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We compare farm level efficiency rankings derived from non-spatial and a variety of

spatial model specifications that account for unobserved heterogeneity in both the

production and the efficiency sides of the stochastic frontier model in an empirical

application on rice farming in the Philippines. We show how not accounting for

unobserved spatial heterogeneity affects efficiency estimates and farm efficiency

rankings. When not accounting for unobserved spatial heterogeneity efficiency, models

show farms to be relatively more inefficient than they actually are (i.e., once unobserved

spatial heterogeneity is incorporated in the models). More importantly from a policy

perspective, the rankings of the farms in terms of efficiency are altered once unobserved

spatial heterogeneity is incorporated in efficiency models. We recommend the use

of unobserved effects in both production and efficiency within the stochastic frontier

analysis framework to avoid making any misleading recommendations to farmers

and policymakers.

Keywords: spatial dependency, Bayesian approach, technical efficiency, rice farming, unobserved heterogeneity

INTRODUCTION

Agriculture in developing countries is challenged by a growing scarcity of resources, which
imposes the need for efficient resource allocation to increase productivity. The Asian rice
production sector is a particular example where decision for input allocation is critical in the
midst of growing resource scarcity and the need for improving productivity to ensure food
security. There is growing literature devoted to the analysis of farmers’ technical efficiency in
developing countries using a stochastic frontier analysis approach (Idiong, 2007; Balde et al.,
2014; Quilty et al., 2014; Michler and Shively, 2015, etc.). However, most of the technical
efficiency literature has ignored unobserved spatial heterogeneity. Neglecting unobserved spatial
heterogeneity in technical efficiency analysis may lead to coefficients that are inefficient or
biased (Anselin, 2001). In agriculture, unobserved spatial heterogeneity can arise from farmers
emulating each other, level of infrastructure, or climatic and topographic conditions (Areal et al.,
2012a). In some cases, spatial information can be incorporated into the analysis combining
the use of different data sources including climatic and topographic maps and location of
farms. For instance, Gadanakis and Areal (2020) show how incorporating rainfall and the
length of the growing season in the technical efficiency analysis of cereal production matters.
However, incorporating information on social interaction is more challenging. There are several
reasons why farm and household level networks may influence technical efficiency. Farmers
may emulate each other because they may receive the support of agricultural extension
agents in farming communities. However, there is overwhelming evidence that farmers still
rely on their social networks for information on input allocation, management practices,
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etc. (Case, 1992; Foster and Rosenzweig, 1996; Bandiera and
Rasul, 2006; Langyintuo and Mekuria, 2008; Conley and Udry,
2010; Maertens and Barrett, 2012; Banerjee et al., 2013; Ward
and Pede, 2014; Nakano et al., 2018). In this regard, farmers
who belong to the same agro-ecological system and share a
common resource pool depend on the regulations set within
the resource pool for their farming management. For farmers
in irrigated areas who share water within a water users’ group,
this kind of dependency may emerge more strongly among
them as compared to the rainfed farmers who farm more
independently. Lastly, farmers who belong to the same water
users’ group in irrigated areas may face similar institutional
shocks and regulations. Notably, they may have formed similar
social preferences through collective irrigation management
(Ostrom, 2000; Tsusaka et al., 2015). In this manner, farm-
level spatial dependency may arise though socio-economic, agro-
climatic, or institutional similarities and could influence farmers’
technical efficiency.

New developments in the field of spatial econometrics have
made it possible to examine the spatial effects in the stochastic
frontier analysis (SFA) (Areal et al., 2012a; Glass et al., 2013,
2014; Tsionas and Michaelides, 2015). While the effects of not
incorporating spatial dependency in terms of inefficiency or
the stochastic production frontier on SFA results have been
shown (Carvalho, 2018; Pede et al., 2018; Tsukamoto, 2019)
and a way to incorporate spatial correlation in both the noise
and inefficiency terms has been developed by Orea and Álvarez
(2019), there are no clear model specification strategies on where
and how the spatial dependency should be modeled. Using
an empirical application on rice farming survey data in the
Philippines, we compare the distribution of farm level efficiency
in four alternative models to illustrate what strategy could be
used: (1) non-spatial model, (2) spatial model where the spatial
dependency is only modeled in the output Y (SAR model), (3)
spatial model where the spatial dependency is only modeled in
the errors [as in Areal et al. (2012a) and Pede et al. (2018)], and
(4) 2 and 3 combined (SARARmodel) (Billé et al., 2018). Model 2
(SAR) captures latent influences associated with production (e.g.,
unobserved climatic conditions of the farm neighborhood and
soil characteristics). Model 3 captures spatial effects associated
with efficiency, and Model 4 (SARAR) separates these spatial
dependencies into those associated with factors outside the
control of the farmer (i.e., spatial dependencies between farm
productions that are not production inputs) and those associated
purely with management of the farm (managerial practices
or sharing of information, for example). Results show the
implications using each of the models on efficiency scores on
management and policy recommendations.

MATERIALS AND METHODS

We use panel data collected by the International Rice Research
Institute (IRRI) during four consecutive rice seasons from
2009 to 2011 in the Bohol province in the Philippines from
496 rice farmers with farms within a relatively close distance
(maximum distance between farms is approximately 13 km); 205

and 291 observations are from rainfed and irrigated ecosystems,
respectively. A thorough description of the survey questionnaire
is available in JICA (2012). Descriptive statistics of farms and
household characteristics were presented in Tsusaka et al. (2015)
and Pede et al. (2018). The short distance between farms
allows capturing the effect of unobserved spatial heterogeneity,
including small networks of relatively close farmers (i.e., spatial
dependency associated with information sharing).

The SFA literature addressed the issue of unobserved
heterogeneity through panel estimators (Kumbhakar and Lovell,
2000). We follow and expand a one-step Bayesian procedure
described in Areal et al. (2012a) and applied by Pede et al.
(2018) to estimate models 2–4. We expand Pede et al. (2018) by
considering the SARAR model (model 4 below) and examining
the impact of model selection on farm level efficiency rankings.
We specify the non-spatial model as follows:

Model 1 : yit = xitβ + zitθ + pitψ + υit − ui (1)

where yit is the production of farm i for i = 1,. . . ,N at season t
for t = 1,. . . ,T; xit is the (1×K) vector of inputs of production
(seed –kg-, plot size –ha-, labor –man-days-, fertilizer –kg- and
capital –PHP-)1 and its combinations for farm i at season t
following a translog functional form for the production function
(i.e., x is in logarithmic form); zit is a 1×M vector of M non-
stochastic environmental variables for farm i at season t that
includes farmer’s level of education, household size, household
head being a female, and remittance; pit is a 1×(T-1) vector for
T-1 dummy variables accounting for seasons 2–4; β, θ, and ψ

are unknown parameter vectors to be estimated; vit is a random
error; and ui is the farm inefficiency, which is assumed to be
constant across the seasons. Stacking all variables into matrices
we can describe the following spatial extensions of Model 1.

Model 2 :Y = WYγ + Xβ + Zθ + Pψ + ν − (u⊗1T). (2)

Model 3 :Y = Xβ + Zθ + Pψ + ν − (u⊗1T);

u = pWu+ ũ (3)

Model 4 :Y = WYγ + Xβ + Zθ + Pψ + ν − (u⊗1T);

u = pWu+ ũ (4)

whereW is a spatial row normalized weight matrix with diagonal
elements being zero, ensuring that all elements in the spatial
weight matrix W are non-negative and efficiency estimates
are in the unit interval (Kutlu, 2018; Kutlu et al., 2020a); γ

and ρ are spatial coefficients, assumed to be between 0 and
1, and associated with production and efficiency, respectively;
u and ũ are latent variables whose distributional form is
unknown. Different weight matrix specifications can be used,
and its selection is arbitrary (Areal et al., 2012a). We use
a distance-based N×N weight matrix W with elements wij

defined as:

wij = exp

(

−dij
2

s2

)

(5)

1The abbreviated units are defined as follow: kg, kilogram; ha, hectare; PHP,
Philipino Peso; km, kilometer.
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where wii = 0 precludes direct prediction of Y; dij is the distance
between farms i and j (in km); and s is the cut-off distance
around a given observation over which other observations are
likely to be dependent. Equation 5 represents this by showing an
inverse relationship between the spatial weighted matrix value
and distance between farms. The cut-off distance s indicates
the point at which this negative relationship is decreasing
relatively slowly. Since the cut-off point is unknown a priori, a
number of different cut-off points varying from 100 to 1,000m
are used (Areal et al., 2012a; Pede et al., 2018). The distance
between farms is the Euclidean distance calculated using the
plot coordinates.

We used a translog functional form for the
models estimated:

Model 1 : ln yit = β0 +

K
∑

k=1

βk ln xkit +
1

2

K
∑

k=1

J
∑

j=1

βkj ln xkit ln x
j
it

+ θ1Educationit + θ2HH_sizeit + θ3Genderit

+ θ4Remittanceit +
4
∑

l=2

ψl pl + υit − ui (6)

Model 2 : ln yit = β0 + γWyt +

K
∑

k=1

βk ln xkit

+
1

2

K
∑

k=1

J
∑

j=1

βkj ln x
k
it ln x

j
it + θ1Educationit

+ θ2HH_sizeit + θ3Genderit + θ4Remittanceit

+

4
∑

l=2

ψl pl + υit − ui (7)

Model 3 : ln yit = β0 +

K
∑

k=1

βk ln xkit +
1

2

K
∑

k=1

J
∑

j=1

βkj ln xkit ln x
j
it

+ θ1Educationit + θ2HH_sizeit + θ3Genderit

+ θ4Remittanceit +
4
∑

l=2

ψl pl + υit − ui; ui

= ρWu+ ũi (8)

Model 4 : ln yit = β0 + γWyt +

K
∑

k=1

βk ln xkit

+
1

2

K
∑

k=1

J
∑

j=1

βkj ln x
k
it ln x

j
it + θ1Educationit

+ θ2HH_sizeit + θ3Genderit + θ4Remittanceit

+

4
∑

l=2

ψl pl + υit − ui; ui = ρWu+ ũi (9)

We imposed monotonicity and concavity at the mean of the data
as well as inequality conditions required for inefficiency to be
non-negative. A Bayesian approach was used to estimate models
1–4. For model 1 we assume a normal distribution with mean
0T and covariance matrix h−1IT where h is the inverse of the
variance; xit are explanatory variables for individual i in period t;
vit and vjt are independent of one another for i 6= j; and ui and
vjt are independent of one another for all i and j. The conditional
likelihood function is proportional to a normal distribution:

p
(

y|β , h, u
)

∝ h
T
2 exp

[

−
h

2

(

y∗i − xiβ
)′ (

y∗i − xiβ
)

]

(10)

FIGURE 1 | Spatial dependence at different cut-off distances for model 2 in irrigated farms and rainfed farms.
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where y∗i =
(

yi + ui1T
)

. We complement the conditional
likelihood function with priors for β , h,µ−1

u , and u. We use
an independent normal-gamma prior for the coefficients in the
production frontier and the error precision (Koop, 2003). For
the inefficiencies, we use an exponential prior distribution of
p
(

ũi|µ
−1
u

)

∝ exp
(

−µ−1
u ũi

)

. The prior for µ−1
u is assumed

to be:

p
(

µ−1
u

)

∼ Gamma

(

N + 1
∑N

i=1 ũi − ln (r∗)
, 2N + 2

)

(11)

where r∗ is the median of the prior distribution. Model 2

differs from model 1 by adding Wy as an explanatory variable
to the production function. The conditional likelihood function
is proportional to a normal distribution:

p
(

y|β , h,µ−1
u , ρ, u

)

∝ h
T
2 exp

[

−
h

2

(

y∗i − γWy− xiβ
)′

(

y∗i − γWy− xiβ

)]

(12)

with the prior for γ following a normal-gamma distribution.
We follow the Bayesian approach used by Areal et al. (2012a)
and Pede et al. (2018) to estimate Model 3. Model 4 is an
extension of model 3 where we addWy as an explanatory variable
to the production function. The conditional posteriors are
obtained from the joint posterior distribution p

(

β , h, ρ,µ−1
u , u|y

)

that includes an indicator function I (ρ ∈ [0, 1]) where I(·) =
1 is ρ ∈ [0, 1] and I(·) = 0 otherwise. The conditional
posterior for ũi in model 3 and 4 (making Wy part of

x in the production side and γ part of the vector β , for
simplification) is:

p
(

ũi|β , h,µ
−1
u , y, ρ

)

∝ exp

[

−hT

2

[

ui −

(

x̄iβ − ȳi +
µ−1
u

Th

)

+

(

ũi − ui

)

µ−1
u

]]

(13)

where x̄i =
T
∑

t=1

xit
T and ȳi =

T
∑

t=1

yit
T . As pointed out by Areal et al.

(2012a), this is not a recognizable form and Metropolis-Hastings
algorithm is used (Metropolis et al., 1953; Hastings, 1970). We
refer interested readers to Areal et al. (2012a) and Pede et al.
(2018) for further details on the Bayesian approach used.

Once farm level estimates for u are obtained, farm level
efficiencies are usually calculated as exp (−ui). However,
in SAR models efficiency estimates need to be corrected
(Glass et al., 2016; Kutlu, 2018). There are two approaches
to obtain the corrected farm efficiency levels that can be
followed. Glass et al. (2016) proposed to calculate the corrected
farm efficiency level as (IN − ρW)−1ut whereas Kutlu (2018)
proposed (IN − ρW)−1exp (−ut), with the former, as pointed
out by Kutlu (2018), potentially sensitive to outliers. Therefore,
we use the approach proposed by Kutlu (2018) to calculate the
corrected farm level efficiency levels.

RESULTS

Figures 1–4 show the mean estimate for the spatial parameters
γ and ρ for the different models analyzed, which capture
unobserved spatial heterogeneity associated with production
and efficiency respectively, at different cut-off distances between

FIGURE 2 | Spatial dependence at different cut-off distances for model 3 in irrigated farms and rainfed farms.
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100m and 1,000m. Results show a decrease in unobserved spatial
heterogeneity associated with production, γ, and efficiency, ρ,
respectively as the cut-off distance increases.

For Model 2, where the spatial dependency is only modeled
in the output Y (SAR model), at 100m the spatial dependence
parameter associated with rice production γ is 0.017 and 0.040
for irrigated and rainfed farms, respectively (see Table 1 with

results). Comparing the posterior conditional distributions for
γ for rainfed and irrigated farms shows that the probability of
spatial dependence parameter associated with rice production γ

(100m) being greater in rainfed than irrigated farms is 95%. The
higher spatial dependency found in rainfed farms may be due
to similar climatic characteristics at neighborhood levels being
more important for rainfed farms in determining rice production

FIGURE 3 | Spatial dependence in the output (γ ) at different cut-off distances for model 4 in irrigated farms and rainfed farms.

FIGURE 4 | Spatial dependence in the output (ρ) at different cut-off distances for model 4 in irrigated farms and rainfed farms.
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TABLE 1 | Spatial dependence parameters at different cut-off distances for models 2, 3, and 4 in irrigated farms and rainfed farms.

Distance (m) Model 2 Model 3 Model 4

γ ρ γ ρ

Irrigated farms

100 0.017 (0.001, 0.050) 0.225 (0.014, 0.577) 0.020 (0.001, 0.048) 0.226 (0.014, 0.606)

200 0.011 (0.001, 0.030) 0.093 (0.005, 0.228) 0.016 (0.001, 0.039) 0.099 (0.006, 0.239)

300 0.009 (0.000, 0.021) 0.056 (0.003, 0.129) 0.013 (0.001, 0.030) 0.067 (0.005, 0.157)

400 0.007 (0.000, 0.015) 0.042 (0.003, 0.094) 0.011 (0.001, 0.024) 0.053 (0.005, 0.111)

500 0.005 (0.000, 0.012) 0.034 (0.002, 0.072) 0.011 (0.001, 0.027) 0.048 (0.004, 0.094)

600 0.004 (0.000, 0.009) 0.029 (0.002, 0.059) 0.008 (0.001, 0.018) 0.037 (0.004, 0.067)

700 0.003 (0.000, 0.007) 0.022 (0.002, 0.045) 0.009 (0.001, 0.020) 0.035 (0.008, 0.055)

800 0.002 (0.000, 0.006) 0.019 (0.001, 0.038) 0.009 (0.001, 0.023) 0.034 (0.006, 0.051)

900 0.002 (0.000, 0.005) 0.016 (0.001, 0.032) 0.008 (0.001, 0.019) 0.027 (0.004, 0.042)

1,000 0.002 (0.000, 0.004) 0.014 (0.001, 0.028) 0.006 (0.001, 0.013) 0.022 (0.005, 0.033)

Rainfed farms

100 0.040 (0.003, 0.088) 0.147 (0.009, 0.363) 0.047 (0.006, 0.097) 0.152 (0.011, 0.370)

200 0.023 (0.003, 0.046) 0.068 (0.003, 0.163) 0.029 (0.005, 0.055) 0.066 (0.005, 0.174)

300 0.012 (0.001, 0.026) 0.040 (0.002, 0.098) 0.016 (0.002, 0.032) 0.046 (0.002, 0.107)

400 0.007 (0.000, 0.016) 0.027 (0.001, 0.066) 0.010 (0.001, 0.021) 0.032 (0.002, 0.075)

500 0.005 (0.000, 0.009) 0.020 (0.001, 0.049) 0.007 (0.000, 0.016) 0.024 (0.001, 0.061)

600 0.003 (0.000, 0.008) 0.016 (0.001, 0.039) 0.005 (0.000, 0.013) 0.019 (0.001, 0.050)

700 0.002 (0.000, 0.006) 0.012 (0.001, 0.031) 0.004 (0.000, 0.010) 0.015 (0.001, 0.038)

800 0.002 (0.000, 0.005) 0.010 (0.001, 0.025) 0.004 (0.000, 0.010) 0.014 (0.001, 0.035)

900 0.002 (0.000, 0.004) 0.009 (0.000, 0.023) 0.003 (0.000, 0.008) 0.012 (0.001, 0.030)

1,000 0.002 (0.000, 0.004) 0.008 (0.000, 0.019) 0.003 (0.000, 0.009) 0.012 (0.001, 0.028)

FIGURE 5 | Model 2 vs. non spatial: Farm technical efficiency distribution for rainfed farms at different cut-off distances.

than it is for irrigated farms. Hence, accounting for such
unobserved heterogeneity is relatively more important in rainfed
farms, although their absolute effect in production estimation
may be small. We also found evidence of spatial homogeneity

being present in the efficiency part of the stochastic frontier
(e.g., neighboring farmers conducting similar management
practices by sharing information), captured by ρ in model
3. This spatial dependency effect was found to be relatively
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FIGURE 6 | Model 2 vs. non spatial: Farm technical efficiency distribution for irrigated farms at different cut-off distances.

FIGURE 7 | Model 3 vs. non spatial: Farm technical efficiency distribution for rainfed farms at different cut-off distances.

higher in irrigated than rainfed farms. Comparing the posterior
conditional distributions for γ (100m) for rainfed and irrigated
farms shows that the probability of spatial dependence parameter
associated with rice production γ being greater in irrigated than
rainfed farms is 92%. This is expected since irrigated farmers
do work more closely than rainfed farmers do. Farmers in
irrigated areas share water within a water users’ group under
similar institutional shocks and regulations, forming similar

social preferences through collective irrigation management (see
Ostrom, 2000; Tsusaka et al., 2015). This creates a relatively
stronger spatial dependency for them than for rainfed farmers
who farm more independently.

Table 1 shows the results for the estimates for spatial
parameters γ and ρ, which capture unobserved spatial
heterogeneity associated with production and efficiency,
respectively. Results comprise the mean of the coefficient and the
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FIGURE 8 | Model 3 vs. non spatial: Farm technical efficiency distribution for irrigated farms at different cut-off distances.

FIGURE 9 | Model 4 vs. non spatial: Farm technical efficiency distribution for rainfed farms at different cut-off distances.

95% coverage posterior region in brackets. The interpretation
of the Bayesian 95% coverage posterior (a, b) is that, according
to our data and model, the parameter is between a and b with a
0.95 probability.

Figures 5, 6 show the technical efficiency distribution (Kernel
density) for the non-spatial model and the spatial Model 2 at
different distances for rainfed and irrigated farms, respectively.
Modeling the spatial dependency in the output shifts the

efficiency distribution of rainfed farms to the right, which
indicates the presence of spatial homogeneity for rainfed farms
at 100m distance. However, accounting for spatial dependency
in the output of irrigated farms does not significantly alter the
farm efficiency distribution from the one obtained by the non-
spatial model. Accounting for spatial dependency in irrigated rice
production does not influence the efficiency results. This result
is due to the spatial dependency found (i.e., unobserved spatial
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FIGURE 10 | Model 4 vs. non spatial: Farm technical efficiency distribution for irrigated farms at different cut-off distances.

FIGURE 11 | Technical efficiency ranking differences of models 2–4 compared to Model 1 for rainfed farms.

heterogeneity associated with rice production) being relatively
small. The reason for it is that unobserved conditions that may
affect irrigated rice production may not vary much within 100m
(also note that farms are located in a relatively close proximity
with maximum distance between farms being 13 km).

Figures 7, 8 show the farm technical efficiency distribution
(Kernel density) for the non-spatial model and the spatial
Model 3 for rainfed and irrigated farms at different cut-
off distances from 100 to 1,000m. The figures show results

obtained from the non-spatial model and the spatial Model 3
that accounts for unobserved spatial heterogeneity associated
with farm technical efficiency for rainfed and irrigated farms,
respectively. Accounting for spatial dependency in the efficiency
term shifts the efficiency distribution to the right, meaning that
part of the inefficiency found in the non-spatial model is due
to unobserved spatial homogeneity. In this case the estimated
parameter capturing spatial homogeneity present, ρ, which
may capture neighboring farmers sharing information about
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FIGURE 12 | Technical efficiency ranking differences of models 2–4 compared to Model 1 for irrigated farms.

management practices, has a bigger incidence in the technical
efficiency estimation than unobserved spatial heterogeneity
associated with production, γ.

Figures 9, 10 show the farm technical efficiency distribution
for rainfed and irrigated farms at different cut-off distances
from 100 to 1,000m for the non-spatial model and Model 4.
The figures show that controlling for both unobserved factors
affecting production (e.g., climatic and soil characteristics) and
efficiency, such as managerial aspects (e.g., farmers sharing of
information), also shift the technical efficiency distribution to the
right. In this case, we obtain close but slightly higher estimates
for both the spatial dependence parameter associated with rice
production γ and spatial dependence parameter associated with
rice production efficiency ρ than when using models 2 and 3
where these are estimated separately.

As pointed by Areal et al. (2012b) and Areal et al. (2018)
it is important to investigate the differences in farms’ rankings
between the different models used. Once the functional form of
the frontier has been altered (e.g., by incorporating previously
omitted information such as spatial information) individual
efficiency results may well change. Figures 11 and 12 show kernel
densities for the change in rankings for the rainfed and irrigated
farm models studied, respectively. We found that for rainfed
farms the ranking of farms varies on average five positions when
using Model 2 and 4 positions for Model 3 at 100m cut-off
distance, as opposed to Model 1 (non-spatial) with some farms
ranking varying up to 60 ranking positions. Using Model 4
makes these ranking differences wider. The average variation
in ranking is over 9 positions, with some farms varying up
to 71 positions.

For irrigated farms we find that there is less variation in the
changes in ranking of farms for Model 2 compared with rainfed

farms but more variation for Model 3 and Model 4, with 25
farms changing more than 20 positions and one farm dropping
99 ranking positions under Model 4.

DISCUSSION

Accounting for spatial dependency in SFA avoids biases
associated with neglecting information on spatial unobserved
heterogeneity. Importantly, spatial dependency may arise from
both the production and the efficiency side of SF models;
therefore, the use of flexible models which take both into account
is recommended. Usually crucial information on climatic,
topographic, soil, and social conditions are disregarded in
efficiency analysis studies. Rarely is this information included
in farm production surveys. Sometimes, relevant information
such as climatic data can be collected from different data
sources and combined with production information at the farm
level using geographical information. However, some other
information may be more difficult to obtain or be unavailable
(e.g., information on whether information is shared between
farmers). Hence, incorporating spatial dependency is especially
important to control for any unobserved spatial heterogeneity
that may be present.

We have shown the need for incorporating unobserved
spatial heterogeneity into the production and efficiency side
of stochastic frontier analysis. We have used these models
to show a case were the researcher faces uncertainty about
the model to use. Of course, a number of alternative models
are possible depending on how much information there is
about the nature of the spatial effects and how the spatial
effects are specified. For instance, we could specify the
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spatial effects in a model in a way that captures neighbor
externalities [a spatial lag of X model (SLX)], where the
output is associated with the average of neighboring inputs.
Another important issue worth pointing out is the choice of
specification for the spatial weight matrix W, which defines
the spatial relations between the farms. Spatial weight matrices
can be categorized into three main groups: distance-based (as
the one used here) spatial weight matrices, boundaries-based
spatial weight matrices, and combined distance-boundaries-
based spatial weight matrices. Since spatial relations are
unknown, a priori research must make assumptions about them.
These are often limited by the type of information on the
geographical location of farms (e.g., coordinates, district, region).
Importantly, as found by Areal et al. (2012a), the way in which
the connectivity matrix is specified may have an impact on the
levels of efficiency obtained and this needs to be acknowledged
and/or tested (e.g., by using different specifications for the
connectivity matrix).

We showed how neglecting unobserved spatial heterogeneity
can have important effects on (a) how a sector can be categorized
in terms of its level of efficiency and (b) how farms can
be wrongly targeted for policy support. Regarding the effect
on how a sector can be categorized in terms of its level of
efficiency, not accounting for unobserved spatial heterogeneity
efficiency may lead to wrongly concluding that farms are
relatively more inefficient than they actually are. This may have
broad implications if a particular sector (e.g., rice producers) is
considered to be inefficient and therefore resources are allocated
to it through policy action (e.g., financial support). Wrongly
targeting farms for policy support is a consequence of the effect
that not accounting for spatial unobserved effects may have on
farm technical efficiency rankings. The fact that the ranking of
farms varies once new relevant information is incorporated into
the efficiency analysis is important from a policy perspective.
For instance, this is relevant in cases where policymakers
need to identify farms in need of support. Identification of
farms in need of support using efficiency models that do not
account for unobserved spatial heterogeneity (at least) may lead
to targeting the wrong farms. We advocate for incorporating
both spatial unobserved effects in production and efficiency in
SFA to avoid any negative implications for efficiency analysis
and any recommendation to farmers and policymakers derived
from them.

It is worth pointing out that we have focused on the effects
of neglecting unobserved spatial heterogeneity in SFA models,
but other types of heterogeneity (non-spatially dependent) may
be present and are also important to account for in SFA models.
In this regard, SFA model extensions to account for unobserved
heterogeneity, endogeneity, time-varying inefficiency, and time-
invariant individual effects have been developed (Greene,
2005a,b; Wang and Ho, 2010; Kutlu and Tran, 2019; Kutlu et al.,
2020b). Also, here we assumed inputs are exogenous variables
in the SFA models and control for endogeneity derived from
omitted/not available explanatory variables to capture spatially

dependent latent influences. However, endogeneity may occur
when there is non-spatially dependent correlation between the
inputs and statistical noise or inefficiency. Recent literature
about heterogeneity and endogeneity in SFA has developed other
ways to account for these issues (Amsler et al., 2016; Lai and
Kumbhakar, 2018; Kutlu and Tran, 2019).

Finally, taking into consideration the issues highlighted
above, we advocate for future model developments focusing on
integrating approaches to account for both unobserved spatial
and non-spatial heterogeneity and endogeneity.
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