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Fruits of Zanthoxylum bungeanum Maxim (Red “Huajiao,” RHJ) and Z.

schinifolium Sieb. et Zucc. (Green “Huajiao,” GHJ) are famous spices around

the world. Antioxidant capability (AOC), total alkylamides content (TALC) and

volatile oil content (VOC) in HJ are three important quality indicators and

lack rapid and e�ective methods for detection. Non-destructive, time-saving,

and e�ective technology of hyperspectral imaging (HSI) combined with

chemometrics was adopted to improve the indicators prediction in this

study. Results showed that the three chemical indexes exhibited significant

di�erences between di�erent regions and varieties (P < 0.05). Specifically, the

mass percentages of TALC were 11–22% in RHJ group and 21–36% in GHJ

group. The mass percentages of VOC content were 23–31% and 16–24% in

RHJ and GHJ groups, respectively. More importantly, these indicators could

be well predicted based on the full or e�ective HSI wavelengths via model

adaptive space shrinkage (MASS) and iteratively variable subset optimization

(IVSO) selections combined with wavelet transform (WT) method for noise

reduction. The best prediction results of AOC, TALC, and VOC indicators

were achieved with the highest residual predictive deviation (RPD) values of

7.43, 7.82, and 3.73 for RHJ, respectively, and 6.82, 2.66, and 4.64 for GHJ,

respectively. The above results highlight the great potential of HSI assisted with

chemometrics in the rapid and e�ective prediction of chemical indicators of

Zanthoxylum spices.
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Introduction

“Red Huajiao” (RHJ) and “Green Huajiao” (GHJ) are the

fruits of Zanthoxylum bungeanum Maxim and Z. schinifolium

Sieb. et Zucc., respectively, and have been widely adopted as

famous spices (Yang, 2008). HJ is mainly distributed in east

Asian countries, such as Japan, Korea, and China, and more

than 70% consumption relies on exports from China (Zhang

et al., 2019a). In Chinese food culture, HJ fruits are used in

many famous dishes, including spicy hot chafing dish, barbecue,

instant noodles, etc. (Sun et al., 2020a). RHJ fruits are usually

used for increasing aromatic taste, while GHJ fruits are mainly

applied for enhancing numbing taste as a very special seasoning

(Ni et al., 2022). The tingling and numbing taste of alkylamides

and the fragrance of volatile oil are the unique and attractive

features of fruits and oil of Zanthoxylum (Yang, 2008; Jing et al.,

2021). Moreover, previous reports have demonstrated that HJ

fruits present antioxidant activity (Ma et al., 2019) because of

abundant bioactive compounds, such as flavonoids (Jing et al.,

2021), phenolics (Ma et al., 2019), and alkaloids (Sun et al.,

2020b).

For HJ fruits, volatile oil content (VOC), total alkylamides

content (TALC), as well as the antioxidant capability (AOC) are

the important quality indicators, and it is of great significance

to accurately and efficiently evaluate those indexes. However,

all those indexes were often evaluated with conventional

methods with destructive, time-consuming, and high-cost

characteristics. The examples are ultra-performance liquid

chromatography-mass spectrometry/mass spectrometry

(UPLC-MS/MS) detection of TALC (Zhang et al., 2019a), gas

chromatography-mass spectrometry (GC-MS) evaluation of

VOC (Yang, 2008), as well as the analysis of AOC using series

of relatively complex biochemical methods (Jing et al., 2021).

In view of this, it is very desirable to develop non-destructive,

inexpensive, and rapid methods for quality evaluation of

HJ spices.

At present, the rapid detection of food products has

become a hot research topic for its environmental friendliness,

low cost, and uncomplicated procedures. Rapid detection

based on the spectral information has been widely used in

food quality detection and adulteration prevention, such as

terahertz spectroscopy (Liu et al., 2018), Raman spectroscopy

(Magdas et al., 2019), fluorescence spectroscopy (Sádecká and

Jakubíková, 2020), near-infrared hyperspectral imaging (NIR-

HSI) (Ouyang et al., 2021), and nuclear magnetic resonance

(NMR) spectroscopy (Godelmann et al., 2013). Among the rapid

methods for quality and safety analyses of foods, near-infrared

hyperspectral imaging (NIR-HSI) has become increasingly

popular due to the high-throughput, non-destructive, and

effective characteristics (Gowen et al., 2007; Caporaso et al.,

2018). HSI can be applied to the initial samples without further

sample preparation, such as grinding, extraction or purification

(Pizarro et al., 2004), and can yield both spatial and spectral

information from many samples in one batch (Hu et al., 2021).

In HSI research, chemometrics including data noise

reduction and prediction regression are usually used. Different

noise reduction methods have their own advantages (He et al.,

2018; Feng et al., 2019; Wang et al., 2021b). For example,

the spectral derivatization noises are suitable for elimination

by second derivative (SEC) method, and multiplicative signal

correction (MSC) method is commonly used for removing the

undesirable scatter effect caused by uneven sample sizes and

morphology (Feng et al., 2019). Notably, wavelet transform

(WT) method is more suitable for reducing various noises

possibly from the instrument or samples (Zhang et al., 2019b).

Considering the uncertainty of spectral data in prediction

regression, nonlinear or linear models like back-propagation

neural network (BPNN) and random forest (RF) as well as the

linear model (partial least squares regression, PLSR) are often

used and compared in prediction of chemical contents (Gao

et al., 2018; Zhang et al., 2019b).

Combined with chemometrics, HSI technology is widely

used in chemical quality evaluation for various agricultural

products. The method has been applied for oil content of

maize (Zhang et al., 2022), total lipid content in coffee beans

(Caporaso et al., 2018), phenolics and flavonoids contents in

black goji berries (Zhang et al., 2020), as well as caffeine,

tea polyphenols, and free amino acids contents in matcha

(Ouyang et al., 2021). Selecting effective HSI wavelengths is

a vital step to reduce the dimensionality of raw data, thereby

eliminating irrelevant variables and improving efficiency. The

suitable methods for selecting HSI wavelengths can be equally

or more efficient in model prediction when compared with

the full wavelengths group (Xie et al., 2014). However, the

application potential of HSI assisted with chemometrics for

prediction of chemical indicators for quality of Zanthoxylum

spices is still underexplored.

This research proposes a method of rapidly and non-

destructively predicting chemical quality of HJ spice by using

HSI technology combined with chemometrics. The main

research goals are as follows: (1) To clarify the differences of

quality indicators (VOC, TALC, and AOC) in two varieties

of HJ samples cultivated in different regions in China; (2)

To compare the prediction effects of different noise reduction

methods and regression models based on the hyperspectral

dataset for predicting indicator contents; and (3) To evaluate the

different effects of selection methods for important wavelengths,

thus providing an optimized selection for dealing with high-

dimension datasets.

Materials and methods

HJ fruits collection and preparation

Fresh and mature HJ fruits with uniform size and color were

harvested from China covering all the main production regions,

in August, 2020. RHJ was collected from seven provinces total

ten regions (500 subsamples in total), and GHJ was collected
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TABLE 1 Di�erences of chemical indicators of HJ from di�erent regions.

Region Type Detection index

AOC TALC (mg/g) VOC (mg/g)

Max Min Mean ± sd Max Min Mean ± sd Max Min Mean ± sd

GSLN RHJ 1.57 1.35 1.45± 0.068j 235 200 221± 2.9a 272 239 260± 8.8d

GSQA RHJ 5.47 5.30 5.38± 0.046f 207 190 202± 3.4bc 277 216 257± 15.0d

HBSC RHJ 6.34 6.20 6.28± 0.043b 196 168 186± 5.4d 267 212 245± 12.0e

SCHY RHJ 5.35 5.20 5.28± 0.043g 193 175 185± 4.7d 308 269 281± 7.5c

SCMC RHJ 6.20 6.02 6.10± 0.052d 193 169 184± 5.3d 312 264 280± 8.5c

SDZZ RHJ 6.30 6.20 6.25± 0.029c 196 177 187± 4.4d 349 265 306± 25.6b

SXHC RHJ 5.10 4.90 5.00± 0.048h 209 191 200± 3.6c 257 221 234± 10.0f

SXRC RHJ 6.44 6.20 6.35± 0.076a 115 102 109± 3.5e 258 224 237± 11.2f

SXYC RHJ 5.85 5.70 5.77± 0.047e 210 184 199± 4.7c 259 223 231± 6.0f

YNKM RHJ 3.88 3.64 3.78± 0.071i 214 181 205± 6.7b 350 265 313± 26.5a

P < 0.05 0.000 0.000 0.000

CQJJ GHJ 3.94 3.50 3.76± 0.126h 388 271 337± 26.8b 249 206 224± 14.9b

GZGL GHJ 6.05 5.95 6.00± 0.030a 274 170 224± 23.3e 212 142 161± 28.3e

GZZF GHJ 5.84 5.70 5.77± 0.043c 256 185 228± 16.6e 196 135 164± 20.0e

SCJY GHJ 5.59 5.40 5.49± 0.058e 405 311 360± 21.3a 260 183 227± 26.3b

SCLC GHJ 5.70 5.60 5.65± 0.028d 378 264 329± 27.8b 218 162 204± 12.5c

SCPC GHJ 6.00 5.85 5.92± 0.040b 247 154 209± 20.7f 205 161 191± 10.1d

SCPX GHJ 4.70 4.50 4.60± 0.062g 366 261 312± 27.9c 251 224 238± 7.1a

YNYS GHJ 5.10 4.95 5.03± 0.041f 289 179 244± 26.6d 250 189 227± 14.7b

P < 0.05 0.000 0.000 0.000

Production regions of Zanthoxylum bungeanum Maxim namely “Red Huajiao” (RHJ) including Longnan City, Gansu Province (GSLN); Qin’an County, Gansu Province (GSQA); She

County, Hebei Province (HBSC); Hanyuan County, Sichuan Province (SCHY); Mao County, Sichuan Province (SCMC); Zaozhuang City, Shandong Province (SDZZ); Hancheng City,

Shaanxi Province (SXHC); Ruicheng County, Shanxi Province (SXRC); Yangcheng County, Shanxi Province (SXYC); Kunming City, Yunnan Province (YNKM). Production regions of

Z. schinifolium Sieb. et Zucc. namely “Green Huajiao” (GHJ) including Jiangjin District, Chongqing City (CQJJ); Guanling Buyei and Miao Autonomous County, Guizhou Province

(GZGL); Zhenfeng County, Guizhou Province (GZZF); Jinyang County, Sichuan Province (SCJY); Lu County, Sichuan Province (SCLC); Pingchang County, Sichuan Province (SCPC);

Pengxi County, Sichuan Province (SCPX); Yongshan County, Yunnan Province (YNYS). Detection chemical indexes including antioxidant capacity (AOC), total alkylamides content

(TALC), and volatile oil content (VOC). Max, maximum value; Min, minimum value; Mean± sd, average value combined with standard deviation; Lowercase letters a, b, c, etc. indicate a

significant difference at level of P < 0.05, the same below.

from four provinces, total eight regions (400 subsamples in total)

(Table 1). In one production region containing ten collection

plots, fresh sample of 500 g was treated as one subsample,

and five subsamples were collected from one production plot.

In total, 50 subsamples from one region were transported to

Beijing and dried in the same natural environment. The dried

HJ particle of 10 g from one subsample was adopted for HSI

analysis, and from each region, 50 parallel HSI data were

obtained for further model regression. After data collection,

all those corresponding subsamples were ground into 50-mesh

powder for further biochemical analysis as a means to assess the

prediction effects.

HSI system and data acquisition

Visible and short-wave/long-wave near infrared

hyperspectral imaging spectrometer (HySpex

VNIR-1800/HySpex SWIR 384, Norsk Elektro Optikk,

Oslo, Norway) was applied to collect HSI data. The main

components include two lenses of visible near infrared (VNIR,

350 to 990 nm) and short-wave/long-wave near infrared (SWIR)

(900 to 2,550 nm), two tungsten halogen lamps (150 W/12V),

one conveyor belt, and a computer for data acquisition.

Before data acquisition, the instrument was preheated for

30min, and then 10 g HJ samples were neatly tiled on the

conveyor belt through 96 well plates with the outer surface

facing the lens to obtain uniform spectral images. To avoid

adverse influence of the noise fluctuation at both ends of

the wavelengths, bands from 410 to 950 nm and from 950 to

2,500 nm were selected as the effective intervals, including 396

bands with spectral resolution of approximately 5 nm for data

collection. The exposure time of VNIR and SWIR was set as

0.0035 s and 0.0045 s, respectively. Two tungsten halogen lamps

were used to provide stable light with the incident angle of

45◦. The HJ sample was 30 cm away from the lens, and the

speed of the conveyor belt was set at 2.5 mm/s to collect

spectral information.
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Original hyperspectral imaging data were corrected via

black-and-white plate correction, and the correction formula is

shown in Eq. (1):

Rc =

(

Ro−Rb
)

(

Rw−Rb
)

where Rc is the corrected hyperspectral image, Ro is the original

hyperspectral image, Rw is the white reference image (with 99%

reflectivity), and Rb is the black reference image by blocking the

camera lens cover. Finally, each subsample (10 g) of HJ fruits was

treated as one region of interests (ROI), and data was extracted

using ENVI 5.3 software (Research Systems Inc., Boulder, CO,

USA), and totally 50 HSI data from one production region (ten

plots) was collected.

Measurement of antioxidant capacity,
total alkylamides content, and volatile oil
content in HJ fruits using reference
methods

Detection of antioxidant capability

According to the ABTS [2,2’-azino-bis (3-

ethylbenzthiazoline-6-sulfonic acid)] method described in the

former report (Hua et al., 2018), total antioxidant capacity assay

kit (S0121, Beyotime, Shanghai, China) was used to determine

the AOC of HJ samples. The characteristic absorbance at 414 nm

was recorded with a microplate spectrophotometer Multiskan

SkyHigh-1510 (Thermo fisher, MA, US). The AOC of Trolox

(99% in purity, S0121, Beyotime, Shanghai, China) solution,

one of analogs of Vitamin E, at 1.0mM was considered as 1,

and the AOC of samples was calculated based on the standard

curve with R2 value equal to 0.9993 (y = 1.4877x+0.212)

constructed by the Trolox solutions at 1.5, 1.2, 0.9, 0.6, 0.3, 0.15,

and 0.075 mM.

AOC =
M

N∗10

M: Absorbance value of Trolox at 1.0 mM

N: Absorbance value of HJ sample at 0.1 mM.

Measurement of total alkylamides content

The TALC was assessed by a microplate spectrophotometer

Multiskan SkyHigh-1510 (Thermo fisher, MA, US) at 266 nm

(Tao et al., 2017). Solutions of 98% in purity hydroxy-β-sanshool

(97465-69-5, Bethealth People Bionedical Technology Co., Ltd.,

Beijing, China) as standard alkylamide at 0.5, 0.4, 0.3, 0.2, and

0. 1 mg/ml were prepared to construct a standard curve with

R2 value equal to 0.9996 (y = 0.8237x+0.0039). The TALC was

calculated as follows [Eq. (3)]:

(

mg

g

)

=
Y

W

Y : Alkylamides concentration (mg/ml)

W: Weight of sample (g).

Evaluation of volatile oil content

According to the soxhlet extractionmethod (Yang, 2008), the

essential oil yield was obtained after weighing the balance, and

the mass ratio was calculated according to the formula [Eq. (4)]:

(

mg

g

)

=
Y

W

Y : Volatile oil yield (mg)

W: Weight of HJ sample (g).

Statistical and chemometric analysis

Statistical analysis of chemical indicators of
two HJ fruits from di�erent regions

SPSS 22.0 software (IBM Inc., Chicago, USA) was applied for

significant differences (P< 0.05) analysis of three indicators with

one-way analysis of variance (ANOVA) using Duncan’s multiple

comparison method. All data in comparison were expressed as

mean± standard deviation of three replicates.

Three noise-reducing methods for spectral
pre-processing

Three methods were adopted for eliminating random noises

during data collection, includingmultiplicative signal correction

(MSC), second derivative (SEC), and wavelet transform (WT)

with wavelet function Daubechies 8 and decomposition level 3

(Zhang et al., 2019b). MSC method is usually used to remove

the undesirable scatter effect from the sample itself, such as

uneven sample sizes (Feng et al., 2019). SEC method is mainly

to eliminate spectral noise caused by instrument itself, such as

baseline-offset and light scattering (Wang et al., 2021b). WT

method is primarily used to reduce the random noises (many-

sided noises) due to the influence of optical path variation,

uneven sample size, and difference in color from sample surface

(He et al., 2018).

Three regression models for prediction of
chemical indicators

Three regressionmodels, including back-propagation neural

network (BPNN), partial least squares regression (PLSR),

and random forest (RF), were used for chemical indicators

prediction. BPNN model is composed of three parts: an input

layer, hidden layers, and an output layer. In BPNN model, the

node number of hidden layers, the momentum factor, the initial

weight, the learning step, the maximum training iteration, and

the minimum error were set to 10, 0.3, 0.95, 0.1, 100, and 0.001,
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respectively. During analysis, the desired learning result can be

achieved by the feedback of the learning results to the hidden

layers as well as the selection of the suitable weight coefficient

matrix (Jia et al., 2021).

PLSR regression is mainly applied in the linear regression.

The latent variables of PLSR model can increase the accuracy of

prediction by considering the covariance between independent

variables and target variables. In this analysis, the leave-one-out

method was used for cross validation, and the optimal number

of latent variables ranging from 6 to 8 was determined in the

different model groups by the minimum root mean square error

(RMSE) value in the cross validation set (Wang et al., 2021a).

RF model is an ensemble regression method widely used in

chemicals content prediction. RF model introduces two random

factors, including the number of decision tree (n tree) and

the variable selection number (mtry) for improving prediction

accuracy and avoiding overfitting. In this analysis, the number

of 500 is suitable for n tree, and mtry is one third of the total

number of predictors (p/3). There were six input variables for

prediction, and it turned out that mtry = 2 was suitable for

balancing the accuracy and the efficiency in our analysis (Liu

et al., 2020; Jia et al., 2021).

The regression model performance was assessed by the

following statistical indices: the determination coefficient of

the calibration set (R2c) and the prediction set (R2p), the root

mean square error of the calibration set (RMSEC) and the

prediction set (RMSEP), and relative percent deviation (RPD) of

the prediction set (Liu et al., 2022). R2 values from 0.60 to 0.80

and RPD values between 2.0 and 2.50 indicate that the model

can be used for prediction. R2 values between 0.81 and 0.90 and

RPD values ranging from 2.51 to 3.0 indicate that the model has

a good prediction performance. While R2 values above 0.90 and

RPD values larger than 3.0 indicate that the model has excellent

prediction ability (Huang et al., 2021a).

Three e�ective wavelengths selection methods

Three methods of iteratively variable subset optimization

(IVSO), model adaptive space shrinkage (MASS), and successive

projections algorithm (SPA) for effective wavelengths selection

were applied in this study.

IVSO method is based on the theory that the important

variables were characterized by the large PLSR coefficients.

During iteration, coefficients were obtained from a submodel

for evaluating the importance level of each variable. In IVSO,

weighted binary matrix sampling and sequential addition

procedures were adopted to remove unimportant variables with

small weight value and reduce the risk of losing important

variables as described (Wang et al., 2021c,a). In this study, two

important parameters in variable selection of the group number

for cross validation and the number of sampling runs were set as

5 and 8,000, respectively.

MASS algorithm could find a most suitable variable set and

delete abnormal samples using a weighted iteration strategy,

and the problem of the order of variable selection and outlier

detection in this method could be avoided. The best method

was selected by comparison of the root mean square error

of cross-validation value, and this process was repeated to

obtain the optimal variable set (Wen et al., 2016; Li et al.,

2019). In MASS algorithm, four parameters, namely the

maximum number of latent variables, the group number for

cross validation, the number of binary matrix sampling, and

the pretreatment method, were selected as 15, 10, 500, and

“autoscaling,” respectively.

SPA method was characterized by using a projection

operation in a vector space for removing the irrelevant variables

to solve the collinear problems, so as to select optimal variables

with minimal redundancy and lowest collinearity (Galvão et al.,

2008). In SPA, the continuous projection strategy was used to

sort the initial wavelengths and obtain a series of wavelengths

subsets in different arrangement orders. The optimal variables

set was selected by comparing the prediction ability (Xie et al.,

2014). In this part, the number of selected variables and the

pretreatment method for selection were set as 10 to 50, and

“autoscaling,” respectively.

In this study, RHJ of 500 subsamples and GHJ of 400

subsamples were divided into two groups, respectively, in a

ratio of 7:3 in number (e.g., 350 subsamples:150 subsamples in

RHJ group) using the sample set partitioning based on joint

x-y distances (SPXY) algorithm (Galvão et al., 2005) to obtain

training and prediction sets. Meanwhile, the model parameters

were selected and optimized using 5-fold cross-validation. All

above models or algorithms are based onMATLAB R2020a (The

MathWorks, Natick, MA, USA) software.

The detailed description of the thorough analytical

procedures is summarized in Figure 1.

Results

Significant di�erences of two HJ fruits in
chemical indicators from di�erent
regions

The ranges of three chemical indicators, including AOC,

TALC and VOC, of RHJ and GHJ from different regions were

analyzed (Table 1). In RHJ fruits, the mean values of AOC index

ranged from 1.45 ± 0.068 in GSLN to 6.35 ± 0.076 in SXRC.

The lowest mean value of TALC content at 109 ± 3.5 mg/g was

from SXRC, and the highest mean content of 221 ± 2.9 mg/g

was from GSLN. Also, the mean contents of VOC ranged from

231± 6.0 mg/g in SXYC to 313± 26.5 mg/g in YNKM (Table 1).

In GHJ research, the minimum mean value of AOC was 3.76 ±

0.126 from CQJJ, and the maximum mean value of AOC was

6.00 ± 0.030 from GZGL. In addition, the lowest mean value of
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FIGURE 1

Schematic overview of the analytical flowchart. Three noise reduction methods including multiplicative signal correction (MSC), second

derivative (SEC), and wavelet transform (WT). Three prediction models including back-propagation neural network (BPNN), partial least square

regression (PLSR), and random forest (RF). Three e�ective bands selection methods including iteratively variable subset optimization (IVSO),

model adaptive space shrinkage (MASS), and successive projections algorithm (SPA).

TALC was 209 ± 20.7 mg/g from SCPC, and the highest mean

value of 360± 21.3 mg/g was from SCJY. Besides, the minimum

and maximum mean contents of VOC were 161 ± 28.3 mg/g

in GZGL and 238 ± 7.1 mg/g in SCPX, respectively (Table 1).

In general, three indicators of AOC, TALC, and VOC exhibited

significant differences between the different production regions

of two HJ spices (P < 0.05).

In comparison between two varieties (RHJ and GHJ), the

mass percentages of TALCweighted 11–22% (based on themean

value) in RHJ group, and 21–36% in GHJ group (Table 1). On

the other hand, the mass percentages of VOC content weighted

23–31% (based on the mean value) in RHJ group, and 16–24%

in GHJ group (Table 1). The above results showed that the TALC

and VOC had significant differences.

Prediction of chemical indicators based
on HSI full wavelengths

In this study, three chemical indicators of HJ were predicted

based on full wavelengths using three models including BPNN,

PLSR, and RF, each of which was combined with three

pretreatment methods of MSC, SEC, and WT. The prediction

results from different method combinations are shown in

Table 2.

In AOC prediction, all the excellent results of RHJ and

GHJ groups were mainly because of the preprocessing model of

WT (Table 2). Specifically, in the method combinations of WT-

BPNN,WT-PLSR, andWT-RF, RMSE values were all lower than

that from the other groups, all the R2 values in both training and

prediction sets were all higher than 0.9, and the RPD values were

all above 3.0, which represented an excellent ability in prediction

(Table 2). In TALC prediction of RHJ (Table 2), all the groups

from BPNN model and groups of MSC-PLSR, WT-PLSR, SEC-

RF, and WT-RF presented excellent results with relatively lower

RMSE values, R2 values in training and prediction sets all above

0.9, and RPD values all above 3.0. In TALC prediction of GHJ,

the models were not as good as those in prediction of RHJ, and

only one group of WT-PLSR reached a good prediction level

with RPD value equal to 2.56 (Table 2). In VOC prediction for

RHJ and GHJ groups, all the models with WT pretreatment

presented higher RPD values than the other pretreatment groups

(Table 2). In detail, with WT method in combination with PLSR

and RF models, the RMSE values were all lower than that from

the other groups, and the RPD and R2 values in both training

and prediction sets were all higher than 3.0 and 0.9, respectively,

exhibiting the excellent ability for prediction (RHJ and GHJ).

Also, the WT-BPNN group achieved RPD values at 2.63 and

2.67, representing the good ability for prediction in RHJ and

GHJ groups, respectively (Table 2).

Prediction of chemical indicators based
on HSI e�ective wavelengths

The prediction based on full wavelengths may have the risk

of information redundancy, and redundant data would lead

to model problems such as complexity, long running time,

and poor performance. The approaches for screening effective

wavelengths may solve the above problems (Zhang et al., 2016).

Three widely used selection methods of IVSO, MASS, and SPA

were compared in this research (Table 3).
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TABLE 2 Three chemical indicators prediction based on the full wavelengths.

Index Group RHJ GHJ

Training set Prediction set Training set Prediction set

R2 RMSET R2 RMSEP RPD R2 RMSET R2 RMSEP RPD

AOC ORI-BPNN 0.876 0.048 0.678 0.097 1.78 0.898 0.024 0.760 0.036 1.95

ORI-PLSR 0.892 0.046 0.829 0.064 2.30 0.894 0.024 0.780 0.082 1.95

ORI-RF 0.916 0.066 0.512 0.134 0.56 0.946 0.030 0.712 0.051 0.81

MSC-BPNN 0.835 0.061 0.748 0.087 1.86 0.921 0.021 0.681 0.041 1.64

MSC-PLSR 0.890 0.046 0.842 0.062 2.39 0.912 0.022 0.791 0.328 2.09

MSC-RF 0.941 0.060 0.679 0.118 0.64 0.963 0.026 0.689 0.052 0.81

SEC-BPNN 0.869 0.051 0.773 0.075 2.08 0.927 0.020 0.657 0.042 1.57

SEC-PLSR 0.928 0.037 0.868 0.057 2.71 0.908 0.022 0.801 0.032 2.10

SEC-RF 0.965 0.044 0.829 0.094 1.00 0.965 0.021 0.856 0.038 1.35

WT-BPNN 0.983 0.023 0.986 0.026 6.21 0.963 0.014 0.974 0.012 6.15

WT-PLSR 0.957 0.029 0.951 0.035 4.50 0.945 0.017 0.947 0.016 4.31

WT-RF 0.988 0.022 0.987 0.025 6.26 0.997 0.006 0.990 0.010 6.75

TALC ORI-BPNN 0.942 15.9 0.941 13.6 3.82 0.756 30.3 0.564 42.0 1.40

ORI-PLSR 0.827 27.1 0.774 28.1 2.10 0.795 27.6 0.545 44.0 1.40

ORI-RF 0.911 31.0 0.574 43.8 0.72 0.932 24.5 0.686 44.9 0.92

MSC-BPNN 0.958 13.4 0.924 15.2 3.39 0.643 37.6 0.326 56.3 1.10

MSC-PLSR 0.912 19.0 0.904 16.5 3.33 0.746 30.7 0.528 42.4 1.28

MSC-RF 0.980 14.3 0.945 18.5 2.40 0.940 25.8 0.501 53.4 0.65

SEC-BPNN 0.976 9.8 0.920 15.2 3.40 0.788 28.8 0.498 47.2 1.32

SEC-PLSR 0.876 22.6 0.865 20.4 2.73 0.827 25.4 0.539 42.6 1.34

SEC-RF 0.987 10.4 0.986 9.2 5.49 0.953 20.5 0.703 42.8 0.97

WT-BPNN 0.946 16.3 0.985 6.9 7.51 0.905 19.3 0.820 27.9 2.35

WT-PLSR 0.953 13.7 0.945 12.9 4.25 0.881 21.1 0.865 22.9 2.56

WT-RF 0.986 11.6 0.984 8.9 5.79 0.980 12.6 0.928 23.1 2.37

VOC ORI-BPNN 0.613 15.6 0.338 21.2 0.84 0.826 5.90 0.503 10.65 1.34

ORI-PLSR 0.743 12.3 0.533 16.5 1.05 0.854 5.15 0.601 9.26 1.51

ORI-RF 0.933 9.8 0.681 18.8 0.67 0.915 6.46 0.562 11.46 0.60

MSC-BPNN 0.750 12.5 0.409 19.5 0.88 0.777 6.43 0.548 10.53 1.39

MSC-PLSR 0.720 12.0 0.537 16.5 1.04 0.849 5.25 0.635 8.70 1.57

MSC-RF 0.929 10.5 0.601 20.3 0.57 0.936 6.49 0.145 13.83 0.33

SEC-BPNN 0.656 13.5 0.238 23.3 0.89 0.525 9.41 0.337 11.59 0.95

SEC-PLSR 0.754 11.3 0.564 16.5 1.22 0.813 5.84 0.635 8.54 1.51

SEC-RF 0.953 9.0 0.670 18.8 0.74 0.956 4.37 0.727 9.40 1.09

WT-BPNN 0.903 7.5 0.889 9.4 2.63 0.923 3.90 0.909 4.43 2.67

WT-PLSR 0.916 5.6 0.906 7.9 3.40 0.928 3.62 0.926 3.75 3.44

WT-RF 0.984 4.5 0.977 6.1 3.73 0.988 2.05 0.982 2.73 4.64

Three chemical indexes including antioxidant capacity (AOC), total alkylamides content (TALC) and volatile oil content (VOC). HSI data pretreatment methods including original

spectrum (ORI), multiplicative signal correction (MSC), second derivative (SEC), and wavelet transform (WT). Three chemometrics including back-propagation neural network (BPNN),

partial least square regression (PLSR), and random forest (RF). Model performance was assessed by the indices of square of curve correlation coefficient (R2), root mean square error of

training set (RMSET), root mean square error of prediction set (RMSEP), and residual predictive deviation (RPD). The RPD values with underline mean the best model group in this study

for this chemical index regression, the same below.

From RHJ group based on full wavelengths, nine

combinations with prominent effects were selected for

screening effective wavelength, including WT- (BPNN, PLSR,

and RF) models for AOC (RPD > 4.0), SEC-RF and WT-

(BPNN and RF) models for TALC (RPD > 5.0), and WT-

(BPNN, PLSR, and RF) models for VOC (RPD > 2.5). In AOC

research, almost all the selection groups (IVSO,MASS, and SPA)

exhibited the same or even better effect than the full wavelength
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TABLE 3 Chemical indexes prediction of RHJ and GHJ based on the selected wavelengths.

Index Group IVSO MASS SPA

SWN Training set Prediction set SWN Calibration set Prediction set SWN Training set Prediction set

R2 RMSET R2 RMSEP RPD R2 RMSEC R2 RMSEP RPD R2 RMSET R2 RMSEP RPD

RHJ-AOC WT-BPNN 86 0.983 0.020 0.980 0.024 6.76 106 0.979 0.022 0.982 0.025 6.82 90 0.968 0.029 0.958 0.032 5.36

WT-PLSR 86 0.978 0.023 0.982 0.024 6.93 106 0.980 0.022 0.984 0.022 7.43 90 0.979 0.022 0.983 0.024 7.04

WT-RF 86 0.992 0.020 0.992 0.022 7.35 106 0.995 0.017 0.990 0.024 6.51 90 0.992 0.027 0.985 0.022 7.41

RHJ-TALC SEC-RF 97 0.990 10.1 0.985 9.5 5.31 106 0.988 10.6 0.983 8.8 5.82 32 0.987 11.1 0.984 9.9 5.00

WT-BPNN 118 0.942 16.9 0.984 6.6 7.82 121 0.950 15.7 0.980 8.2 6.28 33 0.949 15.8 0.931 15.8 3.27

WT-RF 118 0.979 14.4 0.981 9.2 5.42 121 0.982 13.8 0.981 9.0 5.45 33 0.980 14.4 0.967 13.8 3.54

RHJ-VOC WT-BPNN 96 0.917 7.5 0.911 8.3 2.95 114 0.891 8.3 0.912 7.5 3.05 63 0.887 8.3 0.847 10.4 2.12

WT-PLSR 96 0.901 10.8 0.918 7.5 3.05 114 0.910 7.5 0.922 7.5 3.12 63 0.893 8.3 0.912 7.6 2.96

WT-RF 96 0.977 5.4 0.957 9.3 2.85 114 0.976 9.7 0.941 9.4 2.30 63 0.980 5.3 0.954 7.5 2.68

GHJ-AOC WT-BPNN 77 0.978 0.011 0.970 0.013 5.70 116 0.976 0.012 0.973 0.012 5.99 36 0.962 0.014 0.971 0.012 5.80

WT-PLSR 77 0.956 0.016 0.970 0.012 5.68 116 0.955 0.016 0.969 0.013 5.54 36 0.943 0.018 0.958 0.015 4.81

WT-RF 77 0.995 0.007 0.988 0.011 6.56 116 0.997 0.005 0.990 0.010 6.82 36 0.992 0.009 0.988 0.011 6.22

GHJ-TALC WT-BPNN 81 0.873 21.9 0.850 23.6 2.50 108 0.890 21.1 0.849 24.7 2.44 31 0.901 19.3 0.854 24.2 2.54

WT-PLSR 81 0.881 21.1 0.865 21.9 2.66 108 0.877 21.4 0.857 23.5 2.48 31 0.848 23.8 0.841 25.0 2.24

WT-RF 81 0.978 12.9 0.933 22.2 2.52 108 0.978 12.8 0.927 23.2 2.41 31 0.973 14.4 0.927 23.0 2.36

GHJ-VOC WT-BPNN 113 0.934 3.5 0.955 3.1 4.14 121 0.972 2.3 0.947 3.2 4.37 32 0.920 4.0 0.909 4.5 2.57

WT-PLSR 113 0.943 3.2 0.943 3.3 3.98 121 0.942 3.2 0.943 3.3 3.98 32 0.936 3.4 0.941 3.4 3.85

WT-RF 113 0.983 2.5 0.976 3.1 4.10 121 0.985 2.4 0.973 3.4 3.64 32 0.976 2.9 0.979 3.0 4.31

Three wavelength selected methods including iteratively variable subset optimization (IVSO), model adaptive space shrinkage (MASS), and successive projections algorithm (SPA). Selected wavelengths number (SWN). RPD values in bold represents the

improvement of model performance compared with that from the full wavelengths group. Values with underline means the best model group in this study for this chemical index regression.
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FIGURE 2

The most suitable models for chemical indicators prediction of HJ samples. (A): AOC prediction of RHJ (MASS-WT-PLSR), (B): TALC prediction

of RHJ (IVSO-WT-BPNN), (C): VOC prediction of RHJ (WT-RF based on the full wavelengths), (D): AOC prediction of GHJ (MASS-WT-RF),

(E): TALC prediction of GHJ (IVSO-WT-PLSR), (F): VOC prediction of GHJ (WT-RF based on the full wavelengths).

groups, with improved RPD values higher than 5.0 (Table 3).

In TALC research, in all the groups from IVSO and MASS

selection, the RPD values were higher than 5.0, but the RPD

values ranged from 3.0–5.0 in SPA groups. In VOC research,

the IVSO-WT-PLSR, MASS-WT-BPNN, and MASS-WT-PLSR

groups had the excellent prediction effects with RPD values

higher than 3.0. However, in SPA groups, all the RPD values

were lower than 3.0. In summary, compared with the full

wavelength groups, 5/9, 5/9, and 2/9 groups with IVSO, MASS,

and SPA selection, respectively, had increased in RPD values

(RPD values in bold), which showed the better suitability of

IVSO and MASS for wavelengths selection (Table 3).

Based on the results from GHJ groups by use of full

wavelengths, nine combinations with better effects were chosen

for chemical prediction with selected wavelengths, including

WT- (BPNN, PLSR, and RF) models for AOC (RPD > 4.0),

WT- (BPNN, PLSR, and RF) models for TALC (RPD > 2.0),

and WT- (BPNN, PLSR, and RF) models for VOC (RPD > 2.5)

(Table 3). In AOC research, all the groups in IVSO and MASS

methods reached the RPD values higher than 5.0, suggesting

the suitability of selection methods. In TALC research, RPD

values from all the groups of three selection methods were

higher than 2.0, indicating the suitability of selection models

for prediction (Table 3). Besides, in the IVSO groups, all the

RPD values were higher than 2.5, indicating the good suitability

of IVSO selection. The results from all IVSO combination

groups reached higher RPD (>2.5) than those obtained with

full wavelength groups. In VOC groups, all three selection

groups reached the same results or even higher RPD values

compared with the full wavelength group, and achieved the

RPD improvement of half the groups. In summary of GHJ

groups, compared with the full wavelength groups, 6/9, 6/9, and

3/9 groups with IVSO, MASS, and SPA selection, respectively,

realized higher RPD values (RPD values in bold), suggesting

better suitability of IVSO and MASS for wavelengths selection

(Table 3).

In general, the best prediction results of AOC, TALC,

and VOC indicators of RHJ were achieved in the groups

of MASS-WT-PLSR (Table 3, Figure 2A), IVSO-WT-BPNN

(Table 3, Figure 2B), and WT-RF (full wavelengths, Table 2,

Figure 2C), with the highest RPD values of 7.43, 7.82,

and 3.73, respectively (values with underline). Also,

the best prediction results of three indicators of GHJ

were obtained in the models of MASS-WT-RF (Table 3,

Figure 2D), IVSO-WT-PLSR (Table 3, Figure 2E), and

WT-RF (full wavelengths, Table 2, Figure 2F) with the

highest RPD values of 6.82, 2.66, and 4.64, respectively (values

with underline).
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FIGURE 3

Selected wavelengths for best prediction in chemical indicators of HJ samples. The selected wavelengths were shown in red dots. (A) Selected

wavelengths in AOC prediction of RHJ (MASS-WT-PLSR); (B) selected wavelengths in AOC prediction of GHJ (MASS-WT-RF); (C) selected

wavelengths in TALC prediction of RHJ (IVSO-WT-BPNN); (D) selected wavelengths in TALC prediction of GHJ (IVSO-WT-PLSR).

Discussion

Comparison of chemical indicators from
HJ fruits between origins or varieties

In this study, AOC, TALC, and VOC exhibited significant

differences between the groups from different production

regions (P < 0.05). Many former reports have shown the same

results of geographical differences in VOC for Z. zanthoxyloides

Lam. (Tine et al., 2017) and TALC for Z. bungeanum (RHJ)

(Zhang et al., 2019a; Sun et al., 2020b). The result of this

research showed that RHJ from regions in SC province, namely

SCHY and SCMC, had no significant difference (P > 0.05) in

both TALC and VOC. The short spatial distance between these

two regions lead to rather similar geographical environment

and climate characteristics, and our result implied that the

differences of geographical environmentsmay play an important

role in the accumulation of quality-indicating components.

Between different varieties such as RHJ and GHJ, former

reports have shown that the TALC and VOC have significant

differences in component types and contents (Yang, 2008). Also,

the VOC and TALC play an important role in quality evaluation

of RHJ and GHJ. Consistent with the significant differences

between varieties reported by Yang (2008), this study found that

mass percentages of TALC and VOC had significant difference

in RHJ and GHJ. This result showed that GHJ has more content

of TALC than RHJ, which well explains the phenomenon that

GHJ is mainly used for increasing numbing taste. On the other

hand, the mass percentage of VOC content in RHJ higher than

that in GHJ further revealed the reasons why RHJ is famous

for aromatic taste and mainly applied for increasing aroma of

various food products and Chinese cuisine (Yang, 2008; Jing

et al., 2021).

Comparison of noise reduction methods
and regression models in indicators
prediction

Each of the tested noise reduction methods has its own

advantages and emphases (He et al., 2018; Feng et al., 2019;
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Wang et al., 2021b). As it was difficult to determine which

aspects of the noise had the most significant impact on the

prediction, we could only choose the best noise-reducing

method empirically. In general, the prediction results in

this study showed that WT method was more suitable for

reducing various noises, which may come from sources such

as instrument or sample. The reason may be the diversity of

hyperspectral data noises, and WT method is very suitable

for dealing with multivariate noises from sources such as

environment, instrument or sample itself (He et al., 2018).

Researches of total polysaccharides and flavonoids prediction

in Chrysanthemum morifolium (He et al., 2018) and the heavy

metals content evaluation of cadmium (Cd) and lead (Pb) in

lettuce (Zhou et al., 2020) also showed the suitability of WT

pretreatment for noise reduction of HSI data.

Meanwhile, as for regression models for prediction of three

chemical indexes on full wavelength groups, non-linear and

linear models (BPNN and RF) and linear model (PLSR) were

applied in this study and the prediction effects did not seem to be

dependent on one regression model. In terms of different index

prediction, the best prediction model was different (without

specific rule to follow), which also showed the complexity of

HSI data. Previous reports also showed the applicability of these

regression models in the prediction of chemical indexes. In

detail, the reducing sugar and amino acid nitrogen contents

in wine were accurately predicted using HSI full wavelength

combined with BPNN models, with R2 and RPD values all

higher than 0.80 and 2.0, respectively (Huang et al., 2021a). For

oil content of maize kernel (Zhang et al., 2022), total lipid of

green coffee bean (Caporaso et al., 2018) and both moisture

and dry matter content of date fruits (Ibrahim et al., 2021), the

results showed the suitability of PLSR model based on HSI full

wavelength for prediction, with R2 values all higher than 0.80

and RPD values all larger than 2.0. PLSR, BPNN and RF models

performed well under some circumstances in this study and all

of them had their unique values for regression.

Comparison and analysis of three
methods on selection e�ective
wavelengths

Many previous similar reports have shown that effective HSI

wavelengths often have the same or better prediction results for

chemical indexes compared with those from the full wavelength

group. The examples can be studies on starch and water contents

prediction in potato (Xiao et al., 2020; Wang et al., 2021a), total

caffeine and theanine contents prediction from tea (Wang et al.,

2020, 2021c), amylose and amylopectin contents prediction in

sorghum (Huang et al., 2021b), and total anthocyanin content

and antioxidant activity prediction in mulberry fruit (Huang

et al., 2017). The results of this research showed that the

prediction effect of selection wavelengths groups was the same

as or even better than that from the full wavelengths groups.

In general, the best prediction results of AOC and TALC

in RHJ and GHJ samples were achieved by use of the

selected bands. In AOC prediction of RHJ (MASS-WT-PLSR,

Figure 3A) and GHJ (MASS-WT-RF, Figure 3B) with the best

prediction effect, the result showed the close relationship

between effective wavelengths and prediction index. Among

these, the wavelengths at 1,000 to 1,100 nm and 1,150 to

1,300 nm may be related to the second harmonic of O-

H and the first harmonic of C-H combination from the

antioxidant substances of polysaccharides, respectively (Liu

et al., 2021). Meanwhile, the effective wavelengths of 1,100

to 1,140 nm and 1,650 nm to 1,690 nm may be related to

the first overtone region and the second overtone region

of –CH3 from the antioxidant substances of polyphenols,

respectively (Ouyang et al., 2021). As for TALC prediction

from both RHJ (IVSO-WT-BPNN, Figure 3C) and GHJ (IVSO-

WT-PLSR, Figure 3D) with the best prediction effect, the close

correlation was observed between the effective wavelengths and

the prediction index. Among these, effective wavelengths at

1,390 to 1,520 nm and 1,810 to 1,850 nm may be related to the

first harmonic of C-H from the most abundant alkylamides

compounds. Also, wavelengths in the range from 940 nm to

1,050 nm may be related to the third overtone region of -

C-H (CH/CH2/CH3) in alkylamides compounds (Fan et al.,

2021).

Meanwhile, in this study, the significant differences in

the prediction results of different screening methods were

found, and especially showed the suitability of IVSO and

MASS methods and inefficiency of SPA selection for effective

wavelengths in prediction of three chemical indexes of

HJ samples. Interestingly, the former reports also showed

that starch content in potato was well predicted based on

effective wavelengths selected via IVSO method, with R2

values > 0.88 in both calibration and prediction sets, and

RPD values > 2.0 in almost all groups when combined

with regression models (Wang et al., 2021a). Similar to our

results, total phenolics, flavonoids, and anthocyanins contents

in dry black goji berries (Lycium ruthenicum Murr.) were

predicted using effective HSI wavelengths screened by use

of SPA, and the SPA method for important band selection

fails to yield a better prediction results than those of full

HSI wavelengths group (Zhang et al., 2020). However, in

moisture and crude fiber contents prediction of fresh tea leaves

(Wang et al., 2020) and soluble protein content prediction

in oilseed rape leaves (Zhang et al., 2015) using selected

spectrum via SPA method, the results showed that SPA

method was generally more suitable for effective wavelengths

selection with prediction results better than those of full band

group. Therefore, the effect of screening effective variables

needs further analysis and comparison in different practical

application situations.
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In addition, the chemical contents prediction based on

screening effective variables is also related to the regression

model to a certain extent. For example, the reducing sugar

and amino acid nitrogen contents of Daqu liquor were

predicted using spectra selected by SPA, and compared

with the results from the full wavelength group, the RPD

values in BPNN and SVM models increased and values

from PLSR model declined, indicating the model propensity

(Huang et al., 2021a). In addition, IVSO wavelength selection

method exhibited the advantages in prediction of catechin

content from tea using PLSR model, and the prediction

result improved from RPD = 2.81 to 3.19 compared with

full HSI group (Wang et al., 2021c). However, in IVSO

selection combined with SVM regression, the prediction effect

were not particularly satisfactory (Wang et al., 2021c). In

this study, the suitability of IVSO and MASS methods for

selection effective bands was relatively prominent, but the

tendency of three methods to the regression models have

no regularity.

Conclusion

Geographical origin and variety may greatly affect quality

indicators of HJ fruits, because three important chemicals

indexes including VOC, TALC, and AOC have a significant

difference (P < 0.05). Meanwhile, in the research field of

food, there is an urgent need for a rapid detection technology

with time-saving, easy operation, and cost-saving characters for

food quality detection. In this study, the promising method

of HSI combined with chemometric analysis was applied

to the quality evaluation of HJ spices. WT method was

successfully used for noise reduction of HSI data. Three chemical

indicators were well predicted using HSI full wavelengths,

and the effective wavelengths via MASS and IVSO selections.

The overall results demonstrated the great potential of HSI

technology assisted with chemometrics to predict the quality

of HJ spices with the advantage of rapid, non-destructive, and

low cost.

Admittedly, our dataset did not involve HJ samples

from production regions out of China, and the inclusion of

such samples in the future may improve the generalizability

of the conclusion. Moreover, the prediction accuracy of

the method, especially that for TALC from GHJ group,

can be improved in the future studies. Notably, the

emergence of the deep learning has brought inspiration

for exploring the spatial information including color and

texture features of HJ samples. It is worth exploring the

possibility of spatial information combined with spectral

data for more extensive prediction of indicators such as

maturity, storage time, and cultivation practices of HJ samples.

Finally, the effective wavelengths selected in this research

provide an important potential for the development of

convenient small equipment for rapid food quality evaluation

in industry.
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