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The intercropping of ryegrass and red clover constitutes a sustainable alternative to

mitigate the adverse effects of intensive livestock production on grassland degradation by

increasing forage yield and quality. The implementation of biofertilization technologies has

been widely used to improve soil nutritional properties, and therefore has the potential to

ensure the success of this multicrop system. To determine the impact of bioaugmentation

on forage growth and quality, as well as the associate changes in the rhizosphere bacterial

community, we evaluated the inoculation with two plant growth-promoting bacteria

(PGPB) under reduced nitrogen usage. Overall, Herbaspirillum sp. AP21 had a larger

effect than Azospirillum brasilenseD7 on plant growth. Inoculation withHerbaspirillum sp.

AP21 together with 50% of the required nitrogen rate increased shoot dry weight, crude

protein, and shoot nitrogen content, and decreased the amount of neutral detergent

fiber. PGPB inoculation changed the rhizosphere bacterial community structure, which

associated with forage growth and quality. We conclude that PGPB inoculation has

the potential to improve the growth of the ryegrass-red clover system, decreasing the

requirements for nitrogen fertilization.

Keywords: perennial ryegrass, red clover, forage, fertilization, Herbaspirillum, Azospirillum

INTRODUCTION

The growing demand for livestock is progressively resulting in grassland degradation
and environmental pollution. Therefore, the pressing challenge is to maintain or increase
livestock production, while achieving greater environmental and economical sustainability. This
sustainability can be achieved by introducing practices that result in the reduction of soil erosion,
nutrient deficiency, weed encroachment, and desertification (Sattari et al., 2016). One of the
potential solutions to mitigate the negative environmental impact of intensive livestock production
is the implementation of intercropping systems, as the introduction of forage legume crops in
grass pasture production systems not only improves soil fertility but also allows the efficient
use of water and nutrients, especially under drought conditions (Bi et al., 2019). Grass-legume
intercropping systems increase the productivity and persistence of pastures compared to grass
monocultures (Elgersma and Søegaard, 2018). Nonetheless, the grass-legume mixture is severely
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affected by two environmental factors: drought and soil nutrient
availability, especially nitrogen (N) and phosphorus (Yang et al.,
2020).

The association of perennial ryegrass (Lolium perenne L.)
and red clover (Trifolium pratense L.) represents an example
of a successful grass—legume intercropping (Hammelehle et al.,
2018). Red clover increases pasture yield, as well as N use
efficiency by ruminants due to its nutritional composition
(Eriksen et al., 2014). In addition, legumes can derive a
portion of their N requirements from the atmosphere through
symbiotic biological N fixation. This process influences N
dynamics in soil that can be extended to grass through a
process known as “N transfer” between the legume and the
grass, relying on the N exudation rate from the legume and
its absorption by the grass (McElroy et al., 2016). The benefits
of legume-grass intercropping can be further optimized using
efficient plant growth-promoting bacteria (PGPB), which allows
reducing the application rates of N fertilizers (Liu and Ludewig,
2020).

The PGPB are a group of microorganisms that improve
plant growth by a variety of mechanisms such as symbiotic and
associative N fixation, nutrient solubilization and mineralization
(e.g., phosphorus, potassium, zinc), synthesis of phytohormones
(e.g., indoles, gibberellins, and cytokinins), production of
1-aminocyclopropane-1-carboxylic acid (ACC) deaminase,
synthesis of volatile organic compounds, and induction of
osmolyte accumulation, among others (Ramakrishna et al.,
2019; Moreno-Galván et al., 2020; Romero-Perdomo et al.,
2021). A well-known facultative endophytic bacterial genus with
PGPB traits is Azospirillum (Cassán et al., 2020). Its inoculation
on forage grasses, for instance, has shown to minimize soil
degradation risks while improving mass forage production
(Boddey et al., 2003). The use of Azospirillum allows reducing
the amounts of N-fertilizers applied without compromising
important yield components, such as dry matter and plant
height (Pankievicz et al., 2015; Leite et al., 2019). Another genus
of endophytic bacteria capable of asimbiotically fixing N and
producing phytohormones is Herbaspirillum (Baldani et al.,
2014). This genus has demonstrated biofertilizer potential on
crops, such as rice, corn, and sugarcane (Afzal et al., 2019).
Likewise, Herbaspirillum, can increase the biomass production
of pastures in low-fertility soils without using N fertilization
(Marques et al., 2017). Inoculation with Herbaspirillum also
increased the biomass of Miscanthus sinensis and perennial
ryegrass plants (Straub et al., 2013; Cortés-Patiño et al.,
2021).

Previously, we demonstrated the PGPB potential of
two endophytes to promote the growth of both perennial
ryegrass and red clover under drought and phosphorus
limitation (Cortés-Patiño et al., 2021; Santos-Torres et al.,
2021). Here, we further explored the PGPB potential of
these two bacterial endophytes to facilitate the growth
of an intercropping system conformed by both perennial
ryegrass and red clover. We assessed the impact of their
inoculation on the growth and quality of the system,
and their influence on the diversity of the rhizosphere
bacterial community.

MATERIALS AND METHODS

Bacterial Strains and Inoculants
The PGPB strains Herbaspirillum sp. AP21 (SAMN15498633)
and Azospirillum brasilense D7 (SAMN16830199) were provided
by the Microorganism Germoplasm Collection of Agrosavia,
Colombia. These strains were previously identified by whole
genome sequencing and were characterized as facultative
endophytes (Cortés-Patiño et al., 2021). For routine experiments,
these strains were grown in DYGS culture medium, incubated
at 30◦C, and agitated at 140 rpm for 48 h (Baldani et al., 2014).
For the greenhouse experiment, each bacterial suspension was
homogenized at OD600 = 0.200 and washed twice in a sterile
saline solution (8.5 g L−1 NaCl) to obtain bacterial suspensions
of∼109 CFU mL−1.

Evaluation of Plant Growth-Promoting
Ability Under Reduced Rates of N Fertilizer
The greenhouse experiments were carried out at the C.I.
Tibaitatá of Agrosavia in Mosquera, Cundinamarca, Colombia
(4◦41′43.6′′ N latitude, 74◦12′19.9′′ W longitude; 2,600m above
sea level). A completely randomized experimental design was
used in a factorial arrangement (2 × 4) with ten treatments,
three replicates, and three independent experiments. The first
factor evaluated was N fertilization (50% and 75%) using urea
as the N source. The second factor was PGPB application:
without inoculation, Herbaspirillum sp. AP21, Azospirillum
brasilense D7, and Herbaspirillum sp. AP21 + Azospirillum
brasilense D7. Additionally, two fertilization controls without
PGPB inoculation were included: 0% N and 100% N, totalizing
10 treatments (Supplementary Table 1). Pots with 3 kg of non-
sterilized soil were used for the experiment. This soil is
classified as Vitric Haplustands-AMBc and belongs to the
Andisol order (Soil Science Division Staff, 2017). Its attributes
are the following: pH 5.90, organic matter 53.30 g kg−1,
effective cation exchange coefficient 11.97 cmol kg−1, P 5.00mg
kg−1, Ca 8.71 cmol kg−1, Mg 1.65 cmol kg−1, K 1.38 cmol
kg−1, and Na 0.24 cmol kg−1. Soil was maintained at field
capacity of 80% during the experiment. Perennial ryegrass
(Lolium perenne L) var. One 50 and red clover (Trifolium
pratense L.) plants were sown in each pot with a planting
rate of 60:40 grass-legume (Supplementary Figure 1). Based
on the physicochemical characteristics of the soil and the
conventional fertilization rates used in the field [urea (150 kg
ha−1), diammonium phosphate (DAP) (100 kg ha−1), and KCl
(180 kg ha−1)], 5mL of a solution with the following composition
was applied per pot: 31.30mg L−1 of urea, 80mg L−1 of DAP,
and 25mg L−1 of KCl. The DAP fertilization was carried out
one day before sowing; urea and KCl were applied once the
seeds germinated. The bacterial suspensions, or the sterile saline
solution for the uninoculated control, were applied directly to
the soil surrounding the plant (10mL pot−1). Plant cutting (8 cm
high) was performed every 40 days after sowing.

Plant Tissue Analysis
The experiment was carried out for 120 days. The intercropping
system was inoculated on days 0 and 20 after sowing, and cuts
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were performed two times before collecting samples for analysis.
Plant tissues were oven-dried at 60◦C for 48 h and shoot dry
weight was recorded. The plant material was then ground in
a grinder (Wiley Mill, USA) equipped with a mesh wire of a
1mm opening. The ground material was used to determine the
concentration of crude protein, neutral detergent fiber (NDF),
and N content as nutritional quality indicators. NDF and crude
protein were determined as described by Silva et al. (2009).
Nitrogen concentration in shoot tissue (shoot N content) was
determined by acid digestion (sulfuric acid) using a semi micro-
Kjeldahl distiller KjeltecTM 8100 (FOSS, Denmark) (Silva et al.,
2016).

High-Throughput Sequencing of the Soil
Bacterial Community
Rhizosphere soil was sampled from each pot, mixed between
replicates, and homogenized per treatment and experiment.
Rhizosphere was defined as the soil strongly adhered to the
root (around 2mm) that remained attached after vigorous
shaking and crumbling. Following harvesting, the sampled
soil was mixed and homogenized in a clean plastic bag. A
subsample of each treatment per independent experiment (3
replicates) was placed into 10mL transfer tubes and stored to
−80◦C for further analysis. Total DNA extraction from soil
was performed using the DNeasy PowerSoil R© Kit (Qiagen,
Germany) following the manufacturer’s instructions. The quality
and integrity of the DNA was verified on a 1% agarose gel, and its
concentration and purity were quantified utilizing aNanoDropTM

2000/2000c (ThermoScientific, USA). For construction of the
genomic libraries, a first PCR of the V3-V4 region was
performed using the primers 16S rRNA-515F and 16S rRNA-
806R, modified with pre-adapters (Pacheco-Montealegre et al.,
2020). Platinum TMTaq DNA Polymerase (Invitrogen, UK) was
used for amplification following the PCR conditions: Buffer
(1X), MgCl2 (1.5mM), dNTPs (0.2mM), primers (0.2mM),
and Taq (1U). The PCR program was performed in an
Eppendorf R© thermocycler (Eppendorf, Germany) as follows:
94◦C for 120 s; denaturation: 94◦C for 45 s; annealing: 50◦C for
60 s, and extension: 72◦C for 90 s for 30 cycles; final extension:
72◦C for 10min (Pacheco-Montealegre et al., 2020). The PCR
products were purified using the Agentcourt R© Ampure R© XP
(Beckman Coulter, USA). The second-round of amplification
was performed to include an inline barcode and an Illumina
adaptor. For each sample, 2 µL of first-round PCR were
used, and the same conditions described above were used for
PCR, but only for 12 cycles. The amplicon was again cleaned
using Agentcourt R© Ampure R© XP (Beckman Coulter, USA)
(Quail et al., 2009). All samples were mixed into a single
batch of V3-V4 region-amplicon pools and quantified using a
Qubit Fluorometer (Thermofisher, USA) employing the Quant-
iT dsDNA HS Assay Kit (Thermofisher, USA) and sequenced
in the Illumina MiSeq plataform at the Microbial Genomics
Laboratory of the Molecular Genetics and Antimicrobial
Resistance Unit of Universidad El Bosque, Bogota, Colombia.
The sequencing data were deposited in the NCBI Archive under
Bioproject PRJNA627728.

Data Analyses
ANOVA (p < 0.05) and Duncan’s test were employed to analyze
the plant data and the alfa diversity index. These analyses were
performed using IBM SPSS Statistics 22.0.0.0 (IBM, USA) and
GraphPad Prism 8 (GraphPad Software, USA).

For the analysis of the rhizosphere bacterial community, reads
from 16s rRNA V3-V4 were analyzed using Qiime2 v2019-7
(Bolyen et al., 2019). Quality control and denoise were performed
with DADA2 pipeline (Callahan et al., 2016), retaining reads
with a length of at least 220 base pairs (forward and reverse
reads). Analyses were performed determining the sampling depth
as the maximum number of sequences per treatment, obtaining
the rarefaction curves (Supplementary Figure 2), and using the
median of the number of sequences in the treatments. An optimal
number of representative or non-chimeric sequences obtained
after cleaning and cutting were determined to normalize the
readings for subsequent analyses. In this case, 3,197 operational
taxonomic units were obtained. The taxonomic classification was
performed using the qiime2 plugin q2-feature-classifier based on
a pre-trained naive Bayes classifier and the reference database
Greengenes version 13.8 (http://greengenes.lbl.gov).

Alpha and beta diversity analyses were estimated using the
R packages: Phyloseq version 1.30 (McMurdie and Holmes,
2013), qiime2R version 0.99.13” (Bisanz, 2019), and dplyr version
1.0.3 (Wickham et al., 2020). For alpha diversity, the Shannon-
Weiner index was calculated for observed sequences without
rarefying microbial community data, and the interpretation
was made according to McMurdie and Holmes (2014).
The effect of inoculation and N application on the total
structure of the soil bacterial community was assessed by a
permutational multivariate analysis of variance (PERMANOVA)
(Anderson, 2001) employing the Bray-Curtis distances with
9,999 permutations. A distance-based redundancy analysis (db-
RDA) of the Bray-Curtis dissimilarity matrices using the “vegan”
package was performed to identify the main plant parameters
related to changes in bacterial community structure (Oksanen
et al., 2019).

RESULTS

Inoculation With the Endophytes Improves
Forage Growth Under Reduced N Rates
We established a greenhouse experiment on non-sterile soil,
using single and mixed microbial inoculations, as well as reduced
N fertilization rates, to assess the potential of Herbaspirillum
sp. AP21 and Azospirillum brasilense D7 to improve the growth
and quality of the ryegrass—red clover intercropping system.
The system was inoculated 0 and 20 days after sowing, and
samples were collected after 120 days (Figure 1A). In this
experimental setting, nodulation was observed in all treatments.
Shoot dry weight ranged between ∼32 and ∼40 g pot−1 without
inoculation, and plant biomass gradually increased with the
fertilization rate (Figure 1B). At 50% N and 75% N, for instance,
the plant biomass was∼34 g pot−1 and∼37 g pot−1, respectively,
validating our experimental setup. We observed that at 50%
N, inoculation had a positive effect on shoot biomass. At this

Frontiers in Sustainable Food Systems | www.frontiersin.org 3 October 2021 | Volume 5 | Article 715270

http://greengenes.lbl.gov
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Pardo-Díaz et al. Endophytic PGPB in Intercropping Systems

FIGURE 1 | Timeline of the experiment (A). Effect of the inoculation of the strains Herbaspirillum sp. AP21, Azospirillum brasilense D7, and their co-inoculation with

different nitrogen fertilization rates on plant biomass (B). An untreated treatment was included at all fertilization doses as a control for inoculation. Error bars represent

± standard deviation. Different letters indicate significant differences based on Duncan’s test (p < 0.05). Each value is the mean of three blocks with three replicates

per treatment.

concentration, the largest effect was observed with AP21 and
AP21 + D7, followed by D7 and the uninoculated control
(Figure 1B). The present data thus suggests that AP21 has
a larger potential than D7 to facilitate the growth of the
intercropping system. Notably, inoculation with AP21 and AP21
+D7 at 50%N fertilization resulted in comparable plant biomass
to the 100% N control. This positive effect, however, largely
disappeared when the rate of N fertilization used was 75%.

Inoculation With Herbaspirillum sp. AP21
Results in Increased Forage Quality
We next explored the impact of both strains at the different
N fertilization doses on forage quality. For this, three different
parameters were assessed: crude protein, shoot N content, and
neutral detergent fiber (NDF). Inoculation with AP21 led to a
dramatic increase in protein content, which phenocopied the
100% N control (Figure 2A). By contrast, the effect of D7
was subtle, and no differences were seen compared with the
co-inoculation. The effects due to bacterial inoculation fully
disappeared when the N fertilization rate was increased to 75%.
Overall, shoot N content and protein content exhibited a similar
pattern. As seen before, a positive impact due to inoculation
was only seen at 50% N fertilization (Figures 2A,B). The largest
increase in shoot N content was also observed when AP21 was
used at 50% N fertilization and resembled the N content of the
100% N control (Figure 2B). Finally, we assessed the content of
NDF, which is associated with the digestibility of fiber. Smaller
values of NDF indicate increased digestibility, and therefore
superior forage quality. Noteworthy, the N fertilization rate did
not affect NDF without inoculation (Figure 2C). At 50% N
fertilization, inoculation with either AP21 or D7 resulted in a

significant decrease in NDF; to our surprise, however, the co-
inoculation led to opposite results. At 75% N fertilization, AP21
reduced NDF, while inoculation with D7 or AP21 + D7 only
showed a slight increase compared to the control treatment.

Inoculation With the Facultative
Endophytes Impacts the Rhizosphere
Bacterial Community
Next, we sought to determine how inoculation impacted
the bacterial diversity of the plant’s rhizosphere by using
16S rRNA metataxonomics. Results showed that the bacterial
diversity (alpha-diversity), measured by the Shannon-Weiner
diversity index, responded differently between the inoculated and
uninoculated treatments. Inoculation slightly decreased the alpha
diversity in comparison with the uninoculated treatments at 50%
N fertilization rate. Likewise, at the 75% N dose, the treatments
inoculated with D7 presented a lower alpha diversity (p <

0.05) compared with the uninoculated treatment. Altogether,
these results suggest that the application of the PGPB alters the
bacterial community associated with the rhizosphere, with an
overall decrease in bacterial diversity (Figure 3A).

The distribution of the 20 most abundant orders was studied.
In average, the predominant orders found in the treatments were:
Actinomycetales (28.8%), Rhizobiales (13.5%), Burkholderiales
(12.7%), Pseudomonadales (7.7%), Sphingomonadales (7.5%),
Gemmatimonadales (3.5%), Sphingobacteriales (2.9%),
and Xanthomonadales (2.9%) (Figure 3B). At the family
level the most predominant families were Micrococcaceae
(24.5%), Pseudomonadaceae (8.3%), Sphingomonadaceae
(8,0%), Comamonadaceae (7.7%), Chthoniobacteraceae
(6.0%), Oxalobacteraceae (5.8%), Hyphomicrobiaceae
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FIGURE 2 | Effect of the inoculation on bromatological parameters: crude protein (A), shoot N content (B), neutral detergent fiber (NDF) (C). Error bars represent ±

standard deviation. Different letters indicate significant differences based on Duncan’s test (p < 0.05). Each value is the mean of three blocks with three replicates per

treatment.

(5.3%), Bradyrhizobiaceae (5.1%), and Rhizobiaceae (3.1%)
(Supplementary Figure 3). To evaluate the impact of the
treatments on the structure of the rhizosphere bacterial
community, a multivariate statistical analysis (PERMANOVA)
was used (Table 1). Interestingly, the inoculation with AP21
and D7, regardless of the N rate, changed the structure of the
bacterial community of the rhizosphere (p < 0.05). We did not
observe significant changes in the bacterial community due to
N fertilization.

Relationship Between Rhizosphere
Bacteriome, and Forage Growth and
Quality
To understand how plant growth and quality correlated with
the observed changes in bacterial diversity, we carried out
a distance-based redundancy analysis. The db-RDA explained
53.33% of the diversity variation, where db-RDA1 accounted for
28.21% and db-RDA2 explained 25.12% of the total variance. The
complete model illustrated the relationship between the variables
associated with plant and bacterial diversity (p < 0.05). Besides,

the angle in db-RDA included between the arrows pointing at
two variables determined the correlation between the parameters:
sharp angles defined positive correlations, orthogonal angles
defined no correlations, and obtuse angles defined negative
correlations (Figure 4; Carvalho-Estrada et al., 2020). Crude
protein and shoot N content were the closest correlation
parameters, followed by shoot N content, and shoot dry weight.
Furthermore, we observed a negative correlation between NDF
and crude protein parameters. The treatments inoculated with
AP21, D7, and AP21+D7 fertilized with 50 and 75%N formed a
cluster with the positive control treatment fertilized with 100%N.
This cluster was positively associated with crude protein, shoot N
content, and shoot dry weight increments.

DISCUSSION

The implementation of technologies based on the use of PGPB
has the potential to improve the environmental and economic
sustainability of livestock, via an increase of forage biomass
and quality (Chen et al., 2020; Santos-Torres et al., 2021).
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FIGURE 3 | Variations in the Shannon-Weiner diversity index (A) and relative abundance of bacterial orders (B) in the rhizosphere for inoculation with Herbaspirillum

sp. AP21, Azospirillum brasilense D7, and co-inoculation with Herbaspirillum sp. AP21 + Azospirillum brasilense D7 under different rates of nitrogen fertilization.

Different letters indicate significant differences based on Duncan’s test (p < 0.05). Each value is the mean of three replicates per treatment.

TABLE 1 | Effects of PGPB inoculation and N fertilizer rate on the bacterial community structure expressed as R and F values obtained from a one-way PERMANOVA.

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

Inoculation

1 0.5224 0.5224 1.0971 0.0377 0.0461 *

Residuals 28 13.3332 0.4762 0.9623

Total 29 13.8556 1.000

N fertilizer rate

3 1.4572 0.48572 1.0186 0.10517 0.2519 N.S.

Residuals 26 12.3984 0.47686 0.89483

Total 29 13.8556 1.000

*Significance level (p < 0.05).

N.S., non-significant; Df, degrees of freedom; SumsOfSqs, sum of squares; MeanSqs, mean sum of squares.

In this study, we described the potential of two endophytic
strains to promote the growth and improve the quality of
an intercropping system conformed by perennial ryegrass and
red clover (Figure 5). Our rationale was that inoculation with
the facultative endophytes had the potential to improve plant
biomass and quality by directly stimulating plant growth or
synergistically interacting with the native microbiota.

The effect of microbial inoculation on plant growth was only
seen when the N fertilization dose was 50%. Plant nutritional
stress thus determines the potential of these microbes to
promote growth. Since all plants were nodulated over the
course of the experiment with native rhizobia, this implies
that the incorporated microorganisms account for the observed
differences. Yet, whether these inoculants improve the N fixation

process itself or result in a better establishment of the symbiotic
interaction legume-rhizobia remains to be determined. The
positive effect of rhizosphere microorganisms to support plant
growth under suboptimal growth conditions has been noted
previously (Rojas-Tapias et al., 2012, 2014; Brisson et al., 2019).
The ACC deaminase activity, for instance, has been strongly
associated with the capacity of some microbes to facilitate
plant growth under stressful conditions. The specific relation
between plant nutritional stress and the plant growth potential
of these microbes highlights the importance of this technology to
improve forage growth and quality in environments that impose
stressful conditions.

Inoculation with bacteria reduced the requirement of N and
improved both biomass and quality. Inoculation with AP21 at
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FIGURE 4 | Distance-based redundancy analysis (db-RDA) plot illustrating the bacterial community structure of the rhizosphere in relation to plant parameters. The

db-RDA was significant (p < 0.05).

50% N, for instance, phenocopied the 100% N chemical control
in terms of biomass, total N content, and crude protein. This
positive effect of the inoculants is likely to be a direct consequence
of microbial N fixation, as both microbes are diazotrophs, or an
indirect effect due to their capacity to synthesize phytohormones
or produce ACC deaminase activity (Cortés-Patiño et al., 2021).
The positive effect of these microbes on plant growth and
nutrition has been previously seen in other crops. Inoculation
with Azospirillum on maize, for instance, has shown to increase
grain yield compared with urea fertilization (Martins et al., 2018).
In field conditions, Azospirillum inoculation increased corn and
wheat yield by 27% and 31%, respectively, compared to the
non-inoculated control (Hungria et al., 2010). Inoculation of
rice plants with Herbaspirillum also showed the potential of this
microbe to improve N acquisition under phosphorus limitation
(Estrada et al., 2013). Likewise, Herbaspirillum inoculation with
50% of the N dose in maize crop produced yields comparable
to the treatment with 100% N fertilization and increased grain
quality (Alves et al., 2014).

NDF values were also affected by inoculation with bacteria.
NDF is a quality parameter related to hemicellulose, cellulose,
and lignin representing the entire fibrous part of the forage,
which associates with increased digestibility (Raffrenato et al.,
2017; Hristov et al., 2020). AP21 reduced the levels of NDF

and increased the biomass and N content. Co-inoculation, to
our surprise, resulted in reduced digestibility, but had a positive
effect on growth. At this point, however, it is uncertain how
inoculation affects NDF, since co-inoculation of AP21 and D7
resulted in opposite effects. The positive effect of various PGPB
on the nutrient and dry matter content of different pastures (e.g.,
ryegrass, Brachiaria, and Mischantus) and legumes (e.g., white
clover) has been reported (Zaman et al., 2016; Marques et al.,
2017; Akinrinlola et al., 2018; Leite et al., 2019; Liu and Ludewig,
2020).

Facultative endophytes have the potential to modulate the
growth and quality of the forage by acting within the inner plant
tissue, and by acting on the rhizosphere (Duarte et al., 2020).
This effect can be achieved by directly facilitating plant growth
and development, or by modulating the microbial structure and
diversity of soil (Wang et al., 2021). We observed a decrease in
microbial diversity upon inoculation with both microbes. This
effect is likely a direct result of the addition of AP21 and D7
as inoculants. This shift indeed correlated with an improvement
in the growth and quality of the intercropping system, as
seen in other studies (Wang et al., 2018; Zhong et al., 2019;
Estrada-Bonilla et al., 2021). The capacity of these microbes to
colonize the plant tissue (Cortés-Patiño et al., 2021), potentially
ensures that the mutualist relationship between microbes and
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FIGURE 5 | Inoculation of the intercropping system with Herbaspirillum sp. AP21 brought about changes in the microbial community, which positively correlated with

an increase in plant growth and quality. The concomitant use of AP21 and 50% of the fertilization doses phenocopied the complete fertilization control. The use of this

technology thus reduces the use of N fertilizers, improving the economical and environmental sustainability of the system.

forage takes place, regardless of those changes. Moreover, the
fertilization doses had no effect on the diversity of the bacterial
community, highlighting the importance of the plant genotype
on the composition of the plant microbiome (Chen et al., 2019).

Collectively, inoculation with Herbaspirillum sp. AP21, and
Azospirillum brasilense D7 at a minor extent, reduced the
requirements for N fertilization and improved plant quality,
which concomitantly occurred with changes in the rhizosphere
bacterial community. Inoculation with AP21 at 50% N
fertilization, for instance, phenocopied the complete fertilization
control, thereby suggesting that an equivalent to 75 kg of the N-
fertilizer ha−1 can potentially be substituted in this system by
the implementation of this sustainable technology. Interestingly,
the microbial inoculants had no effect on plant growth when
higher doses of N fertilization were used, suggesting that stressed
plants are more responsive to the positive effects of microbial
inoculation. Localization and functional studies are therefore
needed to understand in detail the mechanisms involved. The
implementation of these ecofriendly technologies has thus the
potential to reduce the implementation of N fertilizers and can
potentially be used as a tool for the restoration of deteriorated
agricultural soils.
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