nutrient exchange between plants and their
intracellular bacterial endosymbionts is highly targeted (Udvardi
and Poole, 2013), avoiding losses of plant-C and bacterial-
ammonia to the soil and associated microbiome. However, BNF
in nodules is confined largely to legumes and a few non-
legume plant families (Santi et al., 2013), while most crop
species, including cereals, are unable to access atmospheric N2

in this way.
The escalating global N problem has sparked renewed interest

in BNF as a partial solution, deployable through: development
and use of legumes and rhizobia (their natural symbionts)
with increased BNF potential; development of more-effective
associative N fixation in non-legumes, especially the major
cereals; and potentially through the engineering of nodule
symbioses or even plants capable of fixing their own N (Ladha
and Reddy, 2003; Beatty and Good, 2011; Rogers and Oldroyd,
2014). BNF in grain legumes remains an important source
of N in many cropping systems, where it contributes to
higher NUE, although the relative contribution of legumes in
agriculture has declined with the increase in N fertilizer use.
This was partly due to the emphasis on cereal production in
the policies of the Green Revolution, which replaced traditional
cereal-legume crop rotations in countries like India, leading
to scarcity of grain legumes and even imports from Africa
(Raghuram, 2020). Therefore, there is tremendous scope to
increase the contribution of legume BNF to agriculture, via
systems agronomy and plant breeding approaches (see below,
see also Franke et al., 2018; Liu et al., 2020), and by improving
the effectiveness and resilience of rhizobium strains used as
inoculants (Meghvansi et al., 2010; Koskey et al., 2017; Santos
et al., 2019).

Growing legumes, as grain or green manure crops, and
recycling shoot biomass to the soil generally improves soil
fertility, increases the yield of the subsequent crop, and reduces
the requirement for synthetic N. Many reports cite more grain
production in cereals grown after a legume, than after a non-
legume or after a fallow (Giller, 2001; Franke et al., 2018).
Legumes are often used in short-term rotation, such as corn-
soybean, or in continuous corn with a legume winter cover
crop. These systems offer farmers many benefits, and help
to solve environmental problems associated with N use in
agriculture. In many developing regions of the world, legumes
are used extensively to meet protein requirements. Nevertheless,
in past decades, the widespread availability of synthetic N

Frontiers in Sustainable Food Systems | www.frontiersin.org 8 May 2021 | Volume 5 | Article 660155

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Udvardi et al. Nitrogen Use Road Map

fertilizer and low yields of legumes relative to cereals have
resulted either in a stagnation or a decrease in the area under
cultivation of legumes in different regions (FAO, 2019). There
are several environmental (e.g., temperature and excess rainfall)
and economic constraints (e.g., inadequate purchasing power
of farmers to buy seed) limiting legume yield and profitability
(Giller, 2001) that may be responsible for a decrease in legume
cultivation. In a recent review, Vanlauwe et al. (2019) argued that
although considerable progress has been made in understanding
grain legume agronomy, the relationship between legumes and
rhizobia populations, the benefits of BNF to farming systems, and
the spatial and temporal integration of legumes in these systems
are important knowledge gaps that prevent the formulation of
recommendations that would further enhance the contributions
of legumes to farming systems in Sub-Saharan Africa (Vanlauwe
et al., 2019). They recommend integration of BNF in breeding
programs and improvements in overall agronomy to maximize
the potential of symbiosis through eliminating various soil and
other environmental constraints.

Legumes are also an attractive option for mixed-crop systems
where two crop species are grown simultaneously in the same
field. But despite advantages of intercropping that include greater
resource use efficiency, including NUE, intercropping remains
‘at the fringes of modern intensive agriculture’ (Brooker et al.,
2015). This may change when the benefits of intercropping are
realized, with a recent estimate that globally increased NUE of
cereal-legume intercropping reduces the requirements for fossil-
based fertilizer N by about 26% (reviewed by Jensen et al., 2020).
Challenges will include planting using the same implements,
weed management, and harvesting.

Engineering BNF Through Microbial
Association and Direct Genetic
Manipulation
There is growing interest in the development of effective
associative N fixation for cereal crops, especially maize, rice,
and wheat (Mus et al., 2016; Bloch et al., 2020; Mahmud
et al., 2020), and as well for perennial forage and bioenergy
grasses (Roley et al., 2019; Bahulikar et al., 2020). These
range from simply isolating, testing, and deploying the most
effective natural plant-associated diazotrophs of target plant
species, based primarily on plant growth promotion (Fox
et al., 2016), to current attempts to edit the genomes of
such bacteria to remove genetic controls that prevent N
fixation and NH3 release in agricultural soils containing
potentially high levels of mineral and organic-N (Barney
et al., 2017; Bueno Batista and Dixon, 2019). Decades of
genetic, genomic, and biochemical research and technology
development provide a basis for attempts to edit or engineer
diazotrophs for optimal association with non-legumes (Bueno
Batista and Dixon, 2019). However, it is difficult to estimate
small amounts of BNF in the field and many recent claims
of large amounts of fixed N in cereals result from flawed
application of measurement methods (Unkovich et al., 2020).
Further research is required to understand and minimize
trade-offs between N fixation with NH3 loss and growth of

diazotrophs, to optimize symbiotic interactions and nutrient
exchanges between diazotrophs and plants, and to understand
interactions between diazotrophs and the microbiome at large.
For instance, arbuscular mycorrhizal fungi may facilitate NH3

transfer between diazotrophs and the plant (El-Shanshoury
et al., 1989; Frey-Klett et al., 2007; Guether et al., 2009;
Meenakshisundaram and Santhaguru, 2011; Sabannavar and
Lakshman, 2011).

Parallels between N fixing symbioses in legumes and
arbuscular mycorrhizal (AM) symbioses that occur in most
plant species, including common signaling components/genes
involved in establishing these distinct beneficial symbioses, have
spurred efforts to engineer nodulation and BNF in plant species
that form AM symbioses, including the major cereals (Rogers
and Oldroyd, 2014; Bailey-Serres et al., 2019). In principle,
current efforts are focused on engaging cereal AM signaling
components to recognize rhizobial signals and transducing
these signals into altered gene expression to promote plant cell
division and nodule formation, while allowing bacterial entry
into plant cells (Radhakrishnan et al., 2020). These processes
are complex, with over 200 genes known to be required to
establish and maintain effective BNF in legumes (Roy et al.,
2020). However, recent evidence suggests that evolution of one
or a few genes was sufficient to put the ancestors of modern
legumes on the pathway to effective BNF (van Velzen et al.,
2018), so the hope is that the same key genes may set the
stage for engineering of effective BNF in cereals (Rogers and
Oldroyd, 2014; Bailey-Serres et al., 2019). Further investments
in this line of strategic and applied research will, at the very
least, test our current understanding of the development and
maintenance of BNF, while further basic research on the genetics,
cell biology and biochemistry of legume BNF will advance
knowledge and continue to inform efforts to engineer BNF
in non-legumes.

The most audacious approach to solving the two-sided N-
problem is to engineer N fixation into plants directly by
transferring genes responsible for BNF into plant genomes and
expressing active nitrogenase enzymes in an appropriate plant
compartment (Burén et al., 2017; Yang et al., 2018). There are
many features of nitrogenase that make this venture a high
barrier including coordinating the expression of the numerous
genes involved in the assembly of the unique metal cofactors,
and extreme oxygen sensitivity and high energy demand of the
active enzyme complex (Rubio and Ludden, 2008; Burén and
Rubio, 2018; Yang et al., 2018). These features may explain
why the process was never co-opted from microbes during
plant evolution. Nonetheless, progress has been made toward
this objective (Burén et al., 2017; Burén and Rubio, 2018;
Eseverri et al., 2020; Xiang et al., 2020), and such work
is testing and extending our understanding of BNF. Given
the current state of knowledge and technology, the greatest
impediment to solving the N problems of agriculture through
N fixing plants may turn out to be public acceptance of
such technology rather than our ability to develop it. At this
stage, however, this approach, like the nodulating, N fixing
cereals approach, remains in the high-risk, high-reward category
(Table 1).
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Plant Breeding for Improved NUE
Breeding programs have traditionally focused on yield-based
selection to achieve genetic gains, and comparisons among
crop varieties representing historic and modern materials often
show associated increases of mass yield but not of harvested N
(Duvick, 2005). This indicates that increasing NUE on a grain
yield basis is not the same as increasing NUE on a N recovery
basis. However, yield-based selection may have problems in
efficiently overcoming possible barriers to improvement relative
to trait-based breeding (Messina et al., 2011). Therefore, ideotype
breeding (Donald, 1968) centered on identifying and selecting
traits affecting NUE may be an opportunity for breeding
strategies that are based on understanding important processes
rather than treating them as a black box, as done with yield-
based selection. This opportunity is particularly attractive now
because the rise of genomics and cheap DNA sequencing,
functional phenomics, and high-throughput phenotyping allows
the simultaneous identification of phenotypic variation, genetic
mapping and marker identification, and understanding of
underlying physiological processes (Mandal et al., 2018; York,
2019).

Natural variation for NUE has been observed among and
within many crop species, including maize, rice, wheat, and
soybeans. This variation implies that breeding programs may be
able to select for high NUE, although many traits influence NUE
and they are all under complex genetic control. For relevance
to crop breeding, Moll et al. (1982) partitioned a NUE variant
into N uptake efficiency (NUpE), the fraction of N inputs found
in the shoot of the plant at maturity, and NUtE, the weight of
grain produced per unit of acquired N (Moll et al., 1982). Traits
that contribute to plant NUE range from N uptake, assimilation,
partitioning processes and transient storage, to N remobilization
and utilization in source and sink organs (Tegeder andMasclaux-
Daubresse, 2018; Raghuram and Sharma, 2019; The et al., 2021).
We propose synergistic breeding activities to improve underlying
traits in the NUE functional hierarchy. NUpE can be partitioned
into root and shoot processes, while NUtE centers around shoot
processes related to grain production. While these efficiency
measures are especially relevant for grain crops, others may be
more relevant for forage crops where we expect high NUE due to
greater synchrony of crop growth and N availability.

Plant roots are responsible for acquiring N from soil. The
acquisition efficiency of the root system has been defined in terms
of the amount of N acquired per unit carbon investment to
the root system (Nielsen et al., 1994). Root system architecture
determines the spatial arrangement of roots, even at a given
investment of carbon. Architectural features that increase topsoil
foraging may be useful earlier in the season when N is applied,
while deep rooting has been hypothesized to be beneficial for
catching N before it leaches (Lynch, 2013). Increasing acquisition
efficiency may be possible by focusing on root traits that reduce
the metabolic burden of individual root segments, or of the entire
root system (reviewed by Lynch, 2015; Mandal et al., 2018). For
example, allocation among root classes may be optimized by
increasing the number of lateral roots, which are thinner with less
construction costs than axial roots. Research in maize has shown

that increased lateral relative to axial rooting can enhance N
acquisition and shoot growth in soils with N limitation (Zhan and
Lynch, 2015; Guo and York, 2019). Besides construction costs,
maintenance costs such as respiration must also be considered
(Guo et al., in press). Anatomical traits including increased
aerenchyma or reduced cortical cell area reduce respiration and
have been shown to improve N acquisition, and in some cases
to allow N remobilization from senescing root tissue (Chimungu
et al., 2014; Saengwilai et al., 2014). Recently, N-responsive
differences in germination, respiration and crop maturity have
been associated with NUE in rice (Sharma et al., 2018). Specific
uptake rate may be defined as the instantaneous potential rate of
N uptake by a short root segment, but has rarely been considered
as a root trait (reviewed by Griffiths and York, 2020). However,
variation amongmaize lines (Pace andMcClure, 1986) andmaize
root classes (York et al., 2016) for nitrate uptake rates indicate
that there may be a genetic basis that could be harnessed for plant
breeding. Recent developments in high throughput phenotyping
of multiple nutrient uptake by maize roots highlights this
opportunity (Griffiths et al., 2021). Molecular biologists have
identified many genes involved in root system architecture or
transport of various types of N compounds and targeted some of
these for genetic manipulation to improve NUpE, with varying
success (Mandal et al., 2018; Tegeder and Masclaux-Daubresse,
2018). Multiple approaches exist to increase uptake efficiency by
the root system that could be included in pre-breeding programs
screening for genetic variation.

Once N is acquired by the plant, physiological processes
in source organs that assimilate N and carbon, as well as in
sinks that use or store the assimilates, will determine how
well the plant can perform to increase growth and acquire
more N. Photosynthesis is responsible for fixing carbon from
the atmosphere and several strategies exist to decrease the N
requirement of photosynthesis. Shoot architecture determines
the overall arrangement of leaves, which has substantial impact
of light interception efficiency (Wang et al., 2018). On a leaf
area basis, photosynthetic N use efficiency may be related to
chloroplast size (Li et al., 2013) and early seedling vigor (Pang
et al., 2014). Recent work has demonstrated the importance of
reducing photorespiration (South et al., 2019) and accelerating
photosynthetic induction after light changes (Acevedo-Siaca
et al., 2020) for increasing overall photosynthetic efficiency. Steps
involved in N assimilation, including NO−

3 reduction to nitrite
then NH+

4 , and assimilation of this into amino acids could
be targeted to increase NUtE. Given the dependency of plant
metabolism on enzymes composed of N-containing amino acids,
substantial work could be done on the overall physiological
efficiency of N anabolism and catabolism. However, it has been
suggested that such strategies may only be successful if N
metabolism and transport processes, including source-to-sink N
partitioning, are coordinated or modified to avoid end-product
inhibition or substrate limitation (Fernie et al., 2020).

For many years, breeders have focused on increasing the
crop harvest index (HI), which reflects the ratio of harvested
grain to total shoot dry matter (Donald and Hamblin, 1976).
However, increasing the HI on a mass basis may not necessarily
increase NUtE (i.e., seed N yield relative to total shoot N
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content), as indicated by the trade-off between grain mass and
N concentration (Oury and Godin, 2007). HI may also be
reaching a theoretical maximum because the remainder of the
shoot including leaves is necessary to support grain production
(Hütsch and Schubert, 2017). However, altering remobilization
and translocation of N from vegetative shoot organs to grains
has been shown to affect NUtE (c.f. Perchlik and Tegeder, 2017;
Tegeder and Masclaux-Daubresse, 2018; Tegeder and Perchlik,
2018). Delayed leaf senescence (“stay-green”) can be important
for prolonging grain filling as well as N uptake from the soil, but
it may also hinder partitioning of remobilized N from leaves to
seeds (Kosgey et al., 2013). More research is needed on the timing
and interrelationship of these various traits and how they may be
co-optimized to increase NUtE.

Plant-microbe interactions that influence biological N
fixation, soil N mineralization, and nitrification could also be
the targets of plant breeding. Most directly, legume crops form
nodules with symbiotic rhizobia bacteria that fix N to share with
the plant in exchange for C-compounds. More efficient fixation
(i.e., N fixed per C supplied) could substantially improve overall
NUE. Legumes have the capacity to “autoregulate” nodulation
and BNF, reducing these when abundant soil N is available,
which prevents “luxury” fixation. Selecting or producing legume
varieties that continue N fixation despite the presence of soil N
could potentially result in enhanced release of biologically-fixed
N into agricultural soils, thereby increasing available soil N
pools for subsequent crops (Santachiara et al., 2018). Promoting
external root-microbiota that fix N, mobilize soil organic-N,
or inhibit nitrification that drives N leaching from soil and
gaseous N losses to the atmosphere, is another opportunity
to make N gains for plant nutrition. Such knowledge of crop
genotype-microbe interactions is increasingly important in plant
breeding, for example where beneficial bacterial communities are
associated with particular crop genotype and N processes (Zhang
et al., 2019). Therefore, it is plausible to select for plants that
promote associative N fixation within the rhizosphere. Another
attractive, if elusive, alternative is for crops to exude nitrification
inhibitors directly from roots (Subbarao et al., 2015; Sun et al.,
2016).

Over the past 70 years, selection of crops has primarily
been performed under high N fertilization, which may have
limited gains in NUE. In some cases, NUE of modern genotypes
is greater in both high and low N soils (York et al., 2015).
However, multiple traits influence NUE, most probably leading
to considerable variations in improvements of NUE between
genotypes. We propose breeding programs that select genotypes
under sub-optimal N as a way to increase NUE under
these conditions and to substantially reduce N losses to the
environment (c.f. Perchlik and Tegeder, 2018). Genetic gains
could be accelerated with marker assisted selection, genomic
selection, and gene editing technologies (Mandal et al., 2018;
Raghuram and Sharma, 2019). New phenotyping technologies
will need to be incorporated, also, to increase the number
of lines evaluated and to improve precision of measurements
to maximize selection pressure. A promising method in the
context of N would be the use of unmanned aerial vehicles
(UAVs) that can estimate biomass, height, chlorophyll content,

and yield throughout the growth season. Using high-throughput
phenotyping with UAVs to select for both N status and plant mass
on greatly expanded breeding populations in low-input fields has
substantial promise for quick gains.

Frontiers of plant breeding for NUE will include
perennialization of agriculture using crop rotations, mixed
crops, and perennial species. The perennial grain crop
intermediate wheatgrass (popular as Kernza R©) was shown
to decrease N leaching substantially compared to maize, for
example (Jungers et al., 2019), because roots are already in place
when soil N mineralization proceeds as soils warm in the spring.
Introgression of wild perenniality traits may be possible through
the creation of interspecies hybrids, such as in sorghum (Foster
et al., 2020). Seeding summer annuals like maize into perennial
covers can have similar effects, but the agronomic management
is difficult. Synchronizing crop demand with soil N availability
(discussed above) can be partially accomplished through plant
phenology, like stay-green, and also increased early vigor even in
hot or cold planting conditions. Therefore, advances in breeding
for perennial crops or for polycultures of annual crops within
perennial systems could have substantial impact on the NUE of
cropping systems.

Knowledge Integration With Cropping
Systems Models
Next-generation computational frameworks can examine
the complex N interactions in crop systems to inform
management, prioritize research, and increase understanding
of the complexities. These computational frameworks include
statistical models, process-based mechanistic simulation models,
and hybrids of the two (Jones et al., 2017; Morris et al., 2018).
Such decision-support tools explore all facets of N in the
soil-crop interface—from gene expression, crop physiology,
and phenology to soil processes and predictions of N behavior.
For example, cropping systems modeling frameworks (e.g.,
APSIM, DSSAT, etc.) consider critical N concentration for crop
growth in the context of genetic, environment, and management
factors (G×E×M) that control interactions among soil N
availability, crop phenology, and crop N partitioning and yield
(Holzworth et al., 2014), including BNF (Chen et al., 2014).
Cropping systems models are integrated assemblies of individual
component models that address specific biophysical components
(e.g., water balance, crop growth and soil Nmineralization). They
can be used to develop hypotheses, test hypotheses, and generate
management-focused decision support tools that improve
productivity, profitability, and environmental quality. Although
statistical models are relatively easy-to-use and well-suited for
decision support tools, unlike process-based models, they cannot
extrapolate beyond the G×E×M context in which they were
developed. Hence, they cannot predict the response of NUE
to unobserved combinations of G×E×M. Yet, such capacity is
critical for two reasons. First, experiments alone are insufficient
to address the many potential G×E×M combinations that arise
from interactions between farmer decisions and weather. In a
given field and year, cropping systems outcomes result from
billions of potential combinations of hundreds of variables.
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Some of these are chosen by the farmer (e.g., cultivar, planting
date, soil and N fertilizer management) while others are subject
to variations in weather and climate. Second, new N fertilizer
and cropping systems management strategies may be addressed
in silico, to increase the efficiency of field experiments and to
prioritize research based on sensitivity analysis that reveals
scenarios with major impact. Simultaneously, field experiments
will find and fill knowledge gaps of the models.

THE PATH FORWARD

Historically, NUE in agricultural systems has shifted from
high NUE in low-input, low-output systems through low
NUE in high-input, high-output systems, to moderate NUE
in moderate-input, high-output systems (Zhang et al., 2015).
In fact, some existing low-input, low-output systems, e.g.,
in Benin, exhibit NUE >1, signifying net N extraction and
soil fertility decline (Lassaletta et al., 2014). While many
countries experience a dramatic decline in agricultural NUE
as N fertilizers are adopted and overused (e.g., NUE in China
fell below 0.3), it has been argued that this is not inevitable
and that countries experiencing a downward trend in NUE
could learn from those that have been able to “bend” their
NUE curve toward higher NUE (>0.6 in the USA and France),
through government policy, education, careful management,
etc. (Zhang et al., 2015).

As the historical trajectory shows, simply increasing NUE
alone will not be adequate if it leads to low-output systems and
food insecurity amongst the growing world population. Thus,
we are faced with a complex, multi-objective problem, which is
further complicated by dynamic economic and environmental
factors. Profitability can be relatively insensitive to N fertilizer
rate. For example, in Midwest US maize, budgets based on
return on investment to N fertilizer (i.e., the ratio of the
cost of N fertilizer and return on grain) demonstrate that the
economic optimum N rate varies by as much as 50 kg N ha−1

based only on realistic differences in N fertilizer: grain price
ratios (e.g., 0.05–0.20; Camberato et al., 2017). Fifty kg N ha−1

is ∼30% of the mean economic optimum N rate for these
systems. Hence, while there is economic incentive to optimize
N fertilizer rates, the optimum N rate is highly dependent
on grain and fertilizer markets. Together, these challenges
demand a robust, interdisciplinary approach to increase NUE
using multi-objective optimization that considers social and
biophysical sciences.

Multi-objective optimization is a computational framework
that searches for optimal solutions and takes into account trade-
offs among potentially-conflicting objectives, such as minimizing
N inputs while maximizing outputs. Such trade-offs are captured
by cropping systems simulations, which are powerful integrators
for using multi-objective optimization techniques. While the
simulations could be used only to maximize the NUE ratio,
instead yield and economics can be maximized and N losses
minimized simultaneously. Multi-objective methods have been
used to optimize parametrization of a maize system simulation

to match empirical results (Harrison et al., 2019), but could
also be applied to optimize the objectives for NUE. At the
regional scale, these optimization methods have been used to
allocate rainfed and irrigation areas in order to maximize yield
and minimize environmental impact (Galán-Martín et al., 2017),
so similar concepts could be used to maximize NUE across
regions or the globe. Trade-offs in objectives have also been
identified in crop breeding, such as between total grain yield
and concentration of N in grain, but recent work with multi-
trait genomic selection offers a path forward (Moeinizade et al.,
2020). Therefore, we propose that explicit consideration of
multiple objectives in optimization frameworks is crucial for
future progress to increase NUE while meeting food security and
economic needs.

CONCLUSION

Ultimately, improved management options for agricultural
producers will help to bend the NUE curve more quickly
to higher NUE for responsible use of N in agriculture. We
have described opportunities to increase agricultural NUE
through R&D in several areas: agronomy, plant breeding,
biological N fixation, and soil N cycling. Maximal impact R&D
will likely involve advances in all these areas, although we
anticipate that short-term impacts (within 5–10 years) will
result from advances in agronomy, decision support tools,
and greater use of existing legume cultivars; followed in the
medium-term (10-20 years) by improved cereal and other
crop varieties, selected specifically for high NUE traits, and
more-effective microbes; and in the long-term (>20 years)
by entirely new N fixing symbioses in plants or plants
engineered to fix N without bacterial partners (Figure 2). Of
course, the risks associated with some of the long-term R&D
opportunities described above are relatively high, as are the
potential returns (Table 1). This research roadmap for improving
NUE along with the risk-reward matrix will be useful to
policy makers when deciding how to address these pressing
global challenges.

Finally, we recognize that achieving responsible use of N
for food security and environmental health requires more than
technical solutions to biophysical problems. Ultimately, the
problem stems from society and the solution must involve the
social dimension. This includes expanding the farming objectives
from the primary focus on production-for-profit, which of course
is essential for livelihoods, to include stewardship-of-the-land
and surrounding environment, which is crucial for sustainability
of agriculture and society. Understanding what motivates
individuals and societies will help to develop educational and
other activities to remove barriers to the responsible use of N
in agriculture.
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