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Aging is amultifaceted process that is associated with progressive, lethal, and unalterable

changes like damage to different molecules (DNA, proteins, and lipids), cells, tissues,

and organs. It is an inevitable process but can be delayed by both genetic and dietary

interventions. Besides aging, premature death and age-associated diseases can be dealt

with diet regulation and the use of compounds that inhibit the stress responsiveness or

promote the damage repair signaling pathways. Natural compounds offer a repertoire of

highly diverse structural scaffolds that can offer hopeful candidate chemical entities with

antiaging potential. One such source of natural compounds is millets, which are minor

cereals with an abundance of high fiber, methionine, calcium, iron, polyphenols, and

secondary metabolites, responsible for numerous potential health benefits. The present

review article elucidates the nature and significance of different phytochemicals derived

from millets with a major focus on finger millet and highlights all the important studies

supporting their health benefits with special emphasis on the antiaging effect of these

compounds. The present article also proposes the possible mechanisms through which

millets can play a significant role in the suppression of aging processes and aging-related

diseases by influencing genetic repair, protein glycation, and stress-responsive pathways.

We further discuss well-established natural compounds for their use as antiaging drugs

and recommend raising awareness for designing novel formulations/combinations from

them so that their maximum antiaging potential can be harnessed for the benefit

of mankind.

Keywords: aging, antioxidant, bioactive compounds, millets, natural products, phytochemicals

INTRODUCTION

In the past few decades, there is a tremendous growth in research work connoting that certainmajor
component in diet influence aging and associated age-related diseases. These dietary components
include a myriad of constituents like fiber for the glycemic index in diabetes, vegetables, and
fruits for cardiovascular disease, certain fats (saturated, polyunsaturated, and trans fatty acids) for
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cardiovascular disease, and vitamin D and calcium for
osteoporosis and bone fracture (Everitt et al., 2006) and
many more. With increasing public awareness for the wellness
of health considering nutrition as a major role-playing factor,
phytochemicals such as polyphenols and dietary fiber have gained
popularity for their innumerable health beneficial properties.
Several crops like millets are known for their numerous health
benefits attributed to their dietary fiber and polyphenol content
(Taylor, 2017).

Aging is often a major risk factor associated with non-
communicable chronic diseases (NCDs) like cardiovascular
disease, type II diabetes, certain cancers, obstructive pulmonary
disease, osteoporosis, dementia, etc. (Shlisky et al., 2017). It
is a complex multifaceted process, and many theories have
been proposed to explain it. These theories include the free
radical theory of aging which was later modified to the
mitochondrial theory of aging by Harman (1972), the telomere
shortening theory as proposed by Lu and Liu (2010), and the
protein translational modification theory as proposed by Santos
and Lindner (2017). Dietary components such as antioxidants
and protein-modifying compounds influence different aspects
as proposed in these theories and help delay and in cases
overcome aging. Ribarič (2012) have described the epigenetic
modifications by dietary factors which include direct effect
on gene expression by influencing DNA methylation, histone
modification, activation of nuclear receptors by ligands, and
through modification of membrane receptor signaling cascades.
Furthermore, the influence of caloric restriction on aging
was reviewed in the above article with increasing clarity on
molecular pathways like the mammalian target of rapamycin
(mTOR), sirtuin pathway, and insulin/insulin-like growth factor
signaling (IIS) cascades which are all involved in aging (Altintas
et al., 2016; Chen et al., 2020; Yu et al., 2021). How these
pathways are influenced by dietary components have helped us
in establishing the major impact of dietary components on the
aging process.

Millets are considered to have immense significance because
of their nutritional and nutraceutical potential. Millets are
an abundant source of minerals, dietary fibers, and phenolic
compounds and offer health benefits such as antimicrobial,
antidiabetic, anticancerous, antiartherosclerogenic effects,
antioxidant, and antiaging properties (Yang et al., 2012; Si
and Liu, 2014; Kumar et al., 2016). Among different types of
millets, finger millet is known to possess almost the highest
nutritional value (Taylor, 2017). In the recent past, various
studies have also reported the preliminary antiaging effect
of millet grains, mainly the finger millet (Hegde et al., 2002;
Dykes and Rooney, 2006; Shobana et al., 2010; Zhang et al.,
2011; Kakkar and Bais, 2014; Khan et al., 2015; Pei et al.,
2016).

The present review covers the nutritional and phytochemical
composition of finger millet and how they influence
aging and age-related disorders. We further discuss well-
established natural compounds for their use as antiaging
drugs and recommend raising awareness for designing novel
formulations/combinations from them so that their maximum
antiaging potential can be harnessed for the benefit of mankind.

MILLET: A WONDER GRAIN

Millet includes the grains from the diverse group of forage grasses
of the family Poaceae. They are considered “coarse cereals”
similar to sorghum mostly due to their grain texture, which
makes their processing as well as cooking inconvenient when
compared with rice and wheat (Rao et al., 2017; Hassan et al.,
2021). They are mainly grown in Asia and Africa and are in
cultivation in East Asia for the last 10,000 years (Bhat et al., 2018).
Millets produce small seed grains and are often cultivated as
cereals. Millets are characterized by their remarkable abilities to
survive in stress conditions, fairly resistant to pests and diseases,
and are widely adaptable. Millet grains can be stored for a long
duration during natural disasters such as famine (Obilana and
Manyasa, 2002; Adekunle, 2012; Yang et al., 2012; Kumar et al.,
2018).

India, several countries of Africa, and China produce the bulk
of the world’s millet crops. Several important millets grown in the
Asian andAfrican countries include barnyardmillet (Echinochloa
spp.), pearl millet (Pennisetum glaucum), foxtail millet (Setaria
italica), finger millet (Eleusine coracana), little millet (Panicum
sumatrense), kodo millet (Paspalum scrobiculatum), and proso
millet (Panicum miliaceum) (Rao et al., 2017). Whereas, Tef
(Eragrostic tef ) and Fonio (Digitaria exilis) are grown in Ethiopia,
Nigeria, Niger, Togo, Senegal, and Mali (Bhat et al., 2018). Most
millets are grown in different regions of the world from east to
west, which is evident from their colloquial names, foxtail millet
as Italian millet, proso as French millet, barnyard as Japanese
barnyard millet, indicating their growing region. Proso millet is
cultivated in the USA as well as in Russia and is a popular bird
feed in both countries, whereas foxtail millet is largely cultivated
in China and India. Millets are predominantly used for food
purposes in India as well as in other developing countries but are
mainly used as feed ingredients in developed countries.

Pearl millet is the most commonly grown species with large
grains and accounts for 40% of the world’s total millet production
(ICRISAT, 2007; Mariac et al., 2007). Except for sorghum and
pearl millet, all other millets are known as small or minor
millets (Obilana and Manyasa, 2002; ICRISAT, 2007; FAO, 2012)
(Figure 1). Fingermillet is mainly grown in Eastern and Southern
African countries (Uganda, Kenya, the Democratic Republic of
the Congo, Zimbabwe, Zambia, Sudan, Tanzania, Nigeria, and
Mozambique) and Southern Asia (mainly India and Nepal).

Nutritional Composition
The nutritional content of food is an important aspect for
the overall health and well-being of humans especially for
better health and development to maximize the human genetic
potential. Millets as food are a rich source of micronutrients
and phytochemicals (Hassan et al., 2021). In comparison with
main cereals like wheat, rice, sorghum, and maize, millets
possess a high nutritional value (Parameswaran and Sadasivam,
1994). Being an abundant source of nutrients especially minerals,
vitamins, dietary fiber, and phytochemicals, millets provide
numerous health benefits. They are nutritionally important as
they possess high calcium content (0.38%), roughage or dietary
fiber (18%), and phenolic compounds (0.3–3%) (Rao et al., 2017).
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FIGURE 1 | Major millets: (A) finger millet (Eleusine coracana), (B) foxtail millet (Setaria italica), (C) proso millet (Panicum miliaceum), (D) pearl millet (Pennisetum

glaucum), and (E) sorghum (Sorghum bicolor). Minor millets: (F) kodomillet (Paspalum scrobiculatum), (G) barnyard millet (Echinochola spp.), and (H) little millet

(Panicum sumatrense).

Apart from these, proteins found in millet are rich in essential
amino acids such as tryptophan, threonine, and sulfur-containing
amino acids excluding lysine and threonine. They have a high-fat
content in comparison with other cereals especially unsaturated
fatty acids (Nithiyanantham et al., 2019). The abundance of
phytochemicals and micronutrients of immense therapeutic
potential signifies the importance of all varieties of millets (Mal
et al., 2010; Singh et al., 2012). The average of the nutrient
composition of different millets is shown in Table 1.

Millets possess proteins ranging from 7 to 12%, carbohydrates
in the range of 65–75%, fat varying from 2 to 5%, and dietary
fiber in the range of 15–20%. Of the different millet varieties,
pearl millet is the richest in both protein (12–16%) and lipids
(4–6%). Millet proteins contain greater amounts of healthy rich
essential amino acids (Bhat et al., 2018; Shah et al., 2021).
Finger millet, for example, contains a distinctive amount of
sulfur-containing amino acids and is a better source of calcium
and several micronutrients and pyridoxine. Furthermore, millets
are rich in vitamin B complex. Due to the ample quantity
of these key nutrients, millets or millet-based products are
being used as food products (Subramanian and Viswanathan,
2007; Liu et al., 2012). On the other hand, millet proteins
are poor in lysine similar to other cereals, and hence need to
be complemented with lysine-enriched vegetables and animal
proteins. The major portion of dietary fiber is made up of
non-starch polysaccharides (95%), and they are present in seed
bran as well as endosperm. Traditionally prepared food items
from millets have been a major part of the food consumed
in Central America, Africa, and the Indian subcontinent. Most
traditional products are flour based, and these include pancakes
made from either fermented or unfermented dough, porridge
or mudde, snacks, deep-fried products, sweet or sour local

liquor, some non-alcoholic beverages, and decorticated grains,
prepared similar to rice by boiling (Taylor, 2017; Bhat et al.,
2018). Based on their nutritional components and henceforth
nutraceutical aspect, different types of millets are consumed
in different seasons of the year, conventionally. Almost all
of these millets are a good source of both soluble and
insoluble dietary fibers, which is contributed by both seed
coat as well as endosperm cell walls, unlike in rice, wherein
mostly the bran layers account for its dietary fiber content.
Since the dietary fiber component of the food offers several
physiological benefits including the health of the gastrointestinal
tract, millets could be gainfully utilized in the preparation of
functional and healthy foods for the target population. Along
with nutrition, bioactive compounds found in millets are also
recognized for their health beneficial effects, such as antioxidant,
antidiabetic, antiaging properties, etc. (Sripriya et al., 1997;
Kumari and Sumathi, 2002; Shobana et al., 2007; Banerjee
et al., 2012; Shahidi and Chandrasekara, 2013; Kumar et al.,
2016).

Natural Compounds
Phytochemicals obtained from millets are mostly secondary
metabolites with molecular weights ranging from 150 to
30,000 Da in size. Phenolic acids, flavonoids, and tannins
are the major polyphenols reported in different parts of the
millet grain (Rao and Muralikrishna, 2002; Sreeramulu et al.,
2009). Furthermore, it also consists of terpenes, betalians,
organosulfides, indoles/glucosinolates/sulfur compounds,
protein inhibitors, and other organic acids, along with dietary
fiber and phytates. Most millets possess colored coats and some
possess colored endosperm. Carotene constitutes the major
coloring pigment and hence several millet varieties are known
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TABLE 1 | Proximate nutrient composition and nutritive value of various millets (g/100 g db and mg/100 g db).

Variety Carbohydrate

(g)

Protein

(g)

Fat (g) Ash (g) Fiber (g) Ca (mg) Fe (mg) Zn (mg) Thiamin

(mg)

Riboflavin

(mg)

Niacin

(mg)

Energy

(kcal)

Sorghum 71 10.4 3.1 1.8 2.0 25 5.4 3.1 0.38 0.15 4.3 329

Finger millet 59–75 6.9–10.9 1.5 2.6 15.2 350 3.9 3.13 0.42 0.19 1.1 336

Kodo millet 72–76 6.2–13.1 3.2–4.9 3.3 5.2 35 1.7 1.9–2.4 0.15 0.09 2.0 353

Foxtail millet 55–69 11.2 4.0 3.3 9.4 31 2.8 2.92 0.59 0.11 3.2 351

Fonio millet 68–75 8.4 3.3 3.4 18.2 20 2.1 1.5 0.17 0.22 1.15 379

Little millet 76 15 4.5 5.4 2.5 17 9.3 5.25 0.30 0.09 3.2 329

Barnyard millet 74 11.0 5.2 4.5 13.6 22 18.6 3 0.33 0.10 4.2 300

Pearl millet 67–72 11.8 5.1 2.2 13.8 42 11.0 3.29 0.38 0.21 2.8 363

Proso millet 64–76 12.6 2.9–11.6 2.7 13.1 15 2.2 2.36 0.41 0.28 4.54 316

All values represent mean/range of reliable published data.

Source: Adapted from Taylor (2017), Serna-Saldivar and Espinosa-Ramírez (2018), Kumar et al. (2018), Selvi et al. (2015), Shankaramurthy and Somannavar (2019), and Renganathan

et al. (2020).

to have beta-carotene. Rich polyphenol content is responsible
for the antioxidant potential of millets. The gelatinization
temperature of the millet starch is slightly higher compared
with rice and wheat. It also differs from other cereal starches
concerning the crystallinity and the amylose and amylopectin
organization. Hence, millet-based diet/foods may digest slowly
compared with other cereal foods.

Polyphenols
Polyphenols are naturally occurring secondarymetabolites which
are generally characterized by the presence of multiple phenol
rings (Pandey and Rizvi, 2009; Manuja et al., 2013). Several
polyphenols have been detected from different plant species, and
a majority of them are derivatives of phenylalanine or another
precursor shikimic acid. Polyphenols are categorized on the
basis of the number of phenol rings and how these rings are
bound to each other. The major classes consist of phenolic acids
(derivatives of benzoic acid and cinnamic acid), flavonoids,
lignans, and stilbenes (Supplementary Figures S1, S2).
Polyphenols are abundant in millets and are one of the
most marketed dietary supplements (Ferguson, 2001). The finger
millet seed coat is abundant in polyphenols when compared with
many other kinds of cereal such as wheat, rice, barley, and maize
(Viswanath et al., 2009).

Phenolic Compounds
Grain phenolics can exist both as free, soluble forms as well as
insoluble bound forms. The majority of the phenolics found in
millet exist as glycosides, whereas ferulic acid is the major bound
phenolic acid (18.60 mg/100 g) and protocatechuic acid is the
major free phenolic acid (45.0mg/100 g) (Rao andMuralikrishna,
2002). The seed coat of finger millet is known to be rich in many
potent antioxidant phenolics mostly benzoic acid derivatives
(85%) such as gallic acid, protocatechuic acid, p-hydroxybenzoic
acid, vanillic acid, and syringic acid (Hegde et al., 2002; Rao and
Muralikrishna, 2003; Chandrasekara and Shahidi, 2010), whereas
the rest consists of either flavonoid like quercetin or cinnamic
acid derivatives such as trans-cinnamic acid, p-coumaric acid,
caffeic acid, and sinapic acid followed by condensed tannins

(Chethan andMalleshi, 2007; Shah et al., 2021). Apart from these
bound phenolic acids such as ferulic and p-coumaric acid are also
found in abundance in finger millet (Table 2).

Apart from these phenolics, direct infusion electrospray
ionization mass spectrometry (ESI MS) of the extract from seed
coat elucidated the presence of luteolin, naringenin, kaempferol,
phloroglucinol, apigenin, catechins, malic acid, epigallocatechins,
diadzein, and catechingallates (Shobana et al., 2009). Among
various millets studied, finger millet had the highest content of
≤300 µmol catechin equivalents/g of the defatted meal followed
by foxtail, little, pearl, and proso millets. Furthermore, finger
millet is the richest in condensed tannins (Dykes and Rooney,
2006). A recent report showed that finger millet varieties with
darker color from Northern Malawi had higher polyphenols
and antioxidant properties in comparison with the lighter ones.
It means that the dark-colored finger millet varieties have
greater potential for use as functional food ingredients as they
possess higher amounts of natural antioxidants than light-
colored varieties (Xiang et al., 2019).

Micronutrients
As the name suggests, micronutrients are required in very few
quantities for human health. However, micronutrient deficiency
and their imbalance cause various age-related diseases in
humans like obesity, diabetes, osteoporosis, etc. The minerals
and vitamins are called micronutrients. Worldwide, more than
2 billion people are suffering from one or other age-related
chronic micronutrient deficiencies (MNDs) whereas more than
800 million people are undernourished (Kumssa et al., 2015; Beal
et al., 2017). In millets, the mineral content range is from 1.7
to 4.3 g/100 g which is a comparatively higher side than that
of main cereals such as wheat (1.5%) and rice (0.6%). Minerals
play a chief role in structure and rigidity, muscular contractions,
formation of strong bones and teeth, oocyte activation, blood
clotting, oxygen transport, regulation of heartbeat, maintenance
of fluid balance, nerve signal transmission, etc. (Kulkarni et al.,
2018; Kumar et al., 2018). Calcium and iron deficiencies are
mainly observed in developing countries. A large number of
people are suffering from osteoporosis in India. The calcium
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TABLE 2 | Active ingredients of finger millet and their mechanism of action for enhancing the lifespan.

Active

ingredients/bioactive

peptides

Experimental

model

Efficacy Mechanism References

Dietary fiber, phytate, and

total phenolics of seed coat

matter of finger millet

Streptozotocin-

induced diabetes

model rat

Hypoglycaemic,

hypocholesterolaemic,

nephoprotective, and

delayed cataractogenesis

Reduced urinary glucose excretion,

regulation of postprandial glycemia,

reduced the lipid levels and

atherogenic index, reduce levels of

blood and urinary creatinine and

attenuated nephromegaly,

anticataractogenic property, lower the

levels of AGE, HbA1c, AR activity,

and lesser lenticular opacity

Shobana et al.,

2010

Diadzene, gallic, coumaric,

synringic, and vanillic acids

of finger millet

– Antioxidant activity Inhibition of oxidation of linoleic acid

and reduction of ferrous to ferric iron

Viswanath et al.

(2009)

Seed coat matter of black

finger millet

Streptozotocin-

induced diabetes

model rat

Antioxidative and

antidiabetic activity

Reduced the serum levels of alanine

transaminase (ALT), aspartate

transaminase (AST), and alkaline

phosphatase (ALP) and elevation in

catalase (CAT) and superoxide

dismutase (SOD) and lowered the

thiobarbituric acid reactive

substances (TBARS)

Okoyomoh et al.,

2013

Formulated finger millet Alloxan-induced

diabetes mellitus

model male Wistar

albino rats

Hypoglycaemic and

hypolipidemic properties

Lower the glucose level, cholesterol,

triglycerides, and low-density

lipoproteins (LDL)

Nadro and

Elkanah, 2017

Ferulic and cinnamic acids

of kodo millet

– Antioxidant activity Free radical scavenging activity Sharma S. et al.

(2017)

Whole grain and bran of

finger millet

High-fat-diet-fed

LACA model mice

Antioxidant and

anti-inflammatory properties

Prevention of obesity by regulation of

obesity-related genes, improved lipid

profile and anti-inflammatory status,

suppresses oxidative stress

Murtaza et al.,

2014

Polyphenol of finger millet – Antioxidant activity Inhibits superoxide, hydroxyl, and

nitric oxide radicals

Bindu and

Malleshi, 2003

Ethanolic extract from finger

Italian millet

– Antidiabetic and antioxidant

activity

Inhibits glycation Ofosu et al., 2020

Carotenoids and vitamin E

of finger millet

– Antioxidant activity Free radical scavenging activity Chethan et al.,

2008

Methanolic extract of finger

millet

– Protective role against

diabetes mellitus

Inhibits glycosylation of collagen Hegde et al., 2002

Whole grain extracts of

finger millet (Oshadha and

Rawana), proso millet, white

finger millet, kodo millet,

foxtail millet

– Antidiabetic, antialpha

amylase and

antiglucosidase activity

Inhibition of early glycation, middle

glycation and reversal of antiglycated

products

Senevirathne

et al., 2021

Free and bound phenolics

from finger millet varieties

– Antioxidant activity Free radical scavenging activity Xiang et al., 2019

Proanthocyanidins of finger

millet

– Antioxidant activity Free radical scavenging activity Dykes and

Rooney, 2006

Benzoic acids

Protocatechuic acid (PCA)

of finger millet seed coat

– Antibacterial, antiviral,

neurological effect,

antiatherosclerotic,

antifibrotic, antiaging,

antiulcer, anticancer

Antiaging ability is induced as it

increases the activity of glutathione

peroxidase and catalase and

decreases the malondialdehyde level.

Zhang et al., 2011;

Kakkar and Bais,

2014; Khan et al.,

2015

Gallic acid of finger millet

seed coat

– Antioxidant,

anticarcinogenic,

antimicrobial,

anti-inflammatory,

antimelanogenic,

neuroprotective,

hepatoprotective

Induces antiaging effect due to its

ROS quenching and antiglycation

activity

Panich et al.,

2012; Badhani

et al., 2015

(Continued)
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TABLE 2 | Continued

Active

ingredients/bioactive

peptides

Experimental

model

Efficacy Mechanism References

Syringic acid of finger millet

seed coat

– Antimitogenic, antidiabetic Eradicates free radicals due to their

antioxidant potential

Wei et al., 2012;

Muthukumaran

et al., 2013

Vanillic acid and its

derivatives of finger millet

seed coat

– Antimicrobial, antiaging,

hepatoprotective, antivenom

Inhibits collagenase and elastase

activity

Dhananjaya et al.,

2009; Itoh et al.,

2009; Widowati

et al., 2016

Cinnamic acid derivatives

p-Coumaric acid of finger

millet seed coat

– Antioxidant,anti-

inflammatory,

antimutagenic, antiulcer,

antiplatelet, and anticancer

Due to its potent antioxidant potential Pragasam et al.,

2013; Pei et al.,

2016

Ferulic acid of finger millet

seed coat

– Antioxidant, antimicrobial,

anti-inflammatory,

antithrombosis, and

anticancer activities

Inhibits the expression of some

cytotoxic enzymes, such as nitric

oxide synthase, caspase, and

cyclooxygenase-2

Rao and

Muralikrishna,

2002; Ou and

Kwok, 2004; Pei

et al., 2015

Caffeic acid of finger millet

seed coat

– Antioxidant, anti-ischemia

reperfusion, antithrombosis,

antihypertension,

antifibrosis, antivirus, and

antitumor

Potent antioxidant potential Jiang et al., 2005

Sinapic acid of finger millet

seed coat

– Antioxidant, antimicrobial,

anti-inflammatory,

anticancer and antianxiety

activities

Elastase, tyrosinase and collagenase

inhibitory activities

Chen, 2016;

Taofiq et al., 2017

Flavonoids

Quercetin of finger millet

seed coat

– Antioxidant, antiaging,

antiobesity,

anticarcinogenic, antiviral,

antibacterial, and

anti-inflammatory effects

Proteasome activator with antioxidant

properties that consequently

influence cellular lifespan

Chethan et al.,

2008;

Chondrogianni

et al., 2010; Wang

et al., 2016

Catechin and its derivatives

of finger millet seed coat

(gallocatechin, epicatechin,

and epigallocatechin)

– Antioxidant,

anti-inflammatory,

antimutagenic effects,

antiaging, as well as

cardiovascular

disease-preventive

properties.

Eradicates free radicals, stimulates

the activity of the regulatory protein

SIRT1

Sripriya et al.,

1996; Unno et al.,

2011; Hong et al.,

2013

content of finger millet (ca. 340 mg/100 g) is almost eight times
higher than major cereals wheat and rice. Therefore, finger
millet is the richest source of calcium to overcome age-related
diseases like osteoporosis (Puranik et al., 2017; Sharma D. et al.,
2017). The consumption of pearl millet and barnyard millet
help in protection from anemia because they have been found
as the richest source of iron. The highest content of zinc (4.1
mg/100 g) in foxtail millet as compared with other millets and
stable cereals make it special to combat zinc-associated diseases.
Foxtail millet is also a good source of iron (2.7 mg/100 g).
The immune system is boosted by the intake of zinc and iron
(Kulkarni et al., 2018; Kumar et al., 2018). Millets are also the
ultimate source of β-carotene and B vitamins like riboflavin,
niacin, and folic acid as compared with wheat and rice. The
foxtail millet has the richest source of thiamine (0.60 mg/100 g)

whereas the barnyard millet has the highest content of riboflavin
(4.20 mg/100 g) (Table 1). The regular consumption of millets
in our diets aids to curb nutritional deficiencies and age-related
diseases (Chandel et al., 2017). The presence of antinutrients in
millets like phytates, polyphenols, and tannins is responsible for
the reduction in mineral bioavailability by chelating multivalent
cations such as Ca, Zn, Fe, Mg, and K. Besides this, the
rich content of protease and amylase inhibitors in millets also
causes reduced digestibility of millet grains. Therefore, food
processing techniques are used to enhance nutritional content,
increase digestibility, and bioavailability of nutrients with a
reduction in antinutrients and increase the accumulation of
nutrients in milled grains (Sharma D. et al., 2017; Vinoth and
Ravindhran, 2017). The applications of genetic engineering and
genome-editing tools are also useful in facilitating nutrient
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FIGURE 2 | Different types of DNA damage result in aging and associated diseases.

accumulation in grains and the prevention of the synthesis
of antinutrients.

HEALTH BENEFITS OF MILLET
CONSUMPTION

Millets are better alternatives to common cereal grains due to
their nutraceutical properties and immense health-promoting
attributes. Millets contain ample amounts of fiber and lesser
amounts of simple sugars responsible for their relatively low
glycemic index. Millets have been shown to aid low blood
sugar levels in comparison with wheat or rice (Kumari and
Sumathi, 2002) and thus possess antidiabetic properties. Millets
similar to whole grains are abundant in magnesium, which
acts as a cofactor for enzymes especially involved in the
glucose uptake and secretion of insulin. Magnesium has been
reported to reduce the effects of migraines and heart attacks.
Niacin in millets is hypocholesteremic in nature. Consumption
of millets also reduces the C-reactive protein and unhealthy
lipids and thus may prevent cardiovascular diseases. Millets
provide plenty of phosphorus which plays an important role
in cell structure determination. Aside from constituting the
bone mineral matrix, phosphorus is an essential component of
adenosine triphosphate (ATP), the energy currency of the cell.
Apart from the abovementioned health benefits, the compounds

of millets are also known to possess antioxidant and antiaging
properties. Previous reports have well-established the antioxidant
potential of many millet varieties (Chandrasekara and Shahidi,
2010). Regulation of oxidative stress, through antioxidant
administrations, is also capable of controlling different health-
related issues such as diabetes, cancer, neurodegenerative
disorders, cardiovascular problems, and age-associated diseases.
Thus, in the benefit of the current review, the different properties
of millets are explained in relation to aging.

BIOACTIVE COMPOUNDS: ANTIAGING
AND ANTIOXIDANT PROPERTIES

Antioxidants derived from plants, such as phenolics and
flavonoids have numerous biological effects. Antioxidants play a
major role in the reduction of lipid peroxidation, a process that
plays a key role in cancer and aging (Namikii, 1990). Antioxidants
provide stable radical intermediates which prevent the oxidation-
induced damage of fatty acids and oils (Lobo et al., 2010).
Polyphenols like phenolic acids, flavonoids, and tannins found
in the seed coat of millet seeds act as reducing agents such
as free radical quenchers, metal chelators, and singlet oxygen
quenchers (Banerjee et al., 2012). Potent antioxidant attributes
of polyphenols arise as a result of their ability to act as hydrogen
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FIGURE 3 | Posttranslational modifications (PTMs) in cells and alteration in PTMs cause premature aging and aging-associated diseases. Abbreviations used in this

figure: Ac, acetylation; Gly, glycosylation; Met, methylation; NEDD, neddylation; Ph, phosphorylation; SUMO, sumoylation, Ub, ubiquitination.

atom donors via hydroxyl groups on phenol rings to electron-
deficient free radicals.

Polyphenols overcome oxidative stress by the maintenance
of balance between oxidants and antioxidants. Being
antioxidant, these compounds may show different health
benefits and primarily may act as antiaging compounds as
well. Polyphenols presently have gained the status of “life
span essentials” as they play a crucial role in maintaining
health (Chandrasekara and Shahidi, 2010). Millet grain is
entirely edible, and conventional food recipes are prepared
from wholemeals throughout Asian and African countries.
This indicates that the phytochemicals of millets such as
polyphenols are consumable without any adverse effects
on human health. The content and composition of these
polyphenols vary depending on the type of millet grain and
have received considerable interest because of their antioxidant,
antiaging, and other nutraceutical properties (Chandrasekara
and Shahidi, 2011). Additionally, some of the other health
benefits such as hypoglycemic (Kumari and Sumathi, 2002),
hypocholesterolemic (Hegde et al., 2002) and antiulcerative

(Tovey, 1994) properties can further be contributed to a large
extent to their polyphenol content.

Different types of millets are known to be rich in different
polyphenols which may act as potent antioxidants which
are critical for exhibiting antiaging properties. For example;
different types of millet grains contain dimers and trimers
of ferulates which possess comparatively higher antioxidant
activity (Chandrasekara and Shahidi, 2011). Very recent findings
on phenolics of millet grain varieties that are cultivated in
South Korea like millet (M), Italian millet (IM), barnyard
millet (BM), and finger Italian millet (FIM) have shown
their potent antioxidant potential and antiglycation properties
effective against diabetes mellitus which is a main age-related
disorder. It has also been reported that the finger Italian millet
has the highest total phenolics and total flavonoid content as
compared with barnyard millet and Italian millet. Therefore,
finger Italian millet is a crucial nutraceutical as it possesses high
antioxidant and antidiabetic activity (Ofosu et al., 2020). Colored
(brown, reddish, or red) finger millet varieties from the Northern
Malawi region exhibit more significant antioxidant activity than
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FIGURE 4 | Model of the insulin/insulin-like growth factor signaling (IIS) pathway: in response to growth hormones and nutrients, insulin as a ligand binds to

membrane-bound glycoprotein receptors which results in a conformational change in membrane-embedded glycoprotein. This insulin ligand-receptor complex

mediates the activation of tyrosine kinases by their phosphorylation. Tyrosine kinase (TK) is responsible for the phosphorylation of IRS family proteins and opens the

binding sites for various signaling pathways. TK mediates activation of phosphatidylinositol kinase (PI3K). Moreover, PI3K activated the protein kinase B (Akt) which

modulates cellular processes like cell survival and inflammation by phosphorylation and suppression of FOXOs. In response to DNA, damage p53 is activated and

accelerates the activity of pTEN which in turn inhibited the PI3K and prevents the activation of Akt- mediated repression of FOXO. The insulin ligand-receptor complex

also activates the MAPK family members like p38 and c-Jun-terminal kinase (JNK) which are the chief players of cell growth, development, apoptosis, and

inflammation. Under glucose starvation conditions, adenosine 5
′

-monophosphate-activated protein kinase (AMPK) is activated and induces autophagy by the

acceleration of the ULK1 kinase whereas Akt diminished the activity of ULK1 kinase. AMPK also activates the FOXO and promoted the FOXO transcriptional activity.

Additionally, p53 and AMPK activate each other.

the white variety due to the presence of high amounts of phenolic
compounds, tannins, and flavonoids in them (Xiang et al., 2019).
Amadou et al. (2011) have studied the antioxidant efficiency of
defatted foxtail millet (DFMB) and observed that it can scavenge
free radicals and superoxide anions.

Watanabe (1999) isolated two flavones viz., luteolin and tricin,
with antioxidant activity from Japanese barnyard millet. Luteolin
along with its glycosides possesses health-beneficial properties
such as antioxidant, anti-inflammatory, cancer preventive, and
antiarrhythmic activities (Lin et al., 2008). Tricin is also known
for its antitumor and antimetastatic properties (Yue et al., 2020).
Finger millet showed the highest total flavonoid content in
defatted meals followed by kodo and foxtail millets. Studies were
carried out on the natural antioxidants in edible flours of small
millets. Ferulic acid exhibits very strong antioxidant, free radical

scavenging, and anti-inflammatory activity (Shahidi et al., 1992;
Castelluccio et al., 1995).

Free radical production in excess and lipid peroxidation
are the major reasons for chronic diseases such as diabetes,
cardiovascular disease, cancer, cataract, and aging. Non-
enzymatic glycosylation whereby chemical reaction occurs in
between the aldehyde group of reducing sugar and the amino
group of proteins plays a major role in the complications
of diabetes and aging (Rowan et al., 2018). Non-enzymatic
glycosylation and cross-linking of collagen are induced by free
radicals, whereas free radical scavengers such as polyphenols
inhibit these reactions (Fu et al., 1992). Polyphenols act
as antioxidant compounds that suppress excessive oxidation
responsible for cancer and aging (Namikii, 1990). Thus, any
compound which can neutralize these free radicals can in
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FIGURE 5 | Model of the mammalian target of rapamycin (mTOR) pathway: the mTOR pathway has two major components called TOR complex 1 (TORC1) and TOR

complex 2 (mTORC2) which regulate different cellular functions. mTORC1 is sensitive to rapamycin and play role in protein synthesis, ribosome biogenesis, cell

survival, proliferation, angiogenesis, invasion, migration, and metastasis whereas mTORC2 is insensitive to rapamycin and regulates cell survival, cell cycle, and actin

remodeling. In response to growth nutrients, the mTOR pathway is regulated by the PI3K cascade. mTOR is negatively regulated by tuberous sclerosis proteins called

TSC1 and TSC2 which exist as heterodimers. In response to insulin signaling, Akt phosphorylates TSC2 which makes it functionally inactive. Shortage of nutrients

mainly amino acid starvation leads to dephosphorylation of well-known substrates of mTORC1 such as ribosomal S6 kinase (S6K) and eukaryotic translation initiation

factor 4E-binding protein (4E-BP) whereas in the supply of nutrients, restoration of amino acids enables phosphorylation of S6K and 4E-BP which accelerates protein

synthesis. Amino acids activate mTORC1 in two ways either via inhibition of TSC1-TSC2 or by stimulation of Rheb. AMPK is activated under low energy (high

AMP/ATP ratio) and promotes fatty acid oxidation and inhibits protein synthesis. The tumor suppressor LKB1 is responsible for the activation of AMPK which leads to

inhibition of mTORC1-mediated phosphorylation of S6K1 and 4E-BP1. AMPK also directly activates TSC2 via its phosphorylation and increases its activity which

ultimately leads to repression of mTORC1 signaling. High-energy situation mediates upregulation of mTORC1 activity. Upon stress conditions, p53 is activated and

inhibits the mTOR activity by the AMPK-TSC2 mechanism. In contrast to mTORC1, mTORC2 is insensitive to nutrients but responds to growth factors such as insulin

which requires PI3K. For the activation of mTORC2, ribosomes are very crucial. mTORC2 binds to ribosomes in an aPI3K-dependent manner and regulates protein

kinase B (Akt), glucocorticoid-induced protein kinase 1 (SGK1), and protein kinase C-α (PKC-α). SGK-1 is also activated by mTORC2 and controls the growth and ion

transport. mTORC2 regulates the actin remodeling by the activation of PKC-α. mTORC1 regulates protein synthesis, ribosome biogenesis, cell survival, proliferation,

angiogenesis, invasion, migration, and metastasis by regulation of S6K1 and 4E-BP1.

turn exhibit antiaging effect. Senevirathne et al. (2021) have
very recently observed antidiabetic properties from different
varieties of millets such as finger millet, proso millet, white
finger millet, kodo millet, and foxtail millet cultivated in Sri
Lanka. The inhibition of early glycation, middle glycation, and
reversal of antiglycated products by these millets in diabetes
make them crucial functional food for delaying the aging process.
These millet varieties also showed anti-α-amylase activity, and
suppression of this enzyme is required for better carbohydrate

digestion and maintains the blood glucose levels for diabetic
patients (Table 2).

Hegde et al. (2005) studied the effects of the antioxidant
properties of millets on oxidative stress and glycemic status
in alloxan-induced rats. The alloxan-induced rats when fed
with a diet enriched with finger millet showed a significant
decrease in blood glucose and cholesterol level. Tail tendon
collagen glycation was reduced in the finger millet-fed rats.
Diabetic groups fed on finger millet diet showed alleviated
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FIGURE 6 | Model of sirtuin pathway. Sirtuin pathway is activated. In response to low energy upon calorie restriction in cells, AMPK is activated which promotes

SIRT1-mediated trans-activities. SIRT1 regulates key biological processes such as gene silencing, genomic stability, insulin sensitivity, mitochondrial biogenesis,

glucose tolerance, cell survival, and protection against inflammation and mediates longevity via deacetylation of various substrates like histone, PGC1-α, p53, and

NFκB. In response to prolonged calorie restriction, upregulation of SIRT3 occurs in liver and brown adipose tissue which results in the activation of long-chain acyl

dehydrogenase and ornithine transcarbamoylase that is associated with β-oxidation of fatty acids and the urea cycle. SIRT3 positively modulates the FOXO3a,

MnSOD, isocitrate dehydrogenase 2 (IDH2), AMPK, and PGC-1α; promotes ATP production and clearance of defective mitochondria; and protects against ROS.

SIRT3 inhibits ROS production and tumor growth via negative regulation of SOD2 and hypoxia-inducing factor-alpha (HIF-α).

levels of enzymatic and non-enzymatic antioxidants along with
lipid peroxides. This was associated with the abundant amounts
of phenolics, tannins, and phytates present in finger millets.
Furthermore, the effects of methanolic extracts of finger millet
and kodo millet on glycation and cross-linking of collagen were
studied (Hegde et al., 2002). It is thus proposed that finger millet
can have a potential therapeutic role as dietary supplements for
the prevention of glycation-induced complications, as in diabetes
or aging.

Free radicals are regularly generated in our body as a
byproduct of normal aerobic respiration and substrate oxidation.
However, the excessive accumulation of these radicals causes
damage to vital biomolecules such as carbohydrates, lipids,
proteins, and DNA, consequently leading to the manifestation of
various age-related diseases. Polyphenols are suggested to exhibit
their beneficial antioxidant effects either by scavenging free

radicals, chelating metal ions, quenching singlet oxygen, or by
inhibiting the reactive oxygen species (ROS) producing enzymes
such as myeloperoxidase, lipoxygenase, cyclooxygenase, and
xanthine oxidase. Chandrasekara and Shahidi (2011) evaluated
the antioxidant properties of phenolic extracts from seven millet
varieties [kodo, finger (Ravi), finger (local), proso, foxtail, little,
and pearl] on HT-29 cells. All varieties used in this study showed
a significant reduction in lipid peroxidation in liposomes, singlet
oxygen quenching, and DNA scission inhibition to varying
degrees. Furthermore, the cytoprotective effects of various types
of millet phenolics (catechin, ferulic acid, vanillic acid, and
resveratrol) were investigated, and it was observed that they
exhibit preventive effects on protein and human erythrocyte
peroxidation (Palaniswamy and Govindaswamy, 2017).

Different studies have also given exclusive attention to finger
millet for its pharmacological significance. For instance, the study
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FIGURE 7 | Suppression of aging and age-associated diseases by antiaging compounds of millets through modulation of different signaling pathways by acting on

their molecular targets.

conducted on early diabetic rats indicated that the administration
of finger millet exhibited its beneficial effects on antioxidant
status of the skin, production of nerve growth factor, and wound-
healing parameters (Rajasekaran et al., 2004). Ajiboye (2017) also
evaluated the antioxidant potential and free radical scavenging
ability of whole-grain finger millet. The study revealed that
ethanolic extract of whole finger millet effectively scavenged
H2O2, NO, and DPPH.

Oxidative stress, caused by ROS, is responsible for modulating
several pathological conditions during aging. Thus, aging can
also be defined as low energy and high oxidative stress state.
As studies indicate that the administration of millet may greatly
affect the level of reactive oxygen species and hence may also
combat age-associated health issues. Though there is a lack
of evidence showing the molecular mechanism for antiaging
effect of millets, the possible molecular mechanism for antiaging
may be explained using different aging theories and preliminary
shreds of evidence supporting antiaging effect of millets.

ANTIAGING PROPERTIES AND
MOLECULAR INSIGHTS

Natural compounds offer a repertoire of highly diverse structural
scaffolds that can offer hopeful candidate chemical entities with
antiaging potential. As per a large number of published pieces of
literature, it is highly emphasized that consumption of millet may
help in reducing aging and age-related complications. Though, its
exact mechanism of action is not known. However, based upon
these studies, it can be suggested that phytochemicals obtained

frommillets can play a significant role in the suppression of aging
processes and aging-related diseases by influencing genetic repair,
protein glycation, and stress-responsive pathways. The effect of
millets on all these pathways can be attributed to their antioxidant
property and antiaging potential, as explained below by various
aging theories.

Free Radical Theory
The free radical theory of aging and the antiaging property stated
that progressive accumulation of endogenous oxygen radicals
causes damage to macromolecular components of the cell-
rendering cells and organs to stop functioning, ultimately leading
to death by senescence (Finkel and Holbrook, 2000). With the
discovery of the mitochondrial genome, the theory was modified
to the mitochondrial theory of aging in the year 1972. This theory
stated that reactive oxygen species (ROS) generated during
mitochondrial respiration damages macromolecules including
mitochondrial DNA (mtDNA) (Muller et al., 2007). Such
mutations in mtDNA which accumulate over time result in
increased ROS generation and oxidative damage as suggested by
studies conducted in a variety of experimental animal models
and tissues (Muller et al., 2007). The grains of millet possess
natural antioxidants which help to combat damage induced by
free radicals and prolong the lifespan of organisms. This theory
has been proven by different experiments as listed in Table 2.

Telomere Shortening Theory
Excessive oxidative stress leads to the accumulation of oxidative
DNA damage in telomeres and is strongly related to premature
aging (Lu and Liu, 2010). As per telomere shortening theory,
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aging occurs due to the loss of telomeres. Cellular senescence
is initiated by erosion or improper functioning of telomeres
resulting in cell-cycle exit after several cell cycles (Holliday, 2014).
In each subsequent cellular division, telomere length gets shorter
which obstructs the chromosomal ends from being identified
as double-strand breaks. DNA damage response gets triggered
due to telomere shortening (Karlseder et al., 1999). Apart from
telomere shortening, damage in DNA in regions other than
telomere is also responsible for aging. Similarly, DNA damage
theory also proposes that loss of its functionality during aging
process may stem from the accumulation of unrepaired naturally
occurring DNA damages like DNA breaks, cross-linking, and
base modifications (Hayflick, 2007). With the accumulation
of such mutations over time in aged organisms, there is an
increased risk of tumor formation and other age-related disorders
(Iyama and Wilson, 2013). As per literature, there are several
factors inducing DNA damage which in turn are responsible
for aging and associated diseases (Figure 2). Naturally occurring
compounds in millets act as potent antioxidants which may
reduce the level of oxidative stress and hence minimize the rate
of telomere shortening.

Protein Translational Modifications
During aging, the functioning of the proteins can be disturbed
due to disorganized protein synthesis and aberrant types of
posttranslational modifications (PTMs) such as acetylation,
phosphorylation, glycosylation, ubiquitination, sumoylation,
and neddylation ultimately leading to the accretion of inactive,
denatured, misfolded, and mutated proteins in cells of aged
organisms (Santos and Lindner, 2017) (Figure 3). The
posttranslational modifications of proteins are chiefly responsible
for the activity, stability, as well as protein-protein interactions,
influencing the cellular function and metabolism (Santos and
Lindner, 2017). It has been observed that different compounds
influence the PTMs of different proteins and help in maintaining
cellular function during the aging process (Lan et al., 2016; Peleg
et al., 2016). In the recent past, a good number of drugs and
natural compounds including millets and millet-based products
have been studied for their antiaging potential. It was reported
that millet extracts inhibited the glycosylation of collagen protein
and thus protects its function (Hegde et al., 2002).

NEW PARADIGM FOR DESIGNING
ANTIAGING DRUGS DERIVING
INFORMATION FROM MILLETS AND
OTHER COMPOUNDS OF PLANT ORIGIN

Various natural products from grains, fruits, and vegetables are
studied for their antiaging properties. These natural products or
compounds are suggested to delay the aging process by regulating
genes involved in different pathways and involved in the aging
process. Though the detailed mechanism of action of bioactive
compounds of millets has not been explored, preliminary
investigations highlight the effect of millet extract on longevity
as well as aging-associated diseases. Hence, it is imperative
to have detailed investigations of bioactive compounds of

millets for their mode of action as antiaging compounds. As
per various studies, the premature aging and aging-associated
diseases are found to be associated with the fault in the key
cellular pathways such as the IIS (Figure 4), mTOR (Figure 5),
and sirtuin (Figure 6) molecular networks. Hence, all these
crucial pathways involved in the aging process need to be
studied focusing on the effect of bioactive compounds of
millet extracts on the key molecules of all these pathways in
suitable in vitro model systems (Figure 7). Once the molecular
mechanism of action of bioactive compounds obtained from
millets is revealed, formulations based on these compounds
can be processed and targeted to the specific targets in a
nanoencapsulated form.

Millets are a rich natural source of antioxidants and thus
hold potential as a nutraceutical and functional food ingredient
promoting health and reducing the risk of disease. However,
more validation in animal models and human subjects needs
to be performed to verify their activity and health benefits.
The effect of different cellular processes such as methylation,
glycosylation, acetylation, phosphorylation, ubiquitination, etc.
on aging has been studied by many scientists to find the
mechanism by which these processes affect the extent of aging
and associated diseases. Several efforts have been made to
design some potential drugs that can bind with the target
enzyme of cellular processes associated with aging. Some
therapeutics such as nutulin-3, HDAC, and MLN4924 have
shown their effectiveness in tackling the aging and associated
diseases, but no success story of any drug is available in
the market that can be recommended for use to prevent
aging and its symptoms. The role of some pathways such
as the IGF-1 signaling pathway, mTOR signaling pathway,
and sirtuin-related pathways is also associated with the aging
process. Modulation of these pathways by the use of some
potential therapeutics can also be one of the possible approaches
to curb the aging process. A comprehensive network of
different processes and pathways associated with aging can be
designed to find some potential targets for the treatment of
aging and associated diseases. Furthermore, validation studies
related to these targets can be carried out by in vitro and
in vivo studies, if not validated earlier. Structure-based drug
designing approach can be applied to design and screen
some potential candidate drugs that can modulate the aging-
associated pathways by specific binding with the drug target.
The druggability of these candidate drugs can be predicted
using absorption, distribution, metabolism, and toxicity (ADMT)
prediction tools to avoid the chance of drug failure in
clinical trials.

Many synthetic and natural compounds such as
indolepropionaamide (IPAM), acetyl L-carnitine (ALC),
spermidine, metformin, lithocholic acid, caffeine, reserveratrol,
rapamycin, epicatechin, and quercetin have shown their
potential role in the suppression of the aging process by
modulating different drug targets. Mechanisms of action for
these compounds are also different for different targets by
which they generate the antiaging response. It is important
to mention that most of such studies related to aging
have been performed in Caenorhabditis elegans, Drosophila

Frontiers in Sustainable Food Systems | www.frontiersin.org 13 October 2021 | Volume 5 | Article 684318

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Kumar et al. Anti-aging Effect of Finger Millet

melanogaster, mice, rat, and worms. The effect of these antiaging
compounds needs to be studied in humans to explore the
mechanism of action and interaction of compounds with the
drug target. Natural ingredients in millets have also shown
their antiaging response, but their target and mechanism of
action are not explored well scientifically. More studies on
the antiaging response of millets are required to validate the
target and mechanism of action. Compounds with known
antiaging effects can be used as a lead molecule to design
more specific and potential candidate drugs for a given drug
target. Optimization of lead compounds is very necessary
to achieve better bioavailability, specificity, and affinity for
the drug target. Computational tools can be more helpful in
deciphering the chemical modification required to optimize the
activity of a lead molecule. Potential candidate drugs resulted
from lead optimization can be recommended for in vitro or
clinical testing.

CONCLUSION

A balanced diet with definite nutritional supplements plays
a key role in promoting the lifespan and health of human
beings. Various natural compounds from different plants have
been found to curb aging and associated diseases. Millets are
a chief source of proteins, carbohydrates, and minerals and are
low in fat content which validates their utilization in many
healthy diets. Furthermore, millets contain high content of total
phenolics, flavonoids, and other phytochemicals that have been
reported to possess antiaging potential. Henceforth, millets might
be utilized in the formulation of nutraceutical and functional
foods that can be consumed daily due to the presence of
many bioactive compounds that prevent aging and associated
diseases. The prospects include the identification, isolation, and
characterization of bioactive molecules present in millets that
can slow down the aging process. Once characterized, further
validation of their mechanism of action at the molecular level can
be explored by the wet lab and in silico analysis. The effectiveness

of these bioactive compounds requires evaluation in a cell or
tissue-specific manner followed by the animal model system for
safety concerns and to determine their therapeutic potency.
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