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Elucidation of the potential
antioxidant compound and
mechanism of mung bean using
network pharmacology and
in vitro anti-oxidative activity

Feng Kong*, Yue Li, Yuping Zhang, Qinghua Zeng and

Xingfeng Guo

Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China

Mung bean is rich in bioactive components, but the main compound and

pharmacological mechanism in reducing oxidative and free radical damage are

unclear. Network pharmacology and 2,2′-azino-bis-3-ethylbenzthiazoline-6-

sulfonic acid (ABTS) radical scavenging activities were employed to uncover

the antioxidant mechanism of potentially active compounds, considering

the interactions between mung bean targets and oxidative and free radical

damage. These key targets were analyzed by protein–protein interactions

(PPIs), and key genes were used to find the biological pathway and therapeutic

mechanism by Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) analyses. The results showed that five antioxidant

components and 18mung bean targets were screened. β-carotene and vitexin

both played a crucial role in mung bean against oxidative and free radical

damage, and the ABTS radical scavenging activities of β-carotene and vitexin

were 94.84 and 87.79%, which were equivalent to those of vitamin C. Key

targets may be AR, HSP90AA1, MYC, and CASP3 for mung bean to exert

antioxidant activity. GO and KEGG indicated that mung bean may mainly

act on thyroid hormone signaling pathway, estrogen signaling pathway, p53

signaling pathway, etc. In vitro antioxidant activity tests showed that the

bioactive ingredients of mung beans had great antioxidant activity. Network

pharmacology analysis also revealed the underlying molecular mechanisms

of oxidative and free radical damage. This study provides new insights and

evidence to explore the bioactive compounds and biological functions of food

cereals and legumes, aswell as a reference for the functional evaluation of food

ingredients and the development of functional foods.
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Introduction

Oxidative stress is caused by an imbalance between reactive

oxygen species and antioxidants in the body’s metabolic

process, resulting in damage to tissue cells and biological

macromolecules, which is an important risk factor in the

development of many diseases. Therefore, improving the

antioxidant capacity of the body is conducive to themaintenance

of human health (Gomez-Cabrera et al., 2021). In the normal

or abnormal (hypoxic) respiratory metabolism of biological

organisms, reactive oxygen species are produced, among which

free radicals are the main reactive oxygen substances (Koufen

and Stark, 2000). Oxidative and free radical damage is closely

related to many diseases and aging in human beings. When

the number of free radicals in the body exceeds the normal

range, there will be a chain reaction, free radicals snatch

electrons from other substances, originally stable substances

become unstable, triggering functional disorders in the body.

Almost all biomolecules, such as DNA, proteins, lipids, sugars,

and organic acids in cells may be attacked and subjected to

extreme damage (Battino et al., 1999). These changes cause

cell denaturation and necrosis, leading to the occurrence of

aging of the whole organism (Harman, 2003). A large number

of studies have revealed the mechanism of reactive oxygen

species, such as free radicals and oxidative stress state, leading to

chronic inflammation, while chronic inflammation is the main

risk factor causing metabolic diseases, such as cancer, diabetes,

cardiovascular diseases, neurological diseases, and lung diseases

(Reuter et al., 2010). Free radical scavengers, also known as

antioxidants, are substances that eliminate the damage caused

by oxidative and free radical damage and can combine with free

radicals to ensure their electrical balance before they can grab

the electron from others (Haider et al., 2020). Oxidative and

free radical damage led to body aging and the occurrence of

chronic diseases, so the use of natural free radical scavengers

and the development of new functional foods for antioxidants

to maintain health have become important research topics.

Legumes are the main food source of protein, carbohydrates,

fiber, and vitamins, and have been consumed by the Chinese

for thousands of years (Yang et al., 2014). Clinical evidence

showed that legumes have potential health benefits, and the

benefits of legumes are phytochemicals that have antioxidant

properties (Milenkovic et al., 2017). These antioxidants that

are derived from food legumes are positively correlated with

the lower occurrence of degenerative diseases, such as diabetes,

cancer, arthritis, and Alzheimer’s disease (Makiuchi et al., 2017;

Singh et al., 2017; Xu et al., 2021). More interest in the potential

consumption of food legumes has focused on the development

of increasing functional ingredients with healthy and healing

potential (Miceli et al., 2016; Ganesan and Xu, 2018). Mung bean

(Vigna radiate L.) is an important short-season and summer-

growing dietary grain legume (Ganesan and Xu, 2018). Mung

bean is rich in bioactive components, which have different health

benefits, such as detoxification, alleviating summer heatstroke,

antioxidant, antidiabetic, and anticancer effects (Heim et al.,

2002; Liu et al., 2013; Yang et al., 2020). Importantly, mung bean

extracts possessed significantly higher antioxidants and levels

of polyphenols than soybean extracts, which showed that they

might be superior functional foods (Tang et al., 2014). In mung

bean, 19 kinds of major phenolic compounds, including vitexin,

ferulic, and chlorogenic acid, were quantified (Xu et al., 2021).

In addition, the content of β-carotene, phytosterol, vitamin E,

and tryptophan of mung bean in 100 g of the edible portion

from previous studies were 68 µg, 23mg, 0.51mg, and 0.26 g,

respectively (Ganesan and Xu, 2018). However, the underlying

molecular mechanisms through specific compounds in legumes,

such as mung bean, that exert antioxidant benefits on human

health remain largely unexplored.

With the rapid progress of bioinformatics, systems biology,

and pharmacology, network-based profiling is considered a

cost-effective strategy to guide the action mechanism study

of bioactive compounds, in which novel targets of known

compounds can be identified in a highly efficient manner

(Zhang F. X. et al., 2021). The proteins to which active

compounds bind form identifiable neighborhoods in the human

interactome, so the interaction between the targets of the

active compounds and the proteins associated with specific

diseases are predictive of the known therapeutic effects of the

active compounds (Valle et al., 2021). Network pharmacology

is a new in silico target profile to guide the study of

the disease treatment mechanism of bioactive compounds

in traditional Chinese medicine (Zhao et al., 2015). The

interaction between the targets of the active compounds

and the proteins associated with oxidative and free radical

damage might predict the known therapeutic effects of the

active compounds. Therefore, network pharmacology was

employed to predict mung bean processed and related biological

pathways related to oxidation resistance of human diseases

in this study. And, the prediction of the active compound

on the potential antioxidant effect verified by 2,2
′

-azino-bis-3-

ethylbenzthiazoline-6-sulfonic acid (ABTS) radical scavenging

activity. This research is expected to have the reference for

mechanism interpretation of health effects underlying food-

related compounds.

Materials and methods

Materials

Sitosterol, vitexin, and Boc-D-Trp-OH were purchased

from Shanghai Macklin Biochemical Co., Ltd. (Shanghai,

China). Vitamins C and E were purchased from Beijing

Biotopped Science and Technology Co., Ltd. (Beijing,

China). β-carotene was purchased from Shanghai

Yuanye Bio-Technology Co., Ltd. (Shanghai, China).
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All other chemicals used in these experiments were of

analytical grade.

Acquisition of active compounds and
targets of mung bean

The active components of mung bean were retrieved

from the Traditional Chinese Medicine Database and Analysis

Platform (TCMSP) database (http://www.tcmspw.com/tcmsp.

php) (Ru et al., 2014), then screened according to oral availability

(OB) ≥30% and drug-like (DL) ≥0.18 (Lv et al., 2020),

and their structure was obtained from molecule information

in the TCMSP database. To find the targets related to

diabetes in the category of protein coding, we searched

the GeneCards database (https://www.genecards.org/) with

“oxidative and free radical damage” as the keyword (Song et al.,

2020).

Compound-target network construction

The mung bean compound–target network

was established using Cytoscape 3.8.2 software

(Bethesda, MD, USA), which performed network,

visualization, and topological analyses (Pan et al.,

2020).

ABTS radical scavenging activity

Antioxidant activities of sitosterol, β-carotene,

vitamin E, vitexin, and Boc-D-Trp-OH were measured

according to the method described by Dudonné et al.

(2009) with modifications. Approximately 2.7ml of

ABTS working solution and 0.3-ml sample solutions

[dissolved in dimethyl sulfoxide (DMSO)] were mixed

and incubated for 30min in the dark. Vitamin C was used as

positive control.

Construction of a protein–protein
interaction network

A protein–protein interaction (PPI) network was obtained

using STRING (http://string-db.org/cgi/input.pl). The species

was set to “Homo sapiens,” minimum interaction threshold

was selected as “medium confidence >0.4,” and the other

parameters were kept in the default setting (Wang et al.,

2020). In the network, each node represented a target

protein, and each edge represented the PPI (Yi et al.,

2021).

Gene ontology and Kyoto encyclopedia
of genes and genomes pathway
enrichment analyses

To elucidate the function of metabolites and carry out the

enrichment analysis of the biological pathway, Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analyses were performed. The intersection

targets were input into R (R X64 4.0.2) for enrichment analysis

of GO and KEGG pathways, the first 20 channels were selected

(Luo et al., 2021). A value of p < 0.05 was considered

statistically significant.

Statistical analysis

Experimental data were processed by one-way analysis of

variance (ANOVA) using IBM SPSS Statistics 20 (IBM, NY,

USA) with Duncan’s multiple range test (p < 0.05). The results

were reported as mean± standard deviation (SD).

Results and discussion

Collection and screening of active
compounds and construction of
compound–target network

A total of six active compounds of mung bean were

collected with oral bioavailability ≥30% and DL ≥0.18 from

the TCMSP database (Xia et al., 2020). Specific information

of the active compounds is listed in Table 1. Compound-

related targets obtained from the TCMSP database were verified

using the UniProt protein database and converted into their

corresponding gene names, and the targets related to oxidative

and free radical damage were acquired by retrieving GeneCards

(Wang et al., 2021).

After removing the compounds without targets, the

compound–target network was developed, involving 23 nodes

(including five compounds and 18 genes) and 20 edges

(Figure 1), the top compounds were β-carotene, vitexin_qt,

vitamin E, Boc-D-Trp-OH, and PQH. The genes, NCOA2,

BCL2, CASP9, CASP3, CASP8, HMOX1, CYP3A4, CAV1,

CTNNB1, MYC, CASP7, F10, PTGS1, AR, DPP4, HSP90AA1,

PRKACA, and CALM1, might be the main targets for mung

bean to exert antioxidant activity. This result suggested that

β-carotene might play a crucial role and had more biological

functions in mung bean against oxidative and free radical

damage (Song et al., 2020). It has been previously confirmed

that consumption of foods rich in carotenoids, consisting of

β-carotene, lycopene, and so on, can reduce the incidence of

certain diseases, such as cardiovascular diseases, cancers, and

other degenerative diseases due to their antioxidizing effects
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TABLE 1 Pharmacokinetic profiles and structure of potential bioactive compounds in mung bean.

Molecule name MW OB (%) DL Structure Molecular name MW OB (%) DL Structure

Sitosterol 414.79 36.91 0.75 Vitexin_qt 284.28 42.66 0.24

β-carotene 536.96 37.18 0.58 Boc-D-Trp-OH 304.38 68.76 0.20

Vitamin E 490.69 32.29 0.70 PQH 450.77 47.60 0.66

MW, molecular weight; OB, oral bioavailability; DL, drug-likeness.

FIGURE 1

The network of compound–target interactions.

(Perera and Yen, 2007; Eggersdorfer and Wyss, 2018; Li et al.,

2021). The antioxidant activity of β-carotene was determined

using the reducing power assay, which is discussed in the

following experiments.

ABTS radical scavenging activity of
potential bioactive compounds

Radical scavenging activity of 2,2′-azino-bis-3-

ethylbenzthiazoline-6-sulfonic acid was performed to evaluate

the antioxidant action of sitosterol, β-carotene, vitamin E,

vitexin, Boc-D-Trp-OH, the predicted active ingredients in

mung bean, providing an experimental evidence for the food

application of mung bean in the treatment of oxidative and free

FIGURE 2

The 2,2
′

-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid

(ABTS) radical scavenging activity of vitamin C and potential

bioactive compounds (means that do not share a letter were

significantly di�erent, p < 0.05).

radical damage. Vitamin Cwas selected as a positive control, and

vitamin C concentration and the predicted active ingredients

tested were 1.0 mg/ml to evaluate antioxidant properties. The

result is shown in Figure 2, and vitamin C, β-carotene, and

vitexin showed great antioxidant activity. The ABTS radical

scavenging activity of β-carotene, vitexin, and Boc-D-Trp-OH

was equivalent to that of vitamin C (p > 0.05). ABTS radical

scavenging activity of vitamin E and sitosterol at the same

concentration was significantly lower than that of vitamin C (p

< 0.05). In previous studies, the singlet oxygen quenching ability

of β-carotene was obviously higher than that of vitamins C and

E (Zhao et al., 1997). And, β-carotene inhibited peroxidation, its

antioxidant effect was higher than that of vitamin E (Matsuno

and Miki, 1990). Epidemiological studies reveal that β-carotene

had a strong antioxidant capability due to the availability of

free radicals and oxygen scavenging characteristics, which
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FIGURE 3

The protein–protein interaction (PPI) network of mung bean

putative and oxidative and free radical damage-related target

genes.

FIGURE 4

Barplot showing significant genes in the PPI network.

contributes to the body’s protection against the effects of

free radicals, which are related to specific diseases, including

cardiovascular diseases and cancer (Siems et al., 2005; Di

Martino et al., 2018). β-carotene has several applications in

the food and feed industries, due to its unique yellow-orange

color (Kaur et al., 2019). Isovitexin and L-tryptophan exhibited

significant ABTS radical scavenging activity, which were more

potent than that of L-ascorbic acid (Bai et al., 2016). Vitexin,

a major antioxidant compound, could be isolated from mung

bean and found to exert its effect at various levels of antioxidant

action (Li et al., 2012; Khole et al., 2014; Bai et al., 2016).

PPI network of the antioxidant targets of
mung bean

To further explore the importance of the selected targets

(shown in Figure 1), the PPI of target proteins was established

based on the string database, as shown in Figure 3 (Zhang M.

et al., 2021). This PPI network consisted of 17 nodes and 56

edges, and more numbers of edges, the stronger the protein

interaction. Based on the median degree centrality, closeness

centrality, and betweenness centrality, the top 17 target genes

are shown in Figure 4. Among them, AR, HSP90AA1, MYC, and

CASP3 showed stronger interactions with other factors, which

were considered to play a relatively important role in the PPI

network and might be the main targets of mung bean in the

treatment of oxidative and free radical damage (Wang et al.,

2021).

GO and KEGG enrichment analyses

Gene Ontology annotation analysis is shown in Figure 5.

Biological processes and molecular function mainly included

cysteine-type endopeptidase, peptidase activity, endopeptidase

activity, DNA-binding transcription factor binding, and

ubiquitin and ubiquitin-like protein ligase binding.

Kyoto Encyclopedia of Genes and Genomes enrichment

analysis was performed to cluster major pathways associated

with mung bean, and the top 20 KEGG pathways are

listed in Figure 6. The results of the KEGG pathway

enrichment analysis showed that antioxidant targets of

mung bean were significantly enriched in the thyroid hormone

signaling pathway, estrogen signaling pathway, and p53

signaling pathway.

Conclusion

Bioactive compounds in food materials have attracted

scientists across the world in search of new natural antioxidant

substances. These antioxidants can be derived from legumes

and cereals, which provide the energies required for human

activities and also have a diverse multitude and magnitude

of biological activities. Network pharmacology and reduced

power effect were used to uncover the mechanism of the effect

of the potential active compounds on oxidation resistance by

considering the interactions between mung bean targets and

oxidative and free radical damage. β-carotene played a crucial

role and had the most biological functions in mung bean

against oxidative and free radical damage. The ABTS radical

scavenging activity of β-carotene and vitexin was equivalent

to that of vitamin C. Key targets associated with oxidative

and free radical damage included AR, HSP90AA1, MYC, and

CASP3. GO and KEGG indicated that mung bean mainly
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FIGURE 5

Gene ontology (GO) terms of the top 20 GO functional terms (p < 0.05). The color of terms turned from blue to red, the redder the bar, the

smaller the adjusted p-value.

FIGURE 6

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the top 20 pathways. Color represented p-value and size of

the spot represented the count of genes.

acted on the thyroid hormone signaling pathway, estrogen

signaling pathway, p53 signaling pathway, etc. In this study,

potential bioactive compounds and antioxidant mechanisms

against oxidative and free radical damage in mung bean

were preliminarily elucidated, to provide a reference for the

functional evaluation of food ingredients and the development

of functional foods. In future studies, the antioxidant efficacy

and biological mechanisms of β-carotene and vitexin from

mung bean will be investigated with more in vivo/in vitro

experimental verification.
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