
TYPE Mini Review

PUBLISHED 18 January 2023

DOI 10.3389/fsufs.2022.1039299

OPEN ACCESS

EDITED BY

Muhammad Faisal Manzoor,

Foshan University, China

REVIEWED BY

Seyed-Hassan Miraei Ashtiani,

Ferdowsi University of Mashhad, Iran

Ranjana Roy Chowdhury,

Indian Institute of Technology

Ropar, India

*CORRESPONDENCE

Jason Teo

jtwteo@ums.edu.my

SPECIALTY SECTION

This article was submitted to

Sustainable Food Processing,

a section of the journal

Frontiers in Sustainable Food Systems

RECEIVED 27 September 2022

ACCEPTED 19 December 2022

PUBLISHED 18 January 2023

CITATION

Ragu N and Teo J (2023) Object

detection and classification using

few-shot learning in smart agriculture:

A scoping mini review.

Front. Sustain. Food Syst. 6:1039299.

doi: 10.3389/fsufs.2022.1039299

COPYRIGHT

© 2023 Ragu and Teo. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Object detection and
classification using few-shot
learning in smart agriculture: A
scoping mini review

Nitiyaa Ragu1 and Jason Teo2,3*

1Faculty of Computing and Informatics, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia,
2Advanced Machine Intelligence Research Group, Faculty of Computing and Informatics, Universiti

Malaysia Sabah, Kota Kinabalu, Malaysia, 3Evolutionary Computing Laboratory, Faculty of

Computing and Informatics, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia

Smart agriculture is the application ofmodern information and communication

technologies (ICT) to agriculture, leading to what we might call a third green

revolution. These include object detection and classification such as plants,

leaves, weeds, fruits as well as animals and pests in the agricultural domain.

Object detection, one of themost fundamental and di�cult issues in computer

vision has attracted a lot of attention lately. Its evolution over the previous

two decades can be seen as the pinnacle of computer vision advancement.

The detection of objects can be done via digital image processing. Machine

learning has achieved significant advances in the field of digital image

processing in current years, significantly outperforming previous techniques.

One of the techniques that is popular is Few-Shot Learning (FSL). FSL is a type

of meta-learning in which a learner is given practice on several related tasks

during themeta-training phase to be able to generalize successfully to new but

related activities with a limited number of instances during the meta-testing

phase. Here, the application of FSL in smart agriculture, with particular in the

detection and classification is reported. The aim is to review the state of the

art of currently available FSL models, networks, classifications, and o�er some

insights into possible future avenues of research. It is found that FSL shows

a higher accuracy of 99.48% in vegetable disease recognition on a limited

dataset. It is also shown that FSL is reliable to use with very few instances and

less training time.

KEYWORDS
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Few-Short Learning in agriculture

In the realm of computer vision, detecting small objects such as plants, leaves, weeds,

fruits, and pests is a critical study topic. It is a technology that employs computer vision

equipment to acquire photos to determine whether the obtained images include weeds,

pests or even plant diseases (Lee et al., 2017). Computer vision-based object detection

technology is currently being used in agriculture and has partially replaced traditional

naked-eye identification (Liu and Wang, 2021). During the growth process, pests, and

weeds frequently harm crops which leads to various diseases. They will become more
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dangerous if control is not done in a timely or effective manner.

This will have an impact on crop yields and result in significant

losses in agricultural income. People rely on their experiences

while using traditional detection methods (Zhang S. et al., 2021).

Numerous agricultural plants, weeds, fruits, pests, and

diseases have similar morphology, making it difficult to

recognize them. Only judging by human eye observation is time-

consuming, debilitating, biased, imprecise, and costly (Ashtiani

et al., 2021). Nonprofessional agricultural employees will be

harmed by their personal experiences since they will be unable

to appropriately identify the species. As a result, pest control is

an important aspect of agricultural productivity, and detecting

agricultural pests is critical for agricultural development (Zhang

S. et al., 2021).

As a result, an accurate detection technique is very desirable,

and FSL is an approach that is precise in object detection. FSL

learning is a sub-area in machine learning. FSL is a sort of

machine learning problem (defined by E, T, and P), in which E,

Experience, comprises a small number of supervised instances

for T, Task, measured by P, Performance (Wang et al., 2020). FSL

is used to quickly train the model on a little amount of tagged

data (Fei-Fei et al., 2006). The fundamental concept behind FSL

is comparable to how humans learn: it makes use of previously

learned knowledge to pick up new skills while minimizing

the quantity of training data needed. Research findings (Duan

et al., 2021) demonstrate that FSL can address several machine

learning’s drawbacks, such as the need for huge datasets to be

collected and labeled, by dramatically lowering the quantity

of data necessary to train machine learning models. Due to

the small number of datasets, the data are divided into two

splits [train and test (without validation) or train and validation

(without test)] in many types of research in the field of artificial

intelligence, which can be a weakness. The data set is divided

into two subsets because, in small data sets, an additional split

could result in a smaller training set that is more susceptible to

overfitting (Ashtiani et al., 2021).

A framework put forth by Fink (2004) allows object

classifiers to be learned from a single example, which drastically

reduces the amount of data gathering required for image

classification tasks. Additionally, FSL enables the training of

models that are appropriate for a few uncommon circumstances

(Duan et al., 2021). A good example is the significant

advancements in drug development that have been made

as a result of the most recent FSL research advancements

(Jiménez-Luna et al., 2020). Clinical biological data for a

given drug are extremely scarce when predicting whether it is

harmful, which frequently makes use of classic machine learning

algorithms difficult.

FSL is widely used for scene classification (Alajaji

et al., 2020), text classification (Muthukumar, 2021), image

classification (Li X. et al., 2020) and image retrieval (Zhong

Q. et al., 2020). Even though software and computational

technologies have long been utilized for detection in agriculture,

FSL’s capacity to identify them with limited training data makes

them suitable for the task. This is ground-breaking because,

they can be detected under various conditions of lighting,

orientation, and background (Nuthalapati and Tunga, 2021).

FSL has been proven in agriculture to be an effective method

for plant disease identification (Argüeso et al., 2020). Recent

FSL approaches in agriculture are mainly used for plant disease

detection (Wang and Wang, 2019; Li and Chao, 2021), fruit

detection and classification (Janarthan et al., 2020; Ng et al.,

2022), leaf identification and classification (Afifi et al., 2020;

Jadon, 2020; Tassis and Krohling, 2022) and pest detection (Li

and Yang, 2020, 2021; Nuthalapati and Tunga, 2021) using the

meta-train set which is subsequently used to build embeddings

for the samples in the meta-test set.

This article reviews the limitations of deep learning,

advantages of FSL, types of FSL networks, their applications in

the agricultural sector and their corresponding findings.

Limitations of deep learning

In agriculture, deep learning-based automatic classification

of several categories is a hot topic of research (Too et al.,

2019; Li Y. et al., 2020). Yet, in general, people still lean on

non-automated classification by experts for the classification of

distinct species. This is due in part to the fact that deep learning

networks based on Convolutional Neural Networks (CNNs)

demand thousands of labeled examples per target category for

training, and labeling samples on such a large scale necessitates

domain experts (Krizhevsky et al., 2017).

Furthermore, following training, the number of categories

that a trained CNN-based model can recognize remains

constant. To increase the number of categories that the network

can recognize, it must be fine-tuned by adding fresh examples

from other classes (Chen et al., 2019). Fine-tuning is a transfer

learning approach which is used to benefit from the pre-

trained network by adjusting the parameters to the data set.

Due to the pre-established weights in a pre-trained network,

fine-tuning is quicker than training from start (Ashtiani et al.,

2021). Also, adequate data is required during training to avoid

the network from overfitting (Gidaris and Komodakis, 2018)

whereas humans can acquire new skills with little to no guidance

using one or a few examples only (Lake et al., 2011).

Advantages of Few-Shot Learning

Humans can generalize new information based on a small

number of examples, whereas artificial intelligence typically

needs thousands of examples to produce comparable results

(Duan et al., 2021). Researchers sought to create a machine

learning model that, after learning a significant amount of data

for some categories, could quickly learn a new category with

only a few sample data, drawing inspiration from humans’ rapid
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learning abilities. This is the issue that FSL seeks to address. This

task only offers a small number of observable examples, much

like the production of character samples (Lake et al., 2015).

FSL has lately received a lot of attention as a way for

networks to learn from a few samples. FSL tries to solve the

challenge of classification with a small number of training

examples, and it is gaining traction in a variety of domains (Lake

et al., 2011). In FSL, there are two sets of labeled image data

which are meta-train and meta-test, with image classes that are

mutually exclusive in both sets (Argüeso et al., 2020). The goal

is to develop a classifier on the visual classes in the meta-test set

that can classify a particular query sample even with very few

labeled examples using the data in the meta-train set and learn

transferrable information (Altae-Tran et al., 2017).

Additionally, cross-domain FSL is defined as when the

domain of visual classes in the meta-train set differs from the

domain of visual classes in the meta-test set (Argüeso et al.,

2020). One of the primary issues in cross-domain FSL is feature

distribution differences between domains. Likewise, both the

meta-train and meta-test sets in mixed-domain FSL contain

classes from many domains, whereas single-domain FSL (Li and

Yang, 2021) only contains instances from a single domain.

According to research (Duan et al., 2021), FSL can learn

about uncommon circumstances where it is challenging to find

information about supervision by combining one or a few

examples with previously learned knowledge. This can solve the

issue of the machine learning algorithm’s need for thousands of

supervised examples to guarantee the model’s generalizability.

Additionally, FSL can help expedite the training cycle and lower

the high cost of data preparation (Parnami and Lee, 2022).

Types of networks in Few-Shot
Learning

According to the traditional paradigm, an algorithm learns

whether task performance gets better with practice when given

a specific task. The Meta-Learning paradigm consists of several

tasks. An algorithm that is learning to determine whether its

efficiency at each task increases with practice and the number

of tasks is called a meta-learning algorithm (Chen et al., 2021).

Numerous Meta-Learning techniques have been released by

researchers in recent years to address FSL classification issues.

Metric-Learning (Yang and Jin, 2006) andGradient-BasedMeta-

Learning (Khodak et al., 2019)methods can be used to categorize

them all into two main classes.

Metric-learning is the term used to describe the process of

learning a distance function over objects (Chen et al., 2021).

Algorithms using metrics learn to compare data samples in

general. They categorize query samples for an FSL classification

problem according to how similar they are to the support

samples. A base-learner and a meta-learner are created for the

gradient-based technique. A base-learner is a model that is

initialized and taught within each episode by the meta-learner,

whereas a meta-learner is a model that learns across episodes

(Cao et al., 2019). Table 1 shows the meta-learning algorithms

with its category respectively.

One of the most well-liked meta-learning algorithms,

Model-Agnostic Meta-Learning (MAML) has made significant

advancements in the field of meta-learning research.

Furthermore, meta-learning is a two-part learning process

where the model first prepares to learn new tasks and then

actually learns the new task from a few samples in the second

stage (Yavari, 2020). The general goal of MAML is to identify

suitable starting weight values so that the model can quickly

pick up new tasks.

The first Metric-Learning method created to address FSL

issues was Matching Networks (Chen et al., 2021). When using

the Matching Networks approach to resolve an FSL job, a large

base dataset is required (Li X. et al., 2020). This dataset is divided

into episodes. Every image from the query and support sets

is given to a CNN, which produces embeddings for each one.

The SoftMax of the cosine distance between each query image’s

embeddings and the support-set embeddings is used to classify

each image. It also uses Long Short-Term Memory (LSTM) for

testing and Bidirectional Long Short-Term Memory (biLSTM)

for training (Ye et al., 2020). The resulting classification’s Cross-

Entropy Loss is backpropagated through the CNN. Matching

Networks can learn to construct picture embeddings in this

way. Matching Networks can categorize photographs using this

method without having any special prior knowledge of classes

(Vinyals et al., 2016). Simply comparing several instances of the

classes is used for everything.

Prototypical Networks learn a metric space in which

each class may be classified by computing distances between

prototype representations (Yavari, 2020). They represent a

more straightforward inductive bias, which is advantageous

in this low-data environment. The notion behind Prototypical

Networks is that each class has an embedding in which points

cluster around a single prototype representation (Pan et al.,

2019). To accomplish so, a neural network is used to learn a

non-linear mapping of the input into an embedding space, and

a class’s prototype is taken to be the mean of its embedding

space support set. The next step is to classify an embedded

query point by simply identifying the closest class prototype

(Ji et al., 2020).

Another straightforward and efficient technique for both

one-shot and FSL that adheres to the metric-learning paradigm

is the Relation Network (Yavari, 2020). Relation Network uses

an embedding function f to extract the features from the inputs,

just like the Prototypical and Siamese Networks (Sung et al.,

2018). As an embedding function, CNN is utilized because the

inputs are images. The Relation Network includes a relation

function in addition to the embedding function. This relation

function evaluates how closely the query sample is connected to

the various classes in the support set (Sun et al., 2018).
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TABLE 1 Types of meta learning algorithms.

Networks Category Embedding function
for testing

Embedding function
for training

Model-agnostic meta learning (Wang and Wang, 2019) Gradient-based meta learning Deep neural network Deep neural network

Matching network (Wang and Wang, 2019) Metric learning CNN, LSTM CNN, biLSTM

Prototypical network (Yavari, 2020) Metric learning CNN CNN

Relation network (Yavari, 2020) Metric learning CNN CNN

Siamese network (Yavari, 2020) Metric learning CNN CNN

A Siamese Network is made up of two networks that

receive different inputs but are connected at the top by an

energy function (Yavari, 2020). This function calculates a metric

between each side’s highest-level feature representation. The

dimensions of the twin networks are inextricably linked (Dong

and Shen, 2018). The network’s structure is duplicated in both

the top and bottom parts, resulting in twin networks with shared

weight matrices at each layer. The Siamese Network’s goal is

to evaluate two photos and determine whether they are similar

(Melekhov et al., 2016). The process for comparing a Siamese

network is quite straightforward.

Other methods for small data
training

There are also methods other than FSL for small data

training. Knowledge may be successfully exploited in

sophisticated applications by being appropriately organized

and represented in knowledge graphs (Chen et al., 2020).

Knowledge graphs can efficiently manage, mine, and organize

knowledge from massive amounts of data, enhancing the

quality of information services and delivering more intelligent

services to users. It is used to store connected descriptions and

details about things like events, objects, actual circumstances,

and theoretical or abstract ideas (Pujara et al., 2013). This

approach simultaneously encodes semantics underlying the

data collection in addition to serving as data storage. The

arrangement and structuring of significant data points from the

data set to integrate information gathered frommultiple sources

is the main purpose of the knowledge graphs model. Labels

are added to a knowledge graph to associate certain meanings.

Nodes and edges are the two basic parts of a graph (Wang et al.,

2017). Nodes are made up of two or more objects, and edges

show how they are related to one another.

By using enough prior knowledge from related fields to

complete new tasks in the target domain, transfer learning

simulates the human visual system despite the size of the data

set (Shao et al., 2014). In transfer learning, the source domain

and the target domain are two different sorts of domains that

can both benefit from the training and testing data (Weiss et al.,

2016). The source domain contains training examples, which are

under a different distribution from the target domain data, and

the target domain contains the testing instances, which are the

classification system’s task. For a transfer learning task, there is

typically just one target domain, although there may be one or

more source domains (Torrey and Shavlik, 2010).

Another popular method is self-supervised learning (SSL).

SSL has becoming more common since it can save on the

expense of annotating huge datasets (Jaiswal et al., 2020).

It has the ability to employ the learnt representations for

numerous downstream tasks and use self-defined pseudo labels

as supervision. Particularly, contrastive learning has lately taken

center stage in self-supervised learning for computer vision,

natural language processing (NLP), and other fields. It attempts

to push embeddings from various samples away while trying to

embed augmented copies of the same sample closely together

(Zhai et al., 2019).

Methodology

A literature search has been carried out by querying

Google Scholar, IEEE Xplore, ScienceDirect, SpringerLink,

ACM Digital Library and Scopus. According to studies,

Google Scholar’s reach and coverage are greater than those

of similar academic websites. Then, using exclusion criteria, a

small number of databases is chosen to search for pertinent

papers. The search was conducted using the terms “few

shot learning”, “smart agriculture”, “object detection”, “few

shot classification”, “one shot learning”, “low shot learning”,

“Meta-Learning”, “Prototypical Network”, “Siamese Network”,

“MAML”, “Relation Network”, and “Matching Network”.

The search was also limited to recent research papers in

the years 2010 and above. Repeated things between search

engine results were searched by employing a straightforward

script based on the edit distance between article titles. Around

150 articles were returned by all the search engines with 58

articles in IEEE Xplore, 50 articles in ScienceDirect, 21 articles

in Google Scholar, 15 articles in SpringerLink, and six articles

in Scopus. The resulting papers were very diverse, and most of

them fell outside the purview of the review. As a result, studies

that had been published and that dealt with FSL in agriculture
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and reported noteworthy findings considering recent literature

have been chosen. The search was restricted to keywords, titles,

and abstracts.

Exclusion criteria were used to screen out works that had

nothing to do with the literature review. The following standards

are disregarded in this analysis: (a) The ensuing articles have

nothing to do with FSL in agriculture, (b) Articles that are

not written in English, (c) Articles that are duplicated in the

databases, (d) Articles that do not have significant results and

problems. This filtered to 30 articles and during the process,

references of the selected papers were also looked to find other

works that fit the inclusion criteria. Finally, the resulting articles

were organized by considering the models and types of objects

in the agriculture field.

Results and discussion

FSL was first used in the field of computer vision, where

it produced promising results in picture classification. It does

not require large samples during training, which reduces the

time and cost of obtaining samples. As a result, it is now being

welcomed in many fields such as smart agriculture (Yang et al.,

2022). FSL has shown compelling results in smart agriculture

such as plant disease classification, plant leaf classification and

plant counting. Early diagnosis of plant diseases is crucial for

preventing plagues and mitigating their consequences on crops.

Deep learning is used to create the most accurate automatic

algorithms for identifying plant diseases using plant field

pictures. Traditional machine learning and deep learning

techniques, on the other hand, have certain drawbacks, one of

which is the requirement for large-scale datasets for models to

generalize well (Wang et al., 2020). These methods necessitate

the collecting and annotation of huge image datasets, which is

usually impossible to achieve due to technological or financial

constraints. As a result, new strategies were presented with the

goal of developing models that generalized well with fewer data.

As a result, meta-learning approaches (Hospedales et al., 2021)

and FSL methods, were proposed. The Table 2 shows the results

of the findings.

Research on identification has begun over two decades.

Deep learning was used in these studies, and they were a huge

success. However, there are a few challenges that deserve greater

attention and research, including the demand for a big training

set, training time, CNN architecture, pre-processing, feature

extractions, and performance evaluation measures. Some of the

experiments will not work in the wild due to camouflaging of the

backgrounds (Liu et al., 2019; Kuzuhara et al., 2020; Yao et al.,

2020).

To address these problems, authors have utilized machine

learning in the identification of pests as this study makes

the machine to think like humans. Machine learning has

shown satisfactory results in most studies (Brunelli et al.,

2019; Tachai et al., 2021; Zhang H. et al., 2021). However,

machine learning also uses CNN feature extractions for training

which shows improvement. Classifiers such as Support Vector

Machine (SVM) is the best classifier that enhances the accuracy

(Kasinathan et al., 2021).

To fill the gap between large training samples and

time consumption, FSL was implemented. FSL has become

popular in the computer vision field in both classification and

detection. FSL was introduced very recently, and the results

generated by this meta-learning approach are favorable. In the

smart agriculture sector, FSL is widely used in plant disease

identification (Wang andWang, 2019; Li and Chao, 2021), plant

counting (Karami et al., 2020), leaf classification (Afifi et al.,

2020; Jadon, 2020; Tassis and Krohling, 2022) and fruit ripeness

classification (Janarthan et al., 2020; Ng et al., 2022). The results

for these experiments have exceeded 90%.

For plant leaf classification using the Siamese network, the

accuracy of 95.32%, 91.37% and 91.75%were achieved for Flavia,

Swedish and Leafsnap respectively (Wang and Wang, 2019).

For maize plant counting, the overall precision was above 95%

(Karami et al., 2020). For plant disease classification using triplet

loss, the accuracy was 91.4% and using the Siamese network the

accuracy was 90.6% (Argüeso et al., 2020). In vegetable disease

recognition 99.48% accuracy was reached (Wang et al., 2021).

For pest detection, have utilized a prototypical network and

triplet loss with a terminal realization for cotton pests. They

used two datasets for comparison and achieved 95.4 and 96.2%

respectively (Li and Yang, 2020; Nuthalapati and Tunga, 2021).

However, some FSL techniques show lower accuracies due to

their limitations. For fruit ripeness classification, they achieved

75% accuracy for only five samples (Ng et al., 2022). Another

plant disease recognition has achieved an accuracy of around

55% for zero-shot (Zhong F. et al., 2020). For pests, one study

achieved 60.3% (Nuthalapati and Tunga, 2021). For animal

detection, the authors achieved 55.61 and 71.03% for 1 and 5

shots respectively due to no semantic annotations in testing

(Zhang H. et al., 2021). Another bird detection study achieved

60.19 and 75.75% for 1 and 5 shots respectively (Liu et al., 2019).

Even though some research has lower accuracies, they are

still satisfactory because FSL only uses very less instances in

the training of 1, 2, 3, 5, and 10 images for detection and

classification (Zhong F. et al., 2020). This proves that FSL is

giving a good result with very less training samples compared to

CNN which requires more training samples and training time.

Main findings and ways forward

Deep learning and machine learning is the process of

utilizing algorithms to direct a computer in building a suitable

model based on existing data and then using that model

to evaluate novel situations. The models’ applicability are

significantly constrained by the massive amounts of labeled

data that are often needed to train it because it has multiple

parameters. Large amounts of tagged data are frequently
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TABLE 2 Studies of few-shot learning in smart agriculture.

References Data source Techniques Accuracy Purpose Limitation

Wang and Wang

(2019)

Flavia Dataset;

Swedish Dataset;

Leafsnap Dataset

Siamese Network;

Simultaneous Two-way

Convolutional Neural

Network;

Spatial Structure

Optimizer (SSO);

K-Nearest Neighbor

(KNN)

Flavia= 95.32%;

Swedish= 91.37%;

Leafsnap= 91.75%

To handle a leaf

classification problem

with a small sample

size using Siamese

Network

Has to improve the

generalization ability of

the model

Karami et al. (2020) Maize Plant Dataset Modified CenterNet

Architecture

>95% To identify and count

maize plant by using a

smaller number of

images in a field using

FSL

Adapting generative

adversarial network

(GAN) in future

Ng et al. (2022) Fruit Dataset Meta-learning paradigm;

Few-shot classification

>75% To classify new

varieties of fruits with

only a few training

examples

Not stated

Argüeso et al.

(2020)

PlantVillage Dataset CNN;

SVM Classifier;

Siamese Network;

Few-shot and baseline

transfer learning;

Root Mean Square

optimizer (RMSprop)

Triplet Loss;

Accuracy= 91.4%;

Precision= 93.8%;

Recall= 92.6%;

F-Score= 92.3%;

Siamese;

Accuracy= 90.6%;

Precision= 93.8%;

Recall= 93.1%;

F-Score= 91.2%

To classify plant

diseases to overcome

unfeasibility of deep

learning

Convergence problems

Zhong F. et al.

(2020)

CUB Dataset;

AWA2 Dataset;

APY Dataset

Conditional Adversarial

Autoencoders (CAAE);

Kullback-Leibler (KL)

Divergence Penalty

Zero Shot;

Unseen= 55.4%;

Seen= 51.6%;

Harmonic= 53.4%

Recognition of Citrus

aurantium L. diseases

using few and zero

shot learning

Only uses a

discriminator to replace

KL-divergence in

variational

autoencoders

Li and Chao (2021) PlantVillage Dataset Semi-supervised

few-shot learning

5-shot= 90%;

10-shot= 92.6%

To resolve plant leaf

disease recognition

problem using

semi-supervised FSL

Did not consider wrong

labels

Wang et al. (2021) Self-Collected Dataset Image text collaborative

representation learning

(ITC-Net)

Accuracy= 99.48%;

Precision= 98.90%;

Sensitivity= 98.78%;

Specificity= 99.66%

Recognition of

vegetable illness in

complicated

backgrounds

The feature spaces of

image and text are still

independent

Jadon (2020) Mini-Leaves Diseases

Dataset;

Sugarcane Dataset

Stacked Siamese

Matching (SSM) Net

Mini Leaves= 92.7%;

Sugarcane= 94.3%;

Comparison with VGG16;

Mini Leaves= 0.91;

Sugarcane= 0.90

Mini-leaves diseases

and sugarcane illness

identification using

combined methods of

Siamese and Matching

networks

Not stated

Hu et al. (2019) Tea Leaf Disease Image

Dataset

Conditional deep

convolutional generative

adversarial networks

(C-DCGAN);

Support vector machine

(SVM)

90% Tea leaf disease

identification with low

shot learning

Low generalization

performance

Janarthan et al.

(2020)

Citrus Fruits and Leaves

Dataset

Deep Siamese Network 95.04% To create a

classification strategy

for diagnosing citrus

diseases

Not Stated

Afifi et al. (2020) PlantVillage Dataset;

Coffee Leaf Dataset

Triplet network;

Deep adversarial metric

learning (DAML)

99% Automatic

identification of plant

diseases with limited

data

Focusing on the full

image instead of

focusing on the affected

part

(Continued)
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TABLE 2 (Continued)

References Data source Techniques Accuracy Purpose Limitation

Tassis and Krohling

(2022)

Leaf Dataset;

Symptoms Dataset

Prototypical networks;

Triplet networks;

feature extraction

1st Experiment= 96.03%;

2nd Experiment= 96.72%;

3rd Experiment= 93.25%

FSL in classification

and severity

assessment tasks with

biotic stressors in

coffee leaves

During training, there is

a lack of performance

evaluation of the

approaches in

unobserved classrooms

Li and Yang (2020) National Bureau of

Agricultural Insect

Resources (NBAIR)

Dataset;

Li’s dataset of natural

scenes

Prototypical Network;

CNN;

Triplet loss;

Terminal realization

95.4% (National Bureau of

Agricultural Insect

Resources dataset);

96.2% (Li’s dataset of

natural scenes)

Few shot cotton pest

recognition and

terminal realization

Not stated

Nuthalapati and

Tunga (2021)

Plant and Pests (PP)

dataset;

PlantVillage dataset;

Plants in Wild (PiW)

dataset;

Cross dataset

Few-shot learning using

transformer

Plant and Pests= 60.3%;

PlantVillage= 88.5%;

Plants in Wild= 93.3%;

Cross= 86.1%

To classify diverse

pests, plants, and

illness

Not stated

Li and Yang (2021) PlantVillage Dataset Few-shot classification;

CNN

Single domain,;

Ntrain=Ntest= 3= 90.4%,;

Ntrain=Ntest= 5= 82.5%.;

Cross domain 1,;

Ntrain=Ntest= 3= 86.5%,;

Ntrain=Ntest= 5= 81%.;

Cross domain 2,;

Ntrain= Ntest= 3 is

54.8%,;

Ntrain= Ntest= 5 is

43.9%.

Task-driven

meta-learning few shot

classification for pests

and plants and to

investigate single

domain and

cross-domain

classification

Not stated

Zhang H. et al.

(2021)

MiniImagenet Dataset;

CUB-200-2011 Dataset;

Flower102 Dataset

Absolute-relative

Learning

1-shot= 55.61%;

5-shot= 71.03%

Absolute-relative

learning paradigm in

supervised and

unsupervised FSL

Only used semantic

annotations as labels in

training, and do not use

them during testing

Liu et al. (2019) ImageNet Dataset Few-Shot Unsupervised

Image-to-Image

Translation (FUNIT);

Generative Adversarial

Networks (GAN)

Animal Face;

1-shot= 82.36%;

5-shot= 96.05%;

North American Birds;

1-shot= 60.19%;

5-shot= 75.75%

Few-shot unsupervised

image-to-image

translation of animal

faces, birds, flowers,

and foods

FUNIT fails to achieve

translation when the

look of novel object

classes differs

considerably from that

of the source classes

exceedingly expensive, challenging, or even impossible to obtain.

FSL is a crucial component of the development of machine

learning since it is a crucial question if a good model can be

created by training with only a minimal amount of labeled

data. It may be applied to learn uncommon situations using

a limited collection of characteristics, which is a method that

can successfully address the issue of dataset imbalance in

intrusion detection.

In recent years detection and classification in the

agricultural domain has received a lot of attention.

Beginning with deep learning and machine learning, they

are showing excellent results in identifying the objects.

This approach is very useful for limited datasets and time

for detection as well as classification of various things

including plant diseases and pests. Most of the authors

used the current state of the art in FSL such as the Siamese

network, Prototypical network, and Model-Agnostic Meta

Learning network.

Most of the FSL approaches show favorable results of

more than 90%. One research has reached 99.48% accuracy

in vegetable disease detection using a self-collected dataset.

Even though the accuracy is very excellent in this research, the

authors stated that the feature spaces of image and text are still

independent, and it needs to be improved in the future. Triplet

network and deep adversarial metric learning have also given

accuracies of 99% with full coffee leaf images. Besides FSL, one

shot learning has also shown a very satisfying result of 95.32%

using the Siamese network. The low generalization ability of the

model is an issue in this research and the gradient descent in

the training must be stopped at the appropriate point as well as

adding a regularization term to the error function to smooth out

the mappings.

Most of the results of plant datasets have higher accuracies

than animal datasets. However, pest detection using a

prototypical network has achieved 96.2% accuracy. Another

pest detection only achieved 60.3% due to camouflaging images
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in the background which can be improved by focusing on

the insects only. The least accuracies that have been obtained

are with animal detection, 55.61% for one shot. However,

when five shots were used, the accuracy increased to 71.03%.

This proves that when more instances are used, the accuracy

increases. Despite that, Few-Shot Unsupervised Image-to-Image

Translation (FUNIT) has produced an accuracy of 82.36% for

one shot and 96.05% for five shots using animal faces. For birds,

an accuracy of 60.19% for one shot and 75.75% for five shots

was obtained.

According to studies reviewed here, FSL can significantly

boost the detection performance on small datasets. The

popularity of FSL for smart farming applications is increasing

rapidly due to the straightforward implementation yet highly

promising results obtained in agricultural applications.
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