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Green mold caused by Penicillium digitatum is an important factor limiting the shelf life

of mandarin fruit. In this study, the effect of ultraviolet-C (UV-C) irradiation on cellular

structure, endogenous jasmonic acid (JA), and development of P. digitatum in satsuma

mandarin fruit was investigated. UV-C treatments included 0 (untreated control), 3, and

10 kJ m−2 or the exposure time of 0, 1.18, and 4.52min, respectively. The UV-C dose of

10 kJ m−2 significantly reduced the development of P. digitatum both in vitro and in vivo,

resulting in the maintenance of the cellular structure of the albedo tissue. The production

of malondialdehyde (MDA) was decreased upon UV-C treatment of 10 kJ m−2. The

concentration of JA increased in the treatment of 10 kJ m−2 compared to the treatment

of 3 kJ m−2 and the control. UV-C irradiation increased total phenolic and total flavonoid

concentrations and DPPH radical scavenging capacity. These results suggest that UV-C

at 10 kJ m−2 has a potential to control green mold caused by P. digitatum, maintain

cellular structure, stimulate the accumulation of JA, and induce biochemical compounds

in satsuma mandarin.
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INTRODUCTION

Citrus fruit is one of the largest commodities consumed worldwide (Lu et al., 2020). Satsuma
mandarin (Citrus unshiu) is one of the most popular fruit for fresh consumption at present because
it is seedless, is rich in bioactive compounds, and contributes to nutrition and energy sources for
health (Gao et al., 2018). However, this citrus fruit is highly susceptible to postharvest decay caused
by various pathogens such as Botrytis cinerea, Penicillium italicum, and Penicillium digitatum. In
general, green mold decay caused by the pathogenic fungus P. digitatum is the major cause of
postharvest losses inmandarin fruit. The fungus causes a soft water-soaked peel that is later covered
with white mycelia of the fungus (Chen and Peng, 2016).
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Generally, fungicides have been used to suppress decay in
citrus before harvest (Yamaga et al., 2016). However, the frequent
use of some fungicides has led to adverse effects on human health
and the environment, as well as the development of fungicide-
resistant pathogens. For example, P. digitatum was resistant to
thiabendazole due to a mutation of β-tubulin gene correlating
to amino acid 200 (Sánchez-Torres and Tuset, 2011). Recently,
several studies have used ultraviolet-C (UV-C) irradiation to
control microbial infections in fruits and vegetables (Mohamed
et al., 2017; Sripong et al., 2019). For example, irradiation with
UV-C reduced gray mold development caused by B. cinerea
in strawberry fruit (Fragaria ananassa) (Jin et al., 2017), and
regulated gene expression related to lipid oxidation and cell wall
degradation in tomato fruit (Lycopersicon esculentum) (Liu et al.,
2011). Moreover, in fresh produce exposed to UV-C irradiation,
antioxidant capacity such as total phenolic and total flavonoid
concentrations were stimulated (Park and Kim, 2015).

Jasmonic acid (JA), an endogenous plant hormone, is usually
produced in plants in response to various stressful situations
(Yang et al., 2019a). Studies have reported that JA influence
the direct and indirect response to trigger signaling molecules
that then activate the plant stress tolerance (Zhang et al., 2009;
Margherita et al., 2018). This hormone plays a role in increasing
the production of secondary metabolites and defense strategies
against pathogens in plants (Shikano et al., 2018).

Therefore, the objective of this study was to investigate the
effect of UV-C irradiation on cellular structure, concentrations
of JA and bioactive compounds, antioxidant capacity, and green
mold development in satsuma mandarin during storage.

MATERIALS AND METHODS

Suppression of Fungal Development
Caused by Penicillium digitatum: In vitro

Study
A-7-day-old pure culture of P. digitatum (Registration No.MAFF
242809) was used in this study. The mycelial disk, 6mm in
diameter, was placed on the center of potato dextrose agar (PDA)
in a Petri dish. The dishes were uncovered just before being
placed in the UV-C chamber and placed 25 cm away from the
UV-C sources with the critical peak emission at 253 nm (GL-20,
Toshiba, Japan). Three groups of 10 plates were exposed to 3 UV-
C doses of 0 (control), 3, and 10 kJ m−2 or the exposure time
of 0, 1.18, and 4.52min, respectively. After UV-C treatment, the
plates were covered and then incubated at 25◦C. The effect of UV-
C treatments on the development of P. digitatum was examined
at 3, 4, and 5 days after treatment (DAT), which was calculated
from the longest length and the greatest width perpendicular to
the length of the mycelium using a transparent ruler.

Inhibition of Penicillium digitatum in
Satsuma Mandarin Fruit
“Aoshima unshu” satsuma mandarin (C. unshiu) fruit at
commercial maturity stage were harvested in late December from
the orchard in Shizuoka Prefecture, Japan. Prior to treatment,
fruits were disinfected by immersion in 150 ppm sodium

hypochlorite (NaOCl) for 1min, rinsed thoroughly in tap water,
and drained overnight at 25◦C. Satsuma mandarin fruits were
divided into three groups (90 fruits per treatment). Sufficient
spores from a pure culture of P. digitatum were harvested using
25ml of sterilized distilled water containing 0.5% agar and then
adjusted to a final spore concentration of 1.2× 106 spores ml−1.

For inoculation, a wound of 5-mm diameter and 3-mm depth
was made between the vertical and horizontal parts at the equator
of the fruit using a sterilized scalpel (Suktawee et al., 2019). The
20ml of spore suspension was inoculated into the center of the
wound of each fruit using a micropipette and allowed to air-
drain for pathogen settlement. Two groups of artificially infected
fruits were irradiated with UV-C at different irradiation doses
of 3 and 10 kJ m−2, and the non-irradiated group was set as
untreated control. All fruits were stored at 25◦C and 95% relative
humidity. Lesion diameters of green mold infestation (15 fruits
per treatment) were measured and calculated by taking the mean
of the vertical and horizontal of each lesion with a digital vernier
caliper at 3, 4, and 5 DAT.

Effect of UV-C Irradiation on the Mycelial
Density of Albedo
Fruit peel before and after inoculation (5DAT) were cut into 0.5
cm3 and immediately coated with liquid nitrogen. The sample
was observed under a scanning electron microscope (SEM)
(SU1510; Hitachi, Japan). The images were then illustrated at the
accelerating power of 30.0 kV with the magnification of 100 µm.

Effect of UV-C Irradiation on Lipid
Peroxidation
Lipid peroxidation was determined as production of
malondialdehyde (MDA) equivalents using amodifiedmethod of
Phonyiam et al. (2016). The extracted sample (500 µl) was mixed
with 0.5% of thiobarbituric acid (TBA) in 10% of trichloroacetic
acid (TCA) (1.5ml). The mixed solution was incubated at 85◦C
for 30min. Then, the cooled mixture was measured with a
spectrophotometer (U-2910; Hitachi, Japan) at the absorbance of
532 nm. A non-specific turbidity was measured at the absorbance
of 600 nm.

Effect of UV-C Irradiation on JA
Concentration
The JA concentration was analyzed according to the method of
Kondo et al. (2005) with modifications. Fresh peel sample (1 g)
was homogenized in 1M citric acid (250 µl), sodium chloride
(NaCl) (5ml), and diethyl ether containing 0.005% BHT (10ml).
The sample mixture was then mixed with ibuprofen (500 µl)
and used as an internal standard. The diethyl ether fraction was
collected after centrifugation at 15,000 g for 10min at 4◦C. Then,
the qualification of JA was evaluated by RP-18 octadecylsilyl
column (5µm, 2mm I.D. × 150mm; Kanto Chemical, Tokyo,
Japan). The JA concentration was calculated from the ratio of
the peak area for m/z 206/161 (ibuprofen) and expressed as
nanomole per 1 kg of fruit weight (nmol kg−1 FW).
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Effect of UV-C Irradiation on Bioactive
Compounds and Antioxidant Capacity
Peel sample (3 g of fresh weight) was homogenized in 20ml of
80% methanol. The homogenized samples were then centrifuged
at 15,000 g for 10min at 4◦C. Total phenolic concentrations in
peel were analyzed using a spectrophotometer (U-2910; Hitachi,
Japan) according to the Folin–Ciocalteu assay of Sheng et al.
(2018) with slight modifications. The 0.25ml of the crude extract
was mixed with 1.25ml of 10% Folin–Ciocalteu reagent and
1ml of 7.5% sodium carbonate (Na2CO3). The mixture was
incubated for 1 h at ambient condition, and the total phenolic
concentration was measured at the absorbance of 765 nm and
expressed as milligram of gallic acid equivalent (GAE) per 1 kg of
fruit weight (mg GAE kg−1 FW). Total flavonoid concentration
was measured by the method modified from Sheng et al. (2018).
The sample (250 µl) was mixed with 75 µl of 10% aluminum
chloride (AlCl3), 75 µl of 5% sodium nitrite (NaNO2), and 1ml
of deionized water. After 5min, 1ml of 4% sodium hydroxide
(NaOH) was added to the mixture and incubated for 10min

at ambient temperature. The reaction mixture was evaluated at
the absorbance of 510 nm. Total flavonoid concentration in the
peel sample was expressed as mg catechin equivalent (CAE) per
1 kg of fruit weight (mg CAE kg−1 FW). The DPPH radical
scavenging capacity was determined according to the method
described by Phonyiam et al. (2016) with some modifications.
The sample extract (500 µl: 9 replicates per treatment) was
mixed with 0.1mM of DPPH-methanolic solution (1.5ml)
and the mixture was incubated. After incubation at 25◦C for
30min, DPPH radical scavenging capacity was monitored at
the absorbance of 517 nm and expressed as micromole Trolox
equivalent (TE) 1 kg of fruit weight (µmol TE kg−1 FW).

Statistical Analysis
Triplicate determinations were analyzed for the entire duration
of the experimental period using the least significant difference
(LSD) test at the significance level of P ≤ 0.05 (SPSS 16; IBM,
Armonk, NY). Data were expressed as the mean ± standard
error (SE).

FIGURE 1 | Effect of UV-C treatment on suppression of P. digitatum growth in vitro study (A), on inhibition of green mold decay development in satsuma mandarin

fruit (B), and visual appearance of inoculcated satsuma mandarin fruit after exposure to UV-C in untreated control, 3 kJ m−2, and 10 kJ m−2 UV-C groups (C). The

different letters indicate significant differences at P ≤ 0.05 by LSD test at each day with the mean ± SE of three replications.
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FIGURE 2 | Effect of UV-C treatment on cellular structure of albedo tissue in

satsuma mandarin fruit; before treatment (A), untreated control (B), 3 kJ m−2

(C), and 10 kJ m−2 UV-C (D) groups. The arrows indicate mycelium and

spores of P. digitatum.

RESULTS

Green Mold Development
Mycelial growth of P. digitatum was significantly lower in the
UV-C treatments than that in the control (Figure 1A). At 5 DAT,
mycelium diameters were 3.80 ± 0.04, 4.08 ± 0.03, and 4.40 ±

0.08 cm in the UV-C treatments of 10, 3, and 0 kJ m−2 (control),
respectively. This indicates that UV-C irradiation suppresses in
vitro growth of P. digitatum. Similarly, mandarin fruit treated
with 10 kJ m−2 showed the smallest lesion diameter (1.82 ±

0.06 cm) compared to those treated with 3 kJ m−2 (2.97 ±

0.06 cm) and the controls (5.13 ± 0.00 cm) (Figure 1B). The
effect of UV-C irradiation on green mold development on
mandarin is shown in Figure 1C. Furthermore, UV-C at a dose
of 10 kJ m−2 significantly promoted the suppression of mycelial
density while maintaining the albedo tissue of cellular structure
on 5 DAT compared to other treatments (Figure 2).

Lipid Peroxidation
MDA concentrations in all treatments increased slightly from 3
DAT to 4 DAT and then decreased at 5 DAT (Figure 3). At 4
DAT, all UV-C doses inhibited MDA concentrations, as indicated
by the significantly lower MDA concentrations in the UV-C
treatments (22.90± 1.02 and 27.47± 0.50 mmol kg−1 FW for 10
and 3 kJ m−2, respectively) compared with the untreated control
(39.87 ± 1.58 mmol kg−1 FW). This result suggests that the
strongest suppression of MDA was achieved at the UV-C dose
of 10 kJ m−2.

JA Concentration
UV-C treatments significantly enhanced JA accumulation in
mandarin fruit (Figure 4). In 4 DAT, JA concentration was
increased in the UV-C treatment with 10 kJ m−2 (338.33 ± 6.49
nmol kg−1 FW), while in the treatment with 3 kJ m−2, it was
198.37± 14.76 nmol kg−1 FW. Among the treatments, the lowest
JA concentration was observed in the untreated control.

Bioactive Compounds and Antioxidant
Capacity
The total phenolic concentration of fruits irradiated with UV-
C increased significantly. The total phenolic concentration in
inoculated fruit after treatment with UV-C at 3 and 10 kJ
m−2 was 2,539.29 ± 37.11 and 2,502.70 ± 32.20mg GAE kg−1

FW, respectively, while the total phenolic concentration in the
untreated control was 2,294.42 ± 20.40mg GAE kg−1 FW
(Figure 5A).

Total flavonoid concentration increased in all treatments at
3 DAT and then decreased until the end of the storage period
(Figure 5B). At 5 DAT, the total flavonoid concentration was
significantly higher in the UV-C treatment with 10 kJ m−2

(509.99 ± 7.16mg CAE kg−1 FW) compared with the treatment
with 3 kJ m−2 (433.65 ± 6.90mg CAE kg−1 FW) and the
untreated control (437.00± 3.14mg CAE kg−1 FW).

At 3 DAT, DPPH scavenging capacity increased significantly
in fruit treated with 10 kJ m−2 UV-C treatments compared
with the other treatments (Figure 5C). Moreover, the highest
DPPH scavenging capacity was obtained in the 3 kJ m−2 UV-C
treatment at 4 DAT (6,343.97± 113.86µmol TE kg−1 FW), while
the DPPH values in the 10 kJ m−2 treatment and the untreated
control were 5,870.30 ± 116.49 µmol TE kg−1 FW and 5,804.98
± 95.68 µmol TE kg−1 FW, respectively.

DISCUSSION

UV-C radiation has been demonstrated to inhibit Escherichia
coli in apple (Malus domestica) (Graça et al., 2013), Guignardia
citricarpa in orange (Citrus sinensis) (Canale et al., 2011), and
Colletotrichum musae in banana (Musa acuminate) (Bokhari
et al., 2013). In addition, Oliveira et al. (2016) and Jin et al.
(2017) reported that UV-C induces disease resistance response
and promotes pathogen-related genes such as cinnamoyl CoA
reductase 1 allele (CCR-1 allele), chitinase 2 (CHI2), and
phenylalanine ammonia lyase 6 (PAL6) in strawberry fruit. In this
study, the growth of P. digitatum, the causal agent of green mold
disease, was significantly lower than that of the untreated control
both in vitro and in vivo upon UV-C treatment of 10 kJ m−2.
This suggests that UV-C treatment may have a direct effect on
the fungus and an indirect effect by inducing defense mechanism
against the pathogen infection in satsuma mandarin fruit.

The cell wall is the primary mode of entry of pathogen
into plant tissue. The alteration of cell structure barrier could
influence the colonization of pathogen (Cantu et al., 2008). Our
study indicated that treatment with UV-C at 10 kJ m−2 greatly
reduced fungal mycelia and maintained the cellular structure
of the albedo tissue in infected satsuma mandarin fruit. This
result is in agreement with a previous study that showed that
high dose of UV-C may have induced the plasmolysis process
of epidermal cells, resulting in the strengthening of cell wall
structure (Charles et al., 2008). However, UV-C at 3 kJ m−2 and
the untreated control at 5 DAT showed intense mycelia of P.
digitatum. Therefore, the result suggests that 10 kJ m−2 UV-C
induces disease resistance by improving the structural barrier of
the cell wall, resulting in inhibition of green mold infestation. On

Frontiers in Sustainable Food Systems | www.frontiersin.org 4 June 2021 | Volume 5 | Article 684434

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Phonyiam et al. UV-C Reduced Decay in Citrus

FIGURE 3 | Effect of UV-C treatment on change of malondialdehyde concentration in satsuma mandarin fruit in untreated control, 3 kJ m−2, and 10 kJ m−2 UV-C

groups. The different letters indicate significant differences at P ≤ 0.05 by LSD test at each day with the mean ± SE of three replications.

FIGURE 4 | Effect of UV-C treatment on jasmonic acid concentration in satsuma mandarin fruit in untreated control, 3 kJ m−2, and 10 kJ m−2 UV-C groups. The

different letters indicate significant differences at P ≤ 0.05 by LSD test at each day with the mean ± SE of three replications.

the other hand, MDA is the by-product of the lipid peroxidation
process that occurs when reactive oxygen species (ROS) are
exceeded in plant cells. This primary injury has been associated
with withdrawal of electrons from membrane lipids, leading to
membrane structure breakdown and high production of MDA
(He et al., 2019). Pongprasert et al. (2011) confirmed that UV-C
decreasesMDAproduction in banana peel. In satsumamandarin,
10 kJ m−2 UV-C treatment reduced MDA concentrations after
inoculation with P. digitatum. The significant decrease in lipid
peroxidation formation was probably due to UV-C irradiation.

Pathogenic infection can be reduced by JA application
in some crops such as sugar beet root (Beta vulgaris),
grape (Vitis vinifera), and naranjilla (Solanum quitoense)
(Fugate et al., 2012; Wang et al., 2015; Avila et al., 2019).
Interestingly, Xu et al. (2016) demonstrated that UV-C
application promoted the activation of JA signaling molecules

and biosynthetic pathway in Arabidopsis thaliana. In satsuma
mandarin, an increase in endogenous JA concentrations
was observed upon UV-C treatment of 10 kJ m−2. This
suggests that the reduction of green mold infestation
achieved in the UV-C treatments may be due to the
accumulation of JA.

The total phenolic compounds act as the main precursor to
stimulate antioxidant properties and increase disease resistance
of various plants (Yoruk and Marshall, 2003). UV-C irradiation
increases phenolic compounds by enhancing the activity of
phenylalanine ammonia lyase (PAL), thereby participating in
the phenolic biosynthetic pathway (Bhat et al., 2007). For
example, Pataro et al. (2015) reported the increase in total
phenolic concentrations in tomato fruit exposed to UV-C
irradiation. However, in this study, UV-C treatments were
found to increase the total phenolic concentration only on the

Frontiers in Sustainable Food Systems | www.frontiersin.org 5 June 2021 | Volume 5 | Article 684434

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Phonyiam et al. UV-C Reduced Decay in Citrus

FIGURE 5 | Effect of UV-C treatment on change of total phenolic concentrations (A), total flavonoids concentrations (B), and DPPH radical scavenging capacity (C) in

satsuma mandarin fruit in untreated control, 3 kJ m−2 UV-C, and 10 kJ m−2 UV-C groups. The different letters indicate significant differences at P ≤ 0.05 by LSD test

at each day with the mean ± SE of three replications.

first day of the storage period. This result is in agreement
with Sripong et al. (2019) who found that UV-C-irradiated
mangosteen (Garcinia mangostana) fruit increased the defense
against Lasiodiplodia theobromae, which corresponded with the
induction of total phenolic accumulation. Both 3 and 10 kJ m−2

UV-C irradiation also increased total flavonoid concentration
compared to the untreated control. Shen et al. (2013) and
Yang et al. (2019b) reported that UV-C treatment strongly
promoted flavonoid concentration and therefore upregulated the
expression levels of flavonol synthase (FLS), leucoanthocyanidin
reductase (LAR), and anthocyanidin reductase (ANR) genes in

the flavonoid pathway in satsuma mandarin and blueberry
(Vaccinium corymbosum) fruit.

All UV-C doses induced total antioxidant activity as
measured by DPPH radical scavenging capacity in satsuma
mandarin. As reported in previous studies, UV-C irradiation
increased DPPH radical scavenging capacity in grape and
papaya (Carica papaya) as well as total phenolic and
flavonoid concentrations (Maurer et al., 2017; Sheng et al.,
2018). Nevertheless, a decrease in total antioxidant activity
in all treatments during the final storage period may be
influenced by the depletion of total phenolic and flavonoid
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concentrations. Our results showed that UV-C application
activated total phenolic and total flavonoid concentrations
and increased the ability to scavenge DPPH radicals; this
promoted the plant defense mechanism against P. digitatum
infection in satsuma mandarin fruit. From our study,
promising UV-C irradiation with pathogen defense mechanism
associated with bioactive compounds on fruit quality requires
further studies.

CONCLUSION

UV-C irradiation at a dose of 10 kJ m−2 effectively maintained
the integrity of the membrane structure by reducing lipid
peroxidation and increasing JA accumulation with the induction
of bioactive compounds and antioxidant potential of DPPH
radical scavenging capacity. These results contributed to the
inhibition of green mold infestation caused by P. digitatum in
satsumamandarin fruit. As shown in this study, UV-C irradiation
has a very good potential to be considered as a safe alternative
treatment for postharvest control of greenmold diseases in citrus.
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