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Closely integrated crop and livestock production systems used to be the rule in

agriculture before the industrial revolution. However, agricultural landscapes have

undergone a massive intensification process in recent decades. This trajectory has

led to uniform landscapes of specialized cropping systems or consolidated zones of

intensive livestock production. Loss of diversity is at the core of increasing side effects

on the environment from agriculture. The unintended consequences of specialization

demand the reconciliation of food production with environmental quality. We argue

that the reconnection of grazing livestock to specialized crop landscapes can restore

decoupled biogeochemical cycles and reintroduce the necessary complexity to restore

ecosystem functioning. Besides, the reconnection of crops and livestock promotes

several ecosystem services underlying multifunctionality. We focus on the capacity of

integrated crop-livestock systems to create biophysical and socioeconomic resilience

that cope with weather and market oscillations. We present examples of redesigned

landscapes that leverage grazing animals to optimize food production per unit of

land while mitigating the externalities of specialized agriculture. We also debate

mindset barriers to the shift of current specialization trends toward the design of

multifunctional landscapes.

Keywords: biodiversity, ecosystem services, foodscapes, integrated crop-livestock systems, mixed

crop-livestock, resilience

INTRODUCTION

Multifunctional landscapes are those providing multiple ecosystem services (ES) simultaneously
(Lovell and Johnston, 2009; Butterfield et al., 2016). By balancing the delivery of provisioning,
regulating, supporting and cultural ES, the promotion of landscape multifunctionality is critical
to ensure the sustainability of “working lands” (sensu Kremen and Merenlender, 2018) and human
well-being (Millennium Ecosystem Assessment, 2005; Butterfield et al., 2016; Wood et al., 2018;
Fagerholm et al., 2020). However, agricultural landscapes have undergone the opposite trend in
the last decades. The introduction of high yielding crop cultivars, the growing use of chemicals
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(inorganic fertilizers, herbicides and pesticides) and the
development of high-tech machinery have resulted in an
intensive, specialized farming model that has been successful
in maximizing single ES (e.g., food production) but often at
the expense of other fundamental ES, such as biodiversity and
climate regulation (Tilman et al., 2001; Foley et al., 2005; Kremen
and Merenlender, 2018).

The reduced diversity and increased uniformity perceived
nowadays in agricultural landscapes are often a result of
the spatial decoupling between crop and livestock production
(Lemaire et al., 2015). For millennia, the fluxes connecting
them—such crop residues being used to feed livestock and
animal manure serving as the main nutrient source for crop
production—were fundamental to sustain food production in
ancient agricultural societies (Russelle et al., 2007; Bogaard
et al., 2013). Since the “Green Revolution,” however, specialized
cropping systems have increasingly encroached upon natural
ecosystems worldwide, as reported in the Rio de la Plata
grasslands region of South America (Modernel et al., 2016; de
Faccio Carvalho et al., 2021). Ruminant livestock production,
in turn, has moved from extensive grazing systems to feedlots,
or concentrated in pasture areas under increased stocking
rates, frequently resulting in overgrazing (de Faccio Carvalho
and Batello, 2009; Modernel et al., 2016). The creation of
these consolidated zones of specialized production has resulted
in loss of diversity and agroecosystems multifunctionality,
besides environmental issues such as water contamination and
atmospheric pollution (Verhoeven et al., 2006; Gerber et al.,
2013).

The reconnection of crop and livestock production in
integrated crop-livestock systems (ICLS) has been proposed as an
alternative to the kind of specialized agricultural production that
results in landscape uniformization, simplification of ecological
processes and heavy reliance on external inputs (Russelle et al.,
2007; FAO, 2010; Lemaire et al., 2015). In his framework
inspired by the classic paper “The Strategy of Ecosystem
Development” (Odum, 1969), Tracy (2007) identified modern
cropping systems based on monocultures as an example of a
young, developing ecosystem: “highly productive and biologically
simple, but generally unstable and leaky from a mineral cycling
perspective.” In contrast, mature ecosystems are “more stable
and retentive of soil nutrients” and “although less productive,
[they] provide many valuable ecosystem services we depend
on to maintain a high quality of life” (Tracy, 2007). In this
sense, although modern agriculture has been successful in
maximizing food production, mankind also depends on several
other ES to thrive, and those are usually provided by mature
ecosystems. Thus, reconciling these demands is a challenge. For
containing elements of both, ICLS represent a good compromise
between developing ecosystems and mature ecosystems: high
productivity, conferred by the production of crops and livestock,
and a wide range of ES emerging from the complex interactions
and synergies between system components (Tracy, 2007).

In this manuscript, we present the benefits from reconnecting
grazing livestock to previously uniform crop landscapes as an
alternative to restore the multifunctionality lost over decades
of agricultural specialization. We present this framework by

exploring the effects of grazing livestock integration across
different spatio-temporal scales and with different levels of
planned biodiversity as pivotal to the design of future
multipurpose foodscapes (i.e., the landscapes providing humans
and herbivores with nourishment). We also address barriers and
levers in socialscapes (i.e., communities and cultures in close
relationship with foodscapes) that are important to take into
account in the design of agricultural systems where grazing
livestock share space with crops in valuable cropping areas.

RESTORING LANDSCAPE
MULTIFUNCTIONALITY: PLANNED
BIODIVERSITY RECONNECTING GRAZING
ANIMALS TO CROP LANDSCAPES

Rethinking agriculture to shift the focus from the production of
single ES back to a multifunctional perspective where key ES
are integrated (e.g., provision of quality food and water, carbon
sequestration, and promotion of biodiversity above and below
ground) is critical to ensure that food production systems will be
able to feed a growing human population. Besides, climate change
and its associated uncertainties exacerbate the need for resilient
food systems (Foley et al., 2011; Kremen and Merenlender,
2018; Wood et al., 2018). Therefore, considering that biodiversity
loss is a major driver of reduced multifunctionality across all
terrestrial ecosystems (Cardinale et al., 2012; Fanin et al., 2018),
biodiversity-based, resilience-oriented farming practices must be
targeted if the aim is to restore landscape multifunctionality
(Foley et al., 2005, 2011; Kremen and Merenlender, 2018).
Alternatives for the re-diversification of agricultural systems with
associated gains in ES delivery include the use of diversified
crop rotations or polycultures (Kremen and Merenlender, 2018;
Bowles et al., 2020; Guzman et al., 2021), cover crops (Pinto
et al., 2017; Sekaran et al., 2021; Villarino et al., 2021) and
the recoupling of crop and livestock production (Soussana and
Lemaire, 2014; de Faccio Carvalho et al., 2021; Sekaran et al.,
2021).

Increased crop rotation diversity (or “planned biodiversity,”
defined as the biodiversity chosen by the farmer; Brustel et al.,
2018) has been recognized for improving crop yields (Bowles
et al., 2020) and stability in the face of climatic oscillations
(Gaudin et al., 2015; Bowles et al., 2020). These characteristics are
critical for food security in the context of climate change. Also,
polycultures improve the richness and diversity of soil arbuscular
mycorrhizal fungal communities in areas previously managed
under intensive monoculture farming, with applications for
landscape multifunctionality restoration (Guzman et al., 2021).
As part of the “associated biodiversity” (i.e., the component of
agrobiodiversity that emerges from farming practices; Duprat
et al., 2018), these organisms play an important role in nutrient
acquisition, soil structure formation and drought tolerance.

The inclusion of cover crops in agricultural rotations has
also been recognized for providing multiple ES, in such a
way that these plants have been called “service crops” (Piñeiro
et al., 2014; Pinto et al., 2017). Benefits of cover cropping
include reduced soil erosion and compaction, weed suppression,
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improved pollination, nitrogen fixation and reduced leaching,
carbon sequestration and accumulation in soils, and improved
soil aggregation, water retention and drought tolerance (Tonitto
et al., 2006; Piñeiro et al., 2014; Pinto et al., 2017; Reicosky et al.,
2021). Examples of cover crops typically used in Latin America
include grass species such as oats (Avena spp.), Italian ryegrass
(Lolium multiflorum) and signal grass (Urochloa spp.), legumes
such as vetches (Vicia spp.) and clovers (Trifolium spp.), and
others. In general, these forage species are chosen because of their
biomass production potential and feasibility to no-till systems,
which are widely used in many countries.

Despite all those benefits, cover crops lack human-edible
food production (de Faccio Carvalho et al., 2018a) and direct
economic returns (Wittwer et al., 2017). Furthermore, because
crop growers are usually concerned about soil compaction,
millions of hectares are cultivated with non-grazed cover crops
just in the same period that livestock experience feed shortages in
disconnected grazing systems. ICLS, in contrast, can encompass
all these alternatives by using diverse cover crops as high-quality
forage for grazing. When combined with soil conservation
practices such as no-tillage, ICLS can fully exploit the synergisms
and emergent properties of the system (de Faccio Carvalho et al.,
2010).

Grazing of cover crops in annual or perennial cropping
systems is one of the many possible models of crop-livestock
integration (Brewer and Gaudin, 2020). Examples based on
cover crop grazing range from simpler designs where the
same crop rotation takes place repeatedly every year (e.g.,
soybean production followed by temperate grass cover crops
grazed by cattle; de Albuquerque Nunes et al., 2021), to
more complex crop rotations with a greater diversity of crop
species [e.g., Sudan grass (Sorghum sudanense), soybean, maize
and rice in the same area in subsequent summers, followed
by a mixture of Italian ryegrass + white clover (Trifolium
repens) grazed in winter; Carlos et al., 2020]. Cover crop
grazing in perennial systems is well-represented by grazing of
the understory vegetation in orchards (Ramos et al., 2011)
and vineyards (Ryschawy et al., 2021). Other ICLS models
include stubble grazing (Rakkar et al., 2017), sod-based crop
rotations (Katsvairo et al., 2006) and production of dual-purpose
crops (Kirkegaard et al., 2012). The possible designs of diverse
cropping systems connected with livestock are almost unlimited,
expanding across various spatiotemporal scales, ranging from
plot to farm and to the territorial scale (Moraine et al.,
2017).

In this context, reconnecting livestock to specialized crop
landscapes represents the addition of a trophic level in the
planned biodiversity of agricultural systems (de Albuquerque
Nunes et al., 2021). The grazing animal restores routes of nutrient
cycling through forage ingestion and digestion, releasing, in the
form of dung and urine, nutrients with greater lability (Arnuti
et al., 2020) that impact soil stoichiometry. For example, P
bioavailability in the soil increased 32% in grain crop areas
where grazing was reintegrated (Deiss et al., 2016). By acting
as “catalysts” of system processes (de Faccio Carvalho et al.,
2009), grazing animals can both amplify ES provisioning with
the application of best management practices or accelerate land

FIGURE 1 | Conceptual model of states and transitions in agroecosystems as

a function of farming specialization and ecosystem services (ES) delivery. Solid

and dotted lines denote positive and negative effects of the transition on ES

delivery, respectively. Negative transitions could be caused by overexploitation

of resources (e.g., overgrazing) or adoption of aggressive, non-conservationist

agricultural practices (e.g., multi-pass tillage) or industrial livestock production

(e.g., feedlots). Positive transitions could be promoted through sound grazing

management practices (e.g., moderate grazing intensity), conservation

agriculture practices (e.g., no-till and crop rotation diversity) and adoption of

crop-livestock integration. Green arrow indicates that ES provided by

integrated crop-livestock systems are potentially higher depending on

synergisms levels (see explanation in the text). For clarity, only some possible

states and transitions are shown.

degradation through the overexploitation of resources (e.g.,
overgrazing; Figure 1).

While grazers are the dynamic agents driving changes in the
landscape, plants react to grazing management (e.g., grazing
intensity) by signaling the direction (+ or –) of these changes
(e.g., herbage growth rates). The soil environment captures these
impacts by acting as the “memory” of the system (de Faccio
Carvalho et al., 2009). Thus, the reconnection of livestock in
crop landscapes should be planned to explore the synergistic
relationships between these components, rather than simply
producing crops and animal products in the same unit area
to improve farm income; “the whole should be greater than
the sum of the parts” (FAO, 2010; de Faccio Carvalho et al.,
2014). Then, those redesigned landscapes would approach their
potential to enhance the provisioning of ES and rehabilitate
landscape multifunctionality.

RECONNECTING LIVESTOCK AND CROPS
ACROSS MULTIPLE SPATIO-TEMPORAL
SCALES

Landscape multifunctionality depends not only on the
reconnection of crop and livestock production but also on
the distribution of these components over space and time.
Ecosystem services are supplied by ecological functions
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associated with individuals, populations, and communities, and
their spatio-temporal distribution is determined by the inherent
scales in which these organisms operate (Laca, 2021). Because
ES involve flows of matter, energy or information (Cadenasso
et al., 2003), their production varies as a function of how these
ES provisioning agents differ in mobility and perception of
the environment, which is ultimately related to the organism
size (Ritchie and Olff, 1999). As a consequence, ES responses
vary with the spatio-temporal design on which the ICLS are
implemented (Lindborg et al., 2017). Thus, a more complete
and practical understanding of ICLS multifunctionality requires
consideration of the spatio-temporal relations among the crop
and livestock components.

Although some ICLS studies have predominantly focused
on the succession of crops and pastures in the same paddock
(Franzluebbers and Stuedemann, 2008; Acosta-Martínez et al.,
2010; Assmann et al., 2014; Martins et al., 2017; de Albuquerque
Nunes et al., 2021), crop-livestock integration can expand across
various spatio-temporal scales. Importantly, though, only those
designed to explore the synergistic relationships between the
plant-animal-soil components of the system can be considered
effectively integrated (FAO, 2010; de Faccio Carvalho et al.,
2014). Examples of scenarios at different scales range from
systems such as cover crop grazing in the understory of
orchards (Ramos et al., 2011) and vineyards (Niles et al.,
2017), where crop and livestock production are simultaneous
in the same plot (i.e., closely integrated in space and time), to
integration at the landscape or territorial scale (territorial crop-
livestock integration; Moraine et al., 2017), where specialized
crop and livestock farms coordinate exchanges of products or
byproducts such as hay andmanure (Figure 2). Certainmodels of
integration can even involve more than one spatio-temporal scale
simultaneously, such as happens in sheep-vineyard systems of
California, where shepherds are contracted for temporary grazing
to reduce weed competition and fuel load in the understory,
among other benefits (Ryschawy et al., 2021). Although sheep
and vineyards are closely integrated in space and time during the
grazing period, a coordination of actions at the territorial scale is
also required.

BENEFITS AND TRADE-OFFS OF
RECONNECTING LIVESTOCK AND CROPS
AT DIFFERENT SPATIO-TEMPORAL
SCALES

The reconnection between grazing livestock and croplands has
a fundamental role to play in system stoichiometry (Soussana
and Lemaire, 2014). On the one hand, ruminants decouple C
and N cycles, releasing digestible C through enteric emissions
(3–5%), and returning mostly indigestible C via dung (60%)
and high concentrations of digestible N in urine (70%) (IPCC,
2006). On the other hand, C and N cycles are recoupled by
photosynthesis and plant growth processes until decomposition
or grazing decouples them once again. Because the balance
between C–N coupling by vegetation and C–N decoupling by
animals determines the benefits and environmental impacts of
ICLS, the distribution of livestock and crops over space and

time can influence system dynamics in a positive or negative
manner (Soussana and Lemaire, 2014). For example, when
proper grazing management is applied (e.g., moderate grazing
intensity), nutrient cycling is boosted by grazing of cover crops
at the paddock scale without reducing the nutrient budgets.

For example, Alves et al. (2019) reported that P and K
exportation from an ICLS area in sheep meat was 0.7 and
1.3 kg ha−1 yr−1 on average, respectively, over 14 years of
annual soybean/maize - grazed Italian ryegrass succession, which
represented only 6 and 5% of total exportations from that area
(∼95% was exported in grain crops). Instead of being exported,
the greatest share of nutrients is redistributed in the paddock
during livestock foraging processes, affecting the spatial pattern
of soil attributes and creating amosaic of nutrient-rich zones near
fences, supplement troughs and watering points, and nutrient-
poor zones away from these attractants (Dubeux et al., 2006;
da Silva et al., 2014, 2020). Alternatives to remedy the uneven
nutrient distribution caused by grazing animals management
practices such as variable location of supplement troughs and
spatial patterns of seeding of preferred species. However, da Silva
et al. (2014) and de Albuquerque Nunes et al. (2021) reported
no differences in succeeding soybean yields (kg ha−1) regardless
of the spatio-temporal patterns of dung deposition caused by
different grazing intensities in the preceding winter of a soybean-
beef cattle system.

When the integration occurs at the landscape level, forage
exportation (e.g., hay) from a hypothetical farm A to farm B will
decrease nutrient availability in farm A if the same amount of
nutrients is not replenished via, for example, manure application
(which would ideally come from farm B). Also, nutrient excesses
in farm B can drive leakage from the system if those nutrients
are not managed properly or returned to farm A. Not returning
nutrients to farm A characterizes a typical specialization trend,
such as in intensive landless livestock farms in peri-urban
regions of high-density population. This pattern of concentrating
landless, specialized farms near urban areas to provide fresh
feed by importing nutrients from outside is reported to result in
concentration of nutrients and pollution when nutrients are not
recycled properly (Chadwick et al., 2021).

Decreasing input dependence is a key factor in promoting
sustainability (Bonaudo et al., 2014). There are numerous benefits
of reconnecting grazing ruminants to croplands in these aspects.
For example, the weed suppressing effect promoted by grazing
best management practices in crop-pasture rotations combined
with no-till management reduces herbicide dependence and
associated costs of weed control at paddock scale (Schuster
et al., 2016; Dominschek et al., 2021). There is also a reduction
in the incidence of crop and livestock diseases in some cases.
Roese et al. (2020) observed reduced incidence of diseases in
the aerial parts of grain crops in ICLS with trees (eucalypts)
due to the microclimate effect created in the understory.
Portugal et al. (2018) reported a reduction in livestock diseases
caused by ectoparasites (e.g., ticks) due to the break in the
organisms’ life cycle resulting from crop rotations. In both
cases, there was a reduction in the use of chemicals as
a consequence.

Through well-managed pastures there is an increase in the
opportunity for visits by pollinators and other flying animals,
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FIGURE 2 | Examples of integrated systems in multiple spatio-temporal designs. The axes denote the degree of interspersion in which crops and livestock are

integrated along a spatio–temporal continuum. For a purpose of simplicity, only four discrete examples are shown, but multiple spatio-temporal designs are possible

(see Bell and Moore, 2012). (A) Soybean cropping and native grasslands simultaneously occurring in neighboring fields. Pollination services for soybeans are

enhanced because native grassland ecosystems provide habitat for a diversity of pollinators. Photo credit: Méia Albuquerque. (B) Sheep grazing the understory

vegetation of a peach orchard. Grazing reduces the competitiveness of weed species and redistributes nutrients over the orchard. Photo credit: Thomaz Mercio. (C)

Farmers harvesting hay. Integration at the landscape level involves coordinate exchanges of products or byproducts such as hay and manure between specialized

crop and livestock farms. Photo credit: Marcelo Wallau. (D) Succession of crops and livestock in the same paddock, where stubble and cover crops are grazed by

domestic herbivores, usually such as cattle and/or sheep. The picture shows a steer grazing in an Italian ryegrass pasture in winter following rice cultivation. Photo

credit: Fernanda Moojen.

due to the heterogeneity promoted by grazing that creates new
food webs (Orford et al., 2016; Van Rijn and Wäckers, 2016;
Enri et al., 2017; Jacoboski et al., 2017). Pollination increases
the production of seeds of forage species, decreasing the need
to purchase seeds due to natural reseeding (Rao and Stephen,
2009; Boelt et al., 2015; Rundlöf et al., 2018). In addition, forest or
pasture components create opportunities for shelter to predators
of agricultural pests such as spiders and birds (Bretagnolle et al.,
2011; Prevedello et al., 2018; Freiberg et al., 2020).

Reconnecting grazing ruminants to croplands promotes
changes in the physico-chemical and biological control
mechanisms in the soil and allows for an improvement in
the efficiency of the use of nutrients by plants, resulting in a
system less dependent on external inputs (Denardin et al., 2020).
Resource-use efficiency per unit energy production was higher in
soybean-Italian ryegrass rotations grazed by sheep compared to
non-grazed Italian ryegrass cover crop at paddock scale (Farias
et al., 2020).

Bell and Moore (2012) analyzed the multi-dimensional
features of integrated livestock and crop enterprises according
to space-time dimensions. Inspired by smallholder systems in
western Africa and large-sized commercial farms in Australia,
they proposed that benefits are higher when activities are closer
to one another. The latter scenario is typical of Latin American

integrated systems (de Faccio Carvalho et al., 2021), so we can
use these closely integrated systems to explore the synergisms
at their theoretical maximum level. Moreover, as mentioned
earlier, the dichotomy of ungrazed vs. grazed cover crops being
studied in Latin America provides a unique opportunity to
examine the specific effects of the reintroduction of grazing
animals in specialized crop landscapes in isolation from the plant
effect (ungrazed pasture as a cover crop) and at smaller spatial
scales (Table 1).

Assuming that the on-farm paddock scale represents the
highest potential benefit to systems that reconnect livestock
and crop production, it is worth noting how grazing animals
are pivotal to restoring multifunctionality in specialized crop
landscapes. By coupling and decoupling nutrients in the same
area among different compartments, reconnected livestock-crop
landscapes reach more complex organizational structures and
increased hierarchical exchanges among the different living
organisms. As presented in Table 1, multiple benefits cascade
among different compartments affecting the whole system,
whereupon emergent properties may arise (de Faccio Carvalho
et al., 2018b).

At this point we surmise that system resilience is a key
feature enhanced by reconnected crop-livestock landscapes
that best represents the overall restoration of ecosystem
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TABLE 1 | Grazer effect at the paddock level and at moderate grazing intensity on ecosystem service indicators.

Ecosystem service indicator Grazer effect References

Carbon stocks Similar Assmann et al., 2014

Food production + human-edible protein and energy Martins et al., 2014

de Albuquerque Nunes et al., 2021

Methane emissions + enteric methane de Souza Filho et al., 2019

Nutrient budgets – Ca, Mg, P and K per unit food produced Martins et al., 2014

Denardin et al., 2020

Alves et al., 2019

Nutrient cycling + N, P and K cycling (nutrient recycling) Arnuti et al., 2020

Szymczak et al., 2020

Parasite suppression – plant parasitic nematodes Schmitt et al., 2021

Primary production (above and belowground) + total biomass production Martins et al., 2017

de Albuquerque Nunes et al., 2019

Kunrath et al., 2020

Soil invertebrates (ground spiders) + abundance + species richness Freiberg et al., 2020

Soil health (physical attributes) + soil aggregates + aggregate stability de Souza et al., 2010b

Conte et al., 2011

Soil microbiota + abundance + activity + diversity Chávez et al., 2011

Wilson et al., 2018

System profitability + profitability de Oliveira et al., 2013

de Albuquerque Nunes et al., 2021

System resilience + resilience – risk of financial loss Szymczak et al., 2020

System stability – variation in production – risk of production and financial loss de Albuquerque Nunes et al., 2021

Weed suppression – seed bank Schuster et al., 2016

functioning. So, we can focus specifically on resilience-oriented
integrated systems.

RESILIENCE: HARNESSING FUNCTIONAL
DIVERSITY BY RECONNECTING
LIVESTOCK TO CROP LANDSCAPES

Biodiversity is essential to building resilience (Ulanowicz et al.,
2009) and can be characterized at two hierarchical levels of
functionality that are important in regulating the structure
and functioning of ecosystem services (Hooper et al., 2005;
Duffy et al., 2007; Moonen and Bàrberi, 2008). The vertical
dimension represents the trophic levels in the system, while
the horizontal dimension is related to the number of species
within each trophic level (Duffy et al., 2007). The vertical
dimension of ICLS comprises plants and herbivores. On the
other hand, the horizontal dimension is composed of functional
genetic diversity, functional types of plants and ruminant and
monogastric herbivores (Bell and Moore, 2012; Garrett et al.,
2017). The design of reconnected crop-livestock systems provides
a way of planning both dimensions of diversity in space and time,
aiming to benefit from synergies between system components
and achieve a higher overall system performance compared to the
sum of individual performances (deMoraes et al., 2014; de Faccio
Carvalho et al., 2018a).

ICLS are based on the philosophy of building resilience
by increasing systems’ capacity to adapt and self-organize in
response to external disturbances, such as environmental changes
(Bonaudo et al., 2014; de Moraes et al., 2014). This is largely due
to the adoption of agricultural practices that increase soil organic
matter, water and nutrient use efficiency, nutrient recycling,
biodiversity, and spatio-temporal heterogeneity (Wezel et al.,
2014; Altieri et al., 2015; Lemaire et al., 2015; Garrett et al.,
2017; Van Oijen et al., 2020). To be resilient, an ecosystem must
exhibit capacity to maintain its integrity over time and must have
a reserve of flexible pathways, through a diversity of flows, to
adapt to uncertainties (Ulanowicz et al., 2009; Altieri et al., 2015;
Stark et al., 2018). From this perspective, Szymczak et al. (2020)
observed that the greater diversity of nitrogen and phosphorus
flows created by the reconnection between grazing animals and
crop production in a commercial ICLS enhanced its resilience in
comparison to a specialized soybean production system.

The vertical diversification represented by the addition of a
trophic level when grazing herbivores are reconnected to crop
landscapes increases the functional diversity and complexity of
these systems (Duffy et al., 2007; Mori et al., 2013; Sanderson
et al., 2013). It provides matter processing by digestion and
nutrient cycling, as a small amount of the nutrients ingested
by grazing animals is exported from the system. As a result of
the improved nutrient flows and their ecological interactions
(e.g., nutrient recycling via defecation; da Silva et al., 2014, 2020;
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Arnuti et al., 2020), improvements in soil chemical, physical
and biological attributes are observed at field scale (e.g., de
Souza et al., 2010a,b; Chávez et al., 2011; Assmann et al., 2014;
Martins et al., 2014; Deiss et al., 2016; Damian et al., 2021).
Ultimately, it enhances the long-term stability of crop production
without compromising grain yields (de Albuquerque Nunes
et al., 2021). This rationale can also be applied on-farm (among
paddocks) or at landscape scale (among farms). Animals would
be moved at different periods and act as connecting agents
between system components, improving agricultural resilience
(de Faccio Carvalho et al., 2018a; Peterson et al., 2018; Stark et al.,
2018; Paramesh et al., 2020; Tittonell, 2020).

In addition to the resilience of nutrient flows, the reconnection
of grazing livestock to crop landscapes provides a means to
enhance economic resilience by diversifying income, which
buffers market and climate oscillations by smoothing farm
incomes in poor crop production years (de Albuquerque Nunes
et al., 2021). Therefore, when one production activity faces
disturbances, the other activity may not be affected. Also,
pasture-based livestock systems present greater adaptive capacity
to deal with climatic oscillations, making ICLS less vulnerable
than pure cropping systems. Using two differing approaches to
study system responses to stress, both Szymczak et al. (2020)
and de Albuquerque Nunes et al. (2021) observed a reduced
risk of financial loss when crop and livestock production were
reconnected (ICLS) relative to specialized soybean systems.
Maximum profitability potential was increased by up to ∼30%
in ICLS compared to the pure soybean system in the best
environmental conditions (de Albuquerque Nunes et al., 2021).

The challenge of feeding a growing human population in a
world of increasing uncertainties has been extensively debated
by scientists. Therefore, to ensure food security, the foodscapes
we plan today and into the future should consider the effects of
climate change (e.g., increased weather variability and anomalies)
and focus not only on increasing food production, but also
approaches to deal with uncertainty. To this end, a study with
historical data of a long-term experiment in southern Brazil
(2001–2016) showed that reconnecting beef cattle to soybean
systems increased the overall food production and long-term
production stability in terms of human-edible protein. Moreover,
it reduced the chance of failure in less favorable environments
due to the production surplus provided by grazing cattle (de
Albuquerque Nunes et al., 2021). Using the same historical ICLS
dataset, Peterson et al. (2020) simulated climate conditions and
the productivity and resilience of that ICLS for the next 40
years (2020–2060) using APSIM model, observing that ICLS
gross margins exceeded that of the specialized system in 95% of
years, while resilience to precipitation anomalies (more frequent
in simulated climate scenario) depended on disturbance type
and timing.

SOCIALSCAPES: MINDSET TRANSITION
FROM SPECIALIZED TOWARD
INTEGRATED SYSTEMS

Here we address part of the social dimension driving agricultural
landscapes beyond the technical outcomes exposed throughout

this paper. Reconnecting grazing animals to crop landscapes
is not simply a technical decision. Because people ultimately
manage landscapes, there are specific processes involving human
behavior that are required to sensitize people and build the
necessary conditions to manage more complex food production
systems. First, there is an awareness step to prepare the mindset
shift from current specialized production (thinking crop and
livestock goals, planning and management separately) to a
long-term, integrated systems thinking (Moojen, 2021). Second,
the inherent complexity of ICLS implies the requirement of
more complicated farm planning (i.e., spatio-temporal land
use, financial planning, short- and long-term objectives). In
this regard, proper advising is imperative to assist farmers in
a desirable co-design processes (Moojen, 2021). Therefore, a
distinct capacity building is crucial to both farmers and advisors,
making them aware of the potential interactions between crops
and livestock and capable of redesigning the farming system
with ICLS principles by developing specific skills to manage
multifunctional systems (Bonaudo et al., 2014).

It is worth mentioning that the specialization trend of
crop and livestock production systems has side-effects beyond
environmental boundaries. Academia, research and extension
centers have been oriented toward segregated crop and livestock
production. Consequently, teaching, research and extension
initiatives focus on separate specialized outputs from each
activity, and lack in the technical capabilities and knowledge
adapted to ICLS (Garrett et al., 2020). Holistic approaches have
been replaced by simple technical schedules. This state of affairs
is a barrier to ICLS adoption (Bonaudo et al., 2014). To face it, the
adaptation of agricultural courses to include systems thinking,
didactic learning tools, and interdisciplinarity could help train
future professionals to reacquire holistic perceptions and enable
a path forward for sustainable ICLS implementation (Jouan et al.,
2020).

Participatory methods for designing ICLS at the farm and
landscape level have been reported as a promising way to connect
farmers, advisors, and researchers to exchange knowledge and
analyze scenarios (Ryschawy et al., 2014; Moraine et al., 2017).
This is the case with “serious games,” i.e., games aiming at specific
learning outcomes (Wouters et al., 2009). Serious games can
have goals such as (i) supporting negotiation of silvopastoral
management (Etienne, 2003), (ii) assessing impacts of farming
practices on sustainability (Jouan et al., 2020), (iii) designing
technical and organizational scenarios among farmers (Ryschawy
et al., 2018), (iv) exploring consequences of land-use decisions
(Salvini et al., 2016) and co-designing spatio-temporal ICLS
scenarios (Moojen, 2021). Overall, some tools andmethodologies
to assist people involved in the transitions are available, so it is
necessary that their use be encouraged and customized to each
context to remove barriers to multifunctional landscape design.

At the institutional scale, robust extension systems are needed
to transition toward ICLS. Governmental projects must consider
the greater complexity of ICLS in relation to specialized systems,
thus providing flexibility for adapting tools and approaches for
each farming context and skills like leadership and systemic
vision to those involved in the project (Price et al., 2009).

Equally as important as the sensitization and empowerment
of the people in the system is the economic viability of ICLS,
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which is crucial for adoption at the farm and landscape level.
Credit availability for ICLS projects, supply chain infrastructure,
and farmers’ willingness to diversify production are some
of the factors determining ICLS adoption (Gil et al., 2016).
As mentioned in previous sections, studies have shown the
importance of livestock production as an effective way for
diversifying revenue sources in specialized agricultural systems,
increasing overall system productivity, profitability, and stability
to external stressors, and consequently reducing economic risks
(Bell and Moore, 2012; de Oliveira et al., 2013; Szymczak et al.,
2020; de Albuquerque Nunes et al., 2021). However, each ICLS
has its own idiosyncrasies. For example, when a forest component
is involved, economic benefits need to be analyzed on a larger
temporal scale given the time needed for woodcuts, harvesting
of fruit, or even shade for livestock comfort. The challenge,
therefore, is to quantify and plan economic flows both in the
short- and in the long-term according to each ICLS farm design.

CONCLUSIONS

In this manuscript we present evidence that the reconnection
of grazing livestock to specialized crop landscapes can restore
biogeochemical cycles decoupled by uniform landscapes lacking
the diversity necessary for proper ecosystem functioning. Our
approach enables disentangling the effects of forage plants from
the grazing animal to underline ecosystem service indicators
promoted specifically by the grazing process. This perspective
highlights the capacity of grazing animals to recover landscape
multifunctionality. Spatio-temporal designs of crop-livestock
integration will affect the level of ecosystem services delivered.
Multiple benefits can cascade over the whole system if moderate

grazing is adopted, and resilience is a key feature that arises.
This path of mixing crops and livestock embraces complexity
against current specialization trends, requiring capacity building
and mindset shifting. To conclude, grazing animals have an
important role in the design of future foodscapes. Grazing
herbivores are part of natural ecosystems, and commercial
landscapes should aspire to mimic the beneficial functions of
natural ecosystems.
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