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Common reed (Phragmites australis) can invade and dominate in its natural habitat which

is mainly wetlands. It can tolerate harsh environments as well as remediate polluted

and environmental degraded sites such as mine dumps and other polluted wastelands.

For this reason, this can be a very critical reed to reclaim wastelands for agricultural

use to ensure sustainability. The present review manuscript examined the microbial

spectra of P. australis as recorded in various recent studies, its physiological response

when growing under stress as well as complementation between rhizosphere microbes

and physiological responses which result in plant growth promotion in the process

of phytoremediation. Microbes associated with P. australis include Proteobacteria,

Bacteriodetes, and Firmicutes, Fusobacteria, Actinobacteria, and Planctomycetes

families of bacteria among others. Some of these microbes and arbuscular mycorrhizal

fungi have facilitated plant growth and phytoremediation by P. australis. This is worthwhile

considering that there are vast areas of polluted and wasted land which require

reclamation for agricultural use. Common reed with its associated rhizosphere microbes

can be utilized in these land reclamation efforts. This present study suggests further work

to identify microbes which when administered to P. australis can stimulate its growth in

polluted environments and help in land reclamation efforts for agricultural use.

Keywords: bioremediation, microbial spectra, physiological response, Phragmites australis, agricultural

production

INTRODUCTION

Common reed (Phragmites australis) is an invasive helophytic grass which has great impact on the
ecosystem. It is tall, slender with a bare stem and plume-like inflorescence. Phragmites australis is
found in brackish and freshwater wetlands, temperate and tropical regions of the world (Den et al.,
1989; Brix, 1999; Meyerson et al., 2000). The ability of this reed to proliferate and survive in diverse
environmental conditions and invade the environment could be traced to its high productivity
(Kettenring et al., 2012; Douhovnikoff and Hazelton, 2014; Eller et al., 2014; Saltonstall et al., 2014).
The common reed can competitively displace indigenous vegetation; hence, it is referred to as an
invasive plant. In places where it has become a nuisance, control measures are devised to limit its
spread and its encroachment in the natural arena. Methods to curb its spread include cutting and
burning, flooding, the use of natural enemies, and application of herbicides. Some of the methods
are effective but some show very little success (Reimer, 1976; Thompson and Shay, 1985; Monterio
et al., 1999; Ailstock et al., 2001; Gusewell, 2003; Relyea, 2005; Avers et al., 2007).
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Despite the need to control its spread P. australis has been
found useful as a bioremediator of polluted environments due
to its ability to survive under stress (Windham et al., 2003;
Weis and Weis, 2004; Duman et al., 2007; Bragato et al., 2009;
Cerne et al., 2011). The ability of P. australis to remediate the
environment results from its various genetic and physiological
characteristics and these include having the ability to create
a rhizosphere environment which encourages the habitation
and proliferation of certain rhizosphere microbes. The common
reed exudes enzymes and other cell contents which make its
rhizosphere conducive for habitation by a myriad of mutually
beneficial microbes. Nejla et al. (2014) observed a significant
positive correlation between soil dehydrogenase activity (DHA)
and pentachlorophenol (PCP) removal in polluted soils with the
aid of microorganisms present in the reed’s rhizosphere. This
implied that microorganisms in the rhizosphere of P. australis
and the enzyme activities promoted the biodegradation of PCP
and the reclamation of the land. Work done by Cheema et al.
(2009) and Yang et al. (2011) supported the findings of Nejla et al.
(2014), whereby they observed both microbial and enzymatic
activities as influenced by the root exudates promoted the
remediation of the environment and freeing it of contaminants.

A plethora of the studies confirmed the findings that the
rhizosphere of P. australis harbors diverse microorganisms that
act as growth-promoting microbes which aid the growth of
the reed and promote the remediation of the environment
(Kadlec and Wallace, 2008; Jiang et al., 2013; Li et al., 2013;
Zou et al., 2013; Bouali et al., 2014). This present review
collated information on the microbial spectra associated with
the rhizosphere of P. australis and the physiological response of
the reed to environmental stress as well as the reed-microbes
interaction that promotes the growth of the reed and enhance
its bioremediation potential in the reclamation of land for
agricultural use.

DISTRIBUTION, IMPACT, AND USES OF
PHRAGMITES AUSTRALIS

The common reed originates from Europe. However, traces
of a North American origin exist (Saltonstall, 2002). Research
involving molecular markers showed that the species that were
not a native pedigree of the reed were introduced in North
America, and these species are behind the sporadic increase of
the reed in North America (Chambers et al., 1999; Saltonstall,
2002). Catling andMitrow (2012) pointed out that the abundance
of the reed in North America is an attribute of the sporadic,
but similar-looking European subspecies of the reed. Pollution,
eutrophication, and shoreline development are notable factors
contributing to the distribution and abundance of the reed
in North America for the past 150 years (Marks et al., 1994;
Chambers et al., 1999). Chambers et al. (1999) further reported
that the distribution and abundance of the reed increased across
the continent.

Very little is known about this reed on the African continent.
However, some work has been done in southern Africa where
P. australis is considered native based on pollen fossil records

which point to presence in the southern African region since
the Late Quaternary period (Scott, 1982). Due to intense mining
in South Africa and the need to rehabilitate mine dumps and
acid mine wetlands, this reed has been very important as a
primary remediator of many of these polluted sites. This led to
the prevalence of the common reed in aquatic and semi-aquatic
areas especially in riverbeds and wet places (Gibbs et al., 1990;
Van Oudtshoorn, 1999; Leistner, 2000) as well as in various heavy
metal polluted areas adjacent to the mines. The common reed
displaces indigenous vegetation through its competitive ability
hence reducing the biodiversity of native plants (Catling and
Mitrow, 2012). It forms thickets of vegetation because of high
biomass formed by the reed leading to the blockage of light
rays needed for the growth of the native fauna. Consequently,
native plants less competitive than P. australis receive less
sunlight, photosynthesize poorly, and are eventually crowded out
and displaced.

Physiologically, the reed produces gallic acid which is broken
down in the presence of ultraviolet light rays to form mesoxalic
acid, a toxic chemical that hinders the growth of susceptible
plants and seedlings native in the area (Thimmaraju et al., 2009).
Controlling the growth of this common reed is a global concern
and burning of the reed and its use as a forage for goats (Jolly,
2017) are believed to be themost effective methods for its control.
The reed has some important uses despite its negative impact to
the environment and biodiversity. The reed is used in weapon
production like spears used for game hunting. It also provides
shelter for birds and other kinds of animals. Some of its parts like
the rootstocks are ground into flour or made into a thin liquid
food of oatmeal and can be roasted in a moist state and eaten
(Peterson, 2010). The reed is also known for its bioremediation
role in most polluted environments because of its ability to strive
well in harsh conditions and the microbe-plant interaction that
is predominant with reeds and promote their growth as well as
enhance their remediation potential.

MICROBIAL CONSORTIA ASSOCIATED
WITH PHRAGMITES AUSTRALIS IN
ENVIRONMENTAL REMEDIATION

Plants are inhabited by microbes either as endophytes or
as exctophytes or as pathogens. As colonizers of plants,
microbes form either mutually beneficial relationships with
plants playing crucial roles in recycling of nutrients and
breaking down of pollutants (Srivastava et al., 2017; Lyu
et al., 2020). Plant parts which are most likely inhabited
by ectophytes are those which have high nutrient levels
such as secretion organs. The rhizosphere is one of the
environment-plant interfaces most colonized by ectophytic
microbes and provides environment laden with oxygen and
nutrients for microbes’ proliferation (Stottmeister et al., 2003).
Microorganisms dominating the rhizosphere of macrophytes
have been recorded to play important biological functions which
include nutrient acquisition (Pii et al., 2015) that enhances
growth and fitness, disease suppression (Mendes et al., 2011),
and stress tolerance of the macrophytes (de Zelicourt et al.,
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2013). These important plant–microbe interactions have led to
expanded research into these associations and how they impact
the remediation potentials of the macrophytes.

Remediation of polluted environments by plants is partly
dependent on the interaction between plants and their associated
microbes. Plant growth-promoting rhizobacteria in synergy with
the associated plant have been proven to play a major role
to clean-up of pollutants from polluted soils. However, several
endophytes, mycorrhizae and algae contribute immensely to
environmental remediation. Root zone microbes have been
beneficial in constructed wetlands to remove soil contaminants.
The interplay of root zone microbes in association with plants
has been revealed in a plethora of studies which include the
study by Zhang et al. (2021) which showed that adjusting plant-
bacteria interactions in the rhizosphere community of plants is
an important aspect of phytoremediation. Similarly, Wang et al.
(2020) found that the presence of denitrifying bacteria, in the root
zone, guarantees high NO3-N removal efficiency from saturated
soils. These established principles form the basis of constructing
efficient wetlands for the removal of contaminants from soil.

Constructed wetlands have been adopted for the past decades
in the remediation of contaminated environments because the
method is cost-effective and devoid of any environmental
damage (Kadlec and Wallace, 2008; Li et al., 2013; Zou et al.,
2013; Bouali et al., 2014). Chandra et al. (2012) pointed out
that P. australis has been employed in wetlands remediation
of contaminated environment in both tropical and temperate
part of the world. Ravit et al. (2003) stated that the plants’
high biomass, root depth, ability to thrive well and breakdown
pollutants, and ability to adapt easily are the bases upon which
the reed and other species of plants used in bioremediation are
selected. However, the effectiveness of the constructed wetlands
in the treatment of polluted environment is dependent on the
microbial consortia present in the rhizosphere of plant species
selected for the bioremediation (Tian et al., 2014). Some of these
microbes enhance plants’ development (Jiang et al., 2013) and
possibly promote the bioremediation process.

Shaw et al. (2006) views the rhizosphere as an exceptional
zone around the root that is known for complex biological
activities involving many microorganisms. Raaijmakers et al.
(2009) pointed out that among the various microbes present
in the rhizosphere, bacterial populations play a vital role in
most activities in the rhizosphere because of their high level
of host specificity. The various communities of bacteria present
in the rhizosphere assist plants in the acquisition of inorganic
nutrients, promote nitrogen uptake as well as protecting plants
against attack by pathogenic fungi (Cocking, 2003; Berg et al.,
2005; Uroz et al., 2007). Because of the importance of bacteria
in natural ecosystems, it becomes necessary to unravel the
bacterial diversity and possibly the bacteria-plant interactions in
the habitats and how they aid in polluted land reclamation for
crop production.

Microbial consortia of many wetland plants’ roots have been
investigated via culture-dependent andmolecularmethods (Jiang
et al., 2013; Li et al., 2013; Abed et al., 2018). The era of high-
throughput genomic technologies accelerated the discovery of
root zones microbes as well as their biological activities. The

uncovering of the microbial consortia and microbial metabolic
activity was through the new fields of metagenomics and meta
transcritomics. Notably studies include Kumar et al. (2018) which
uncovered the rhizobacteria population composition of barley
and alfafa in oil-contaminated soils. Another noteworthy study
is that of Brereton et al. (2020) which cataloged the rhizosphere
microbiome of Festuca arundinacea, Salix miyabeana and
Medicago sativa in contaminated soil. In addition, Kalu et al.
(2021) investigated the fungal and metabolome diversity of
rhizosphere and endosphere of P. australis in an acid mine-
polluted environment. Furthermore, Mang and Ntushelo (2021)
investigated the influence of acid mine water on the diversity and
metabolite shift of microbial populations of the common reed.
Obieze et al. (2020) investigated the functional attributes and
response of bacterial communities to nature-based fertilization
during hydrocarbon remediation. Bledsoe et al. (2020) observed
increased bacterial diversity in bulk soils and plant rhizospheres
in a long-term nutrient enriched oligotroph-dominated wetland.
Hu et al. (2021) investigated the composition and co-occurrence
patterns of P. australis rhizosphere bacterial community and
observed the characterization of the rhizosphere by Arthrobacter,
Pseudomonas, Trichococcus, and Ramlibacter that also played
a crucial role in the regulation of plant fitness and nutrient
cycling. Lyu et al. (2020) observed that bacterial phyla enriched
in the rhizosphere of P. australis were found to be putative
keystone taxa andmight be involved in the regulation of bacterial
interactions and plant growth. The investigation of the sediment
microbiomes associated with the rhizosphere of emergent
macrophytes in a shallow, subtropical lake by Huang et al.
(2020) suggested that rhizosphere microbiome communities
are influenced by the presence of macrophyte roots, with
oxygenated rhizosphere and surface sediment communities being
more diverse, and organized into more interconnected co-
occurrence networks.

Metatranscriptomic studies which have accelerated our
understanding of rhizosphere microbes in relation to
phytoremediation include those by Yergeau et al. (2018)
and Gonzalez et al. (2018) which both revealed the
metatranscriptomics of the root zone in plants growing in
contaminated soils with huge implications for phytoremediation.
The exudates from the roots of plants are known to promote the
growth and actions of rhizosphere associated microbes (Jiang
et al., 2013; Zou et al., 2013). Most of the constructed wetlands
are based on the principle of microbes-host plant interaction
enhanced through the exudates from the plant. Abed et al.
(2014) pointed out that there are very little wetlands built for
bioremediation of oil polluted water. Few studies done fronted
well-constructed wetlands as an effective bioremediation method
for hydrocarbons contaminated water (Zou et al., 2013; Tian
et al., 2014). One of the largest surface flows constructed wetland
system in Oman, Arabian Gulf region, for oil-produced water
remediation is predominated by P. australis (Abed et al., 2014).
However, the knowledge of the microbial consortia of the reed’s
rhizosphere in oil-polluted wetlands is still minimal. Abed et al.
(2018) reported bacterial communities in the rhizosphere of the
reed from an oil-polluted wetland using molecular (Illumina
MiSeq sequencing) and culture-based methods, and showed that
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the dominant phyla belonged to Proteobacteria, Bacteriodetes,
and Firmicutes.

Integration of constructed wetland into the landscape could
provide an efficient remediation of organic pollutants (Lorah
and Voytek, 2004). Phragmites sp. and Typha angustifolia
known as wetland plants have been shown in various studies
to possess the potential of remediating chlorinated pollutants
(Ma and Burken, 2002; Miglioranza et al., 2004; Zhang et al.,
2005; Gomez-Hermosillo et al., 2006; Monferran et al., 2007;
Ma and Havelka, 2009; Faure et al., 2012; San et al., 2013).
Furthermore, some studies done have shown that most
mineralization of recalcitrant organic contaminants occur at the
rhizosphere (Kuiper et al., 2004; Krutz et al., 2005; Kidd et al.,
2008; Gerhardt et al., 2009). A study of San et al. (2014) used
pyrosequencing approaches to show that the rhizosphere of the
reed in organochlorine contaminated soil were dominated by the
phyla Proteobacteria. Furthermore, they identified Sphingomonas
sp., Pseudomonas sp., Devosia sp. and Sphingobium sp. to be
persistent in the organochlorine’s environment indicating
them as potential bioremediation microorganisms. Ding
et al. (2021b) identified the following genera Rhodobacter,
Catellibacterium, Hydrogenophaga, Geothrix and Aeromonas as
colonizers of the rhizosphere of P. australis and these facilitate
the removal NH+

4 -N and chemical oxygen demand from the
constructed wetland.

The significance of microbes-plant interaction has
prompted many studies to be focussed on the interactions
between microbes and P. australis. In wetlands colonized
by the reed, the endophytic bacteria clustered into phyla
Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria and
small portion of unidentified bacteria have the potential
to promote phytoremediation (Li et al., 2010). However,
Borsodi et al. (2007) observed less diverse periphyton
bacterial communities that were clustered into phyla
Proteobacteria, Firmicutes and Actinobacteria in the reed
using culture-dependent methods. Vladàr et al. (2008) identified
Desulfovibrio, Desulfotomaculum, and Desulfobulbus as the
reed rhizosphere’s sulfate-reducing bacteria. Work done by
Zhang et al. (2013) on bacterial diversity of the rhizosphere
of three ecotypes of the reed using the pyrosequencing
approach showed the following phyla Proteobacteria,
Actinobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes
and Planctomycetes to be the dominant bacterial cluster
although differences in bacterial diversity existed in the
different ecotypes.

A brief description of the roles of the bacterial communities
colonizing the rhizosphere of P. australis provided an indication
of their role in enhancing the growth of this reed, promoting their
bioremediation ability necessary to reclaim polluted agricultural
lands for expanded agricultural production. The genera
Methylophilales, Nitrosomonadales, and Desulfuromonadales
belonging to the phylum Proteobacteria have been reported
to play a crucial role in nitrogen, sulfur, and global carbon
recycling that enhances the growth of the reed and promote
their phytoremediation ability (Ansola et al., 2014). Bacteroidetes
has been reported to be actively involved in nitrogen fixation, a

major component of the nitrogen cycle needed to enrich the soil
and promote crop production in various species of halophytes
(Alishahi et al., 2020). Cyanobacteria promote degradation of
organic pollutants and enhance the process of the carbon cycle
(Savage et al., 2010; Wang et al., 2016). Betaproteobacteria has
varieties of ammonia oxidizing bacteria that enhance the removal
of excess nitrogen that could constitute a major challenge to
the growth of crops (Wang et al., 2013). Other denitrifying
bacteria associated with the rhizosphere of P. australis include
Catellibacterium (Kong et al., 2019), Hydrogenophaga (Xing
et al., 2018), Aeromonas (Sun et al., 2019), and Geothrix (Zhang
et al., 2010). Sediminibacterium was reported to play vital role
in the biodegradation of vinyl chloride (Wilson et al., 2016).
Acidovorax enhances the removal of heavy metals (Zhang
et al., 2019). Geobacter promotes the removal of amino acids
and organic acids in systems under suitable conditions (Lu
et al., 2015). Bacillus biodegrades various organic compounds
necessary for dissolved organic carbon reduction (Guan et al.,
2015). Nitrosospira ammonia oxidizing bacteria promote
nitrogen cycling (Dong and Reddy, 2012). Flavobacterium
promotes denitrification treatment nitrogenous contaminants
(Pishgar et al., 2019). Thauera stimulate organic matter removal
through enzyme secretion pathway that enhances chemical
oxygen demand removal efficiency (Sanchez et al., 2018). The
above alluded roles of these bacterial communities colonizing
this rhizosphere of this reed contribute immensely to the growth
of the reed while promoting the bioremediation potential as well
as reclamation of contaminated agricultural land and enhancing
agricultural production.

As previously mentioned in this review, the advancement
in the sequencing technologies and computational analysis
have unveiled knowledge on spectra of microorganisms which
colonize the rhizosphere. Alegria et al. (2016) stated that the
wetland plants microbiota could promote phytodepuration.
Pietrangelo et al. (2018) showed composition and functional
capability of bacteria microbiota of the rhizosphere of P. australis
and T. latifolia using Illumina MiSeq sequencing techniques
that the rhizosphere is dominated by Actinobacteria, Firmicutes,
Proteobacteria, and Planctomycetes. However, the microbiota
assemblage compositions and their potential contribution to
phytodepuration needs further research. Table 1 provides a
summary of the microbial spectra associated with P. austrialis in
the remediation of polluted environments.

Aquatic macrophytes control their physiological activity
to enhance their adaptation to changes in the environment.
P. australis enhances its ability to survive under flooding
conditions by increasing the rate of evapotranspiration to
enhance its protection and uptake of nutrients (Zhao et al.,
2012; Srivastava et al., 2014). Furthermore, these macrophytes,
through plant residue decomposition, nutrients uptake, and
root exudates, modify the physiochemical parameters of the
soil to enable their proliferation and possibly the remediation
of the environment (Luigimaria et al., 2014; Hallin et al.,
2015; Packer et al., 2017). Hence, the next subsection of this
review looked at the physiological response of P. australis to
environmental stress.
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TABLE 1 | Summary of the microbial spectra associated with P. australis in the remediation of polluted environment.

Remediation sites Source of microorganism Methods of identification Phylum/Family of organisms References

Oil-polluted wetlands Rhizosphere Molecular (illumina MiSeq

sequencing) and culture-based

Proteobacteria,

Bacteriodetes, and

Firmicutes

Abed et al. (2018)

Organochlorines

contaminated sites

Rhizosphere Molecular (Pyrosequencing

approach)

Proteobacteria San et al. (2014)

Constructed wetland Endophytes Culture-independent method

and

Proteobacteria,

Firmicutes,

Bacteroidetes,

Fusobacteria

Li et al. (2010)

Lake Periphyton Samples Culture-based method Proteobacteria,

Firmicutes and

Actinobacteria

Borsodi et al. (2007)

Lake Rhizosphere Culture-based and molecular

method

Proteobacteria

Firmicutes

Vladàr et al. (2008)

Natural wetland Rhizosphere Molecular method

(pyrosequencing)

Proteobacteria,

Actinobacteria,

Bacteroidetes,

Gemmatimonadetes,

Planctomycetes,

Acidobacteria,

Aquificae,

Caldiserica,

Chlamydiae,

Chlorobi,

Chloroflexi,

Cyanobacteria,

Deferribacteres,

Deinococcus-Thermus,

Elusimicrobia,

Fibrobacteres,

Lentisphaerae,

Planctomycetes,

Spirochaetes,

Tenericutes,

Verrucomicrobia

Zhang et al. (2013)

Natural wetland Rhizosphere Illumina MiSeq sequencing

techniques

Actinobacteria,

Firmicutes,

Proteobacteria, and

Planctomycetes

Pietrangelo et al. (2018)

Tailing dam of Mintails Mogale

Gold Mine and Sibanye Gold

Mine

Rhizosphere and endosphere MiSeq high-throughput

technology

Ascomycota and

Basidiomycota

Kalu et al. (2021)

Constructed wetland Rhizosphere Quantitative polymerase chain

reaction (qPCR)

Rhodobacter,

Catellibacterium,

Hydrogenophaga,

Geothrix and

Aeromonas

Ding et al. (2021b)

PHYSIOLOGICAL RESPONSE OF
PHRAGMITES AUSTRALIS IN STRESSED
ENVIRONMENT

Response of plants to environmental stress is dynamic and it
involves physiological, metabolic, andmolecular responses which
all constitute plant fitness. Some plants only survive stress but
have their growth and reproduction retarded. However, some
survive and still manage to grow and proliferate in the presence
of stress. The focus of this section is the physiological response

of P. australis to stress in polluted environments. The authors
demonstrate the unique physiological response which enables P.
australis dominance in polluted environments.

Physiological response of plants and microorganisms in
a stressed environment varies with the types and levels of
stress. The physiological response involves the production
of metabolites that promotes their survival or remediation
potential. In view of the ability of P. australis to thrive well
in stressed environments, a myriad of studies investigated
the physiological dynamics of this reed when growing under
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stressed environments as a factor that contributes to their
survival. Majken et al. (2005) showed that P. australis responds
physiologically to water deficit stress through the production
of the metabolite proline. Proline is believed to enhance the
plant survival in the water deficit environment. In a regime of
drought and flooding Wen et al. (2017) found that P. australis
net photosynthetic rate, stomatal conductance, intercellular CO2,
and transpiration rates decreased with prolonged drought stress
and the delay in subsequent flooding after the drought. However,
this reed is able to increase its physiological response even before
it receives flooding under which it copes better. This shows a
balance between water conversation and growth. This is probably
a coping measure to conserve water to ensure water retention
within the plant during water scarcity but on the other hand,
maintain a foliage that allows the plant to undertake its various
biological and ecological functions. In the saline-alkaline marsh
in which the reed was growing, it accumulated more Na+ in the
shoots after long-term drought stress showing a self-regulatory
mechanism of ion balance in different organs with increasing
drought stress. Most recently, Ding and Sun (2021) found that
various depths of flooding of P. australis triggered varying
physiologic responses with leaf blades maintaining high enzyme
activity and proline content while leaf sheaths maintained the
greatest amount of soluble protein again demonstrating an
orchestrated physiological response to flooding characterized by
tissue specialization.

Similarly, in an earlier study Ding et al. (2021a), in a
more targeted P. australis study about the role of tissue in
partitioning various metals found that leaf sheaths had the
highest potential to store metals of all the organs observed.
The highest translocation factor for Fe was observed from the
stems to the leaf sheaths and a higher bio-concentration factor
for Mn was found in the leaf blades and leaf sheaths with
Cd and Zn higher bio-concentration factors observed in the
stems. This demonstrated tissue specialization in P. australis
in stress resistance. Investigating the enrichment characteristics
and biological response of P. australis to sulfamethoxazole and
ofloxacin residues, Lv et al. (2020) found that sulfamethoxazole
and ofloxacin accumulated in the plant in the rank root >

leaf > stem and accumulation and transport of ofloxacin was
higher than that of sulfamethoxazole. Besides these few studies,
other studies have uncovered the physiologic responses of P.
australis to stress and found results which have implications
for the use of this reed as a phytoremediator. This includes
the study of Wu et al. (2020) who investigated the responses
of P. australis to Cu stress using a combined approach which
employed morphology, physiology, and proteomics. Dayou et al.
(2021) investigated trait-based adaptability of P. australis to
the effects of soil water and salinity in the Yellow River
Delta. The authors observed reduction in the average height
and stem diameter with increase in leaf water content and
thickness as well as salinity stress tolerant strategy in P. australis
that enables the reed to dominate the river. Wahman et al.
(2021) evaluated the changes in the metabolome profiles of
P. australis when exposed to stress caused by drugs using a
serial coupling of reversed-phase liquid chromatography and
hydrophilic interaction liquid chromatography combined with

accurate high-resolution time-of-flight mass spectrometer (TOF-
MS) and observed variation in the metabolites shift in respect
to different drugs. Strikingly, an increase in the production
of quercetin was observed by the authors in the plant after
diclofenac incubation.

Pflugmacher et al. (2001) observed the production of
glutathione conjugate and cysteine conjugate in all cormus part
of P. australis in the complete metabolism of cyanobacterial
toxinmicrocystin and enzymes such as glutathione S-transferases
(sGST) that enhances the complete breakdown of the toxins.
Sauvêtre et al. (2018) observed the production of metabolites
involving GSH conjugation and 2,3-dihydroxylation, as well as
acridine related compounds in Armoracia rusticana (hair root
culture) treated with endophytic bacteria from P. australis in
response to carbamazepine (CBZ) exposure. Carbamazepine is
known as a recalcitrant pharmaceutical pollutant in the aquatic
environment. In their work, higher removal rate of CBZ and
metabolite production were observed when the endophytes were
introduced. This implied that the endophytes could enhance the
development of the plant and promote the breakdown of CBZ.

In addition, Luisa et al. (2004) reported increased production
of phytochelatins, and antioxidant enzymes such as glutathione
reductase, glutathione-S-transferase, catalase, ascorbate
peroxidase, dehydroascorbate reductase, guaiacol peroxidase
in P. australis when exposed to increased concentration of
Cd. Sulaiman and Alfadul (2013) also observed increased
production of metabolites such as malondialdehyde, aspartate,
glutamate, serine, histidine, glycine, threonine, cysteine, valine,
methionine, phenylalanine, isoleucine, leucine, lysine, proline,
and the activities of antioxidant enzymes such as superoxide
dismutase, catalase, ascorbate peroxidase, glutathione peroxidase
and peroxidase in response to the increase concentration Cd,
Zn, Cu, and Pb. P. australis’ increase production of metabolites
and antioxidant enzymes are stress response of the plant to
the increase concentrations of heavy metals which enhance
its survival and sequestration of heavy metals by the plant.
Table 2 provides a summary of metabolites produced as well as
synthesized enzymes by P. australis in a stressed environment.
The interaction between P. australis and associated rhizospheric
microbes and endophytes is believed to initiate physiological
response leading to the production of diverse metabolites either
by the reed or associated microbes that have the tendency to
promote growth and bioremediation potential of the reed.

INTERACTION OF THE STRESS INDUCED
PHYSIOLOGICAL RESPONSES AND
RHIZOSPHERE MICROBES OF
PHRAGMITES AUSTRALIS AS
FACILITATOR OF GROWTH AND
BIOREMEDIATION POTENTIAL OF THE
REED

The plant environment from the roots to the apex is a
continuum of physiological and metabolic activity under various
influences either internal such as genetic or external such
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TABLE 2 | Summary of the metabolites produced, and enzymes synthesized by P. australis in response to stress.

Causes of the stress Metabolites produced Enzymes secreted Suggested purpose of

metabolites and enzyme

secretion

References

Water deficit Proline Maintaining the water level

of the plant for its survival

Majken et al. (2005)

Cyanobacterial toxin

microcystin (MC-LR)

Glutathione conjugate and

cysteine conjugate

Glutathione S-transferases

(sGST)

Breakdown of the toxin Pflugmacher et al. (2001)

Carbamazepine (CBZ) GSH conjugation and

2,3-dihydroxylation, as well

as acridine related

compounds

Breakdown of recalcitrant

pharmaceutical pollutant

(CBZ)

Sauvêtre et al. (2018)

Cadmium (Cd) Phytochelatins (PC) Glutathione reductase,

Glutathione-S-transferase,

Catalase,

Ascorbate peroxidase,

Dehydroascorbate

reductase,

Guaiacol peroxidase

Removal of Cd Luisa et al. (2004)

Cd, Zn, Cu, and Pb Malondialdehyde (MDA),

Aspartate,

Glutamate,

Serine,

Histidine,

Glycine,

Threonine,

Cysteine,

Valine,

Methionine,

Phenylalanine,

Isoleucine,

Leucine,

Lysine,

Proline

Superoxide dismutase,

catalase, ascorbate

peroxidase, glutathione

peroxidase and peroxidase

Removal of the heavy

metals

Sulaiman and Alfadul (2013)

Presence of drugs Quercetin Removal of the drugs from

the environment

Wahman et al. (2021)

as the environment characterized by the climate, ecological
interactions, and the condition of the soil. Given this proven
fact, it is logical that rhizosphere microbes influence the response
of the plant to environmental stress. This has been proven in
many studies, but we limit our focus on the effect of rhizosphere
microbes on the physiological responses of P. australis to stress,
in particular stress related to soil pollution. We also look at
the use of rhizosphere microbes to improve the bioremediation
efforts of P. australis. These include the use of rhizosphere
microbes to first degrade complex chains of pollutant compounds
into their smaller subunits for easier adsorption by the reed.

For the reclamation of polluted land needed for the growth
of crops and sustainability of agricultural production, there
is a serious need to unravel various microbial communities
in association with stress resistant plants which include
macrophytes like P. australis and the physiological mechanisms
adopted by the plants that could aid in the remediation of
the contaminated land. Toyama et al. (2009) evaluated the
biodegradation of bisphenol A (BPA) and bisphenol F (BPF) in
rhizosphere sediment of P. australis. Bisphenols are endocrine
disrupting chemicals with the potentials to cause adverse
effect on human health and other animals when released on

land and absorbed by crops (Chen et al., 2002; Crain et al.,
2007). Consequent upon the adverse effect of bisphenols, there
existed the need to remediate the environment contaminated
with these chemicals. The authors observed a high rate of
BPA and BPF removal and the presence of A BPA-degrading
bacterium, Novosphingobium sp. strain TYA-1, and a BPF-
degrading bacterium, Sphingobium yanoikuyae strain TYF-1. The
results suggested that the interactions of P. australis and these
bacteria can speed up the rate of removal of bisphenols from the
sediment (Toyama et al., 2009).

Nejla et al. (2014) examined the phytoremediation potential
of P. australis grown in pentachlorophenol and cadmium
co-contaminated soils. They observed significant positive
correlation between soil dehydrogenase activity (DHA) and
pentachlorophenol (PCP) removal in planted soil implying that
P. australis enhanced the biodegradation of PCP through the
activities of enzymes and the microorganisms in the rhizosphere
of the plant. The degradation of cyanobacteria toxin microcystin
by P. australis (Pflugmacher et al., 2001) provided a good
indication of the application of the reed in the bioremediation
of polluted agricultural land and the reclamation of the land for
agricultural practices. Physiology and rhizosphere microbiology
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TABLE 3 | Remediation ability of P. australis in diverse polluted environment.

Nature of the environment Bioremediation potential References

Fe contaminated 100% bioaccumulation of Fe Batty (2003)

Cu, Cd, Ni, Pb, and Zn contaminated aqueous solution Adsorption of Cu, Cd, Ni, Pb, and Zn Southichak et al. (2006)

As and Sb contaminated Removal of As and Sb Ghassemzadeh et al. (2008)

Cu contaminated High Cu tolerance Ali et al. (2002)

Zn and Mn contaminated High root accumulation of Zn and Mn Peltier et al. (2003)

Cu, Cd, Cr, Ni, Fe, Pb and Zn contaminated Removal of Cu, Cd, Cr, Ni, Fe, Pb and Zn Menka and Tripathi (2015)

Cd, Cr, Hg, Mn, Ni, Pb, and Zn contaminated Cd, Cr, Hg, Mn, Ni, Pb, and Zn accumulation in the order

root> rhizome> leaf> stem

Bonanno and Lo Giudice

(2010)

As and trace metal contaminated Phytostabilization of As and trace metals Paola et al. (2018)

Cd, Cu, Pb, and Zn contaminated sediments Bioaccumulation of Cd, Cu, Pb, and Zn Fawazy et al. (2012)

Trace elements (Ag, Al, As, B, Ba, Be, Co, Fe, Mo, Pd,

Pt, Rh, Sb, Se, Sr, Tl, and V) contaminated

Removal of Ag, Al, As, B, Ba, Be, Co, Fe, Mo, Pd, Pt,

Rh, Sb, Se, Sr, Tl, and V in the order

root>rhizome>leaf>stem

Bonanno (2011)

Co, Cr, Cu, Fe, Cd, Ni, Mn, and Zn contaminated High bioaccumulation of Co, Cr, Cu, Fe, Ni, Mn, and Zn

in the roots and Cd, and Pb in the leaves

Rzymski et al. (2014)

Heavy metal (Co, Ni, Mo, Cd, Pb, Cr, Cu, Fe, Mn, Zn and

Hg) and trace metal (As, Se, Ba) contaminated estuarine

sediments

Decrease the metals in the order Fe > Mn > Zn > Pb >

Ba > Cr > As > Cu > Ni > Co > Mo > Cd > Se > Hg

Cicero-Fernández et al.

(2017)

Bisphenol A (BPA) and bisphenol F (BPF) contaminated High rate of BPA and BPF removal in the presence of A

BPA-degrading bacterium, Novosphingobium sp. strain

TYA-1, and a BPF-degrading bacterium, Sphingobium

yanoikuyae strain TYF-1) in the rhizosphere sediment of

P. australis

Toyama et al. (2009)

pentachlorophenol and cadmium co-contaminated soils Enhancement of the biodegradation of PCP through the

activities of soil dehydrogenase (DHA) and the

microorganisms in the rhizosphere of the plant

Nejla et al. (2014)

Butachlor contaminated Degradation of butachlor Yang et al. (2011)

Urban runoff treatment Reduction of biological oxygen demand (BOD), and

remove large amount of nitrogen

Byoung-Hwa and Miklas

(2007)

Cyanobacterial toxin microcystin (MC-LR) contaminated Complete remediation of cyanobacterial toxin

microcystin (MC-LR)

Pflugmacher et al. (2001)

Ni and Pb contamintated Lake Burullus, Egypt Phytoextraction of Ni and Pb Eid et al. (2021)

were also completed in the work of Fahid et al. (2020) who
found that P. australis vegetated with three bacterial strains
belonging to Acinetobacter and Bacillus had an improved
capacity of hydrocarbon extraction from diesel contaminated
water. Likewise, P. australis grew more rapidly in the presence
of the bacteria which were also hydrocarbon degrading strains.
This was more of a complementation exercise as the ability of
the reed to adsorb hydrocarbons was probably because the long
chain hydrocarbons had first been degraded by the bacteria
to make them easier for adsorption by the reed. Plant growth
promotion by rhizosphere microbes of the P. australis has
been proven in several studies, and logically growth promotion
can be seen to aid phytoremediation in places where this reed
grows as a remediator of a polluted site. Riva et al. (2019)
found that cultivable microbes isolated from the rhizosphere
and the interior of P. australis in a constructed wetland in
Morocco improved growth of Juncus acutus. Some of the
strains improve the growth of J. acutus and its ability to remove
azo-dyes. This indicates that the rhizosphere of P. australis is an
enrichment niche for microbes which can be effectively used in
phytoremediation even using a different plant species. Similarly,

Saleem et al. (2019) investigated the feasibility of P. australis in
combination with Acinetobacter, Bacillus, and Pseudomonas in
phenol degradation. The authors observed the colonization of
the reed’s rhizosphere by the microbes which aid in their growth
and phenol degradation.

You et al. (2021) investigated the effect of arbuscular
mycorrhizal fungi on the growth and toxic element uptake by
P. australis under Zn/Cd stress. The authors observed that the
reduction of Zn and Cd toxicity in the reed as impacted by
the actions of arbuscular mycorrhizal fungi via the increase
of the reed biomass and regulatory patterns under different
Zn/Cd concentrations. Wu et al. (2020) found that inoculation
of P. australis with arbuscular mychorrhizal fungi can relive
this plant of photosynthesis inhibition caused by Cu stress as a
result, promote the growth of the reed. This study proved the
existence of a symbiotic relationship between the fungi and the
plant, and this can be manipulated in several bioremediation
efforts.Table 3 provided a summary of the remediation potentials
of P. australis. The ability of P. australis to bioaccumulate
heavy metals could be an attribute of the plant’s growing
periods and physiology (Windham et al., 2001). Furthermore, the
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bioremediation potential of P. australis could be attributed to the
interaction between the reed and the associated microbes which
is culminated with a lot of physiological response involving the
production of metabolites and various enzymatic activities that
can enhance the growth of the reed. The association between
P. australis and its rhizosphere microbes has implications for
phytoremediation of wastelands that can be reclaimed for
agricultural use.

Proteobacteria, Bacteriodetes, and Firmicutes, Fusobacteria,
Actinobacteria, and Planctomycetes are the major families of
bacteria dominating the rhizosphere of P. australis. Some
species belonging to this families as well as some arbuscular
mycorrhizal fungi have been found to play major roles in
the biological activities that promotes the growth of the
reed and the reed’s remediation potential. However, further
research is required to unveil other species of bacteria and

other microbes that can promote the growth of P. australis
in polluted environment and enhance the phytoremediation
process necessary for the reclamation of agricultural land for
sustainable agricultural production.
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