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As the world population is expected to touch 9.73 billion by 2050, according

to the Food and Agriculture Organization (FAO), the demand for agricultural

needs is increasing proportionately. Smart Agriculture is replacing conventional

farming systems, employing advanced technologies such as the Internet

of Things (IoT), Artificial Intelligence (AI), and Machine Learning (ML) to

ensure higher productivity and precise agriculture management to overcome

food demand. In recent years, there has been an increased interest in

researchers within Smart Agriculture. Previous literature reviews have also

conducted similar bibliometric analyses; however, there is a lack of research in

Operations Research (OR) insights into Smart Agriculture. This paper conducts

a Bibliometric Analysis of past research work in OR knowledge which has

been done over the last two decades in Agriculture 4.0, to understand the

trends and the gaps. Biblioshiny, an advanced data mining tool, was used in

conducting bibliometric analysis on a total number of 1,305 articles collected

from the Scopus database between the years 2000–2022. Researchers and

decision makers will be able to visualize how newer advanced OR theories

are being applied and how they can contribute toward some research gaps

highlighted in this review paper. While governments and policymakers will

benefit through understanding how Unmanned Aerial Vehicles (UAV) and

robotic units are being used in farms to optimize resource allocation. Nations

that have arid climate conditions would be informed how satellite imagery

and mapping can assist them in detecting newer irrigation lands to assist their

scarce agriculture resources.
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smart agriculture, precision agriculture, Agriculture 4.0, Internet of Things, artificial
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1. Introduction

The Food and Agriculture Organization of the United

Nations (FOA) has estimated that the world population will

touch 9.73 billion by 2050 and will continue to rise until it

reaches 11.2 billion by 2,100 (FAO, 2018). There is a direct

correlation between population expansion and an increase in

the need for food production. Both increases in population

and increase in urbanization increase the risk of food shortage

due to increased consumption, and the demand for nutritious

agriculture, as farmlands are replaced with infrastructure and

buildings (Yuan et al., 2018). There are many obstacles to

agricultural output, resulting in lower crop yield, such as soil

salinity in arid climates (Mohamed et al., 2019). Further, climate

and soil sensitivity have an impact on crop quantity and

quality (Abdel-Fattah et al., 2021). Consequently, it is critical to

concentrate on surveying land resources for use in agricultural

growth in dry regions (Saleh et al., 2015). The agriculture

industry is one of the key sources of national income in

developing countries. Hence, using new technology to improve

the agriculture sector is critical to these countries’ national

economies. In addition to providing the raw materials required

for the industrial process, agricultural production includes the

production of food for humans and cattle. Smart Agriculture

aims to address these concerns through increasing productivity,

better allocation of resources, adapting to climate change and

overcoming food wastage.

Fundamentally, both Smart Agriculture and Precision

Agriculture utilize the Internet of Things (IoT) or information

technology to improve spatial management procedures to

maximize crop yield while avoiding the overuse of fertilizers

and pesticides (Auernhammer, 2001; Bacco et al., 2019; Chiu

et al., 2022). Unlike Precision Agriculture, Smart Agriculture,

also known as Agriculture 4.0, further employs advanced

technologies such as Artificial Intelligence (AI) and Machine

Learning (ML) to tackle a variety of crop-related difficulties by

enabling the examination of changes in atmospheric conditions,

soil properties, moisture, etc. The AI and IoT technology enable

the connection of a variety of distant sensors, including ground

sensors, robots, and Unmanned Aerial Vehicles (UAV), since it

allows items to be linked and operated automatically through

the internet (Almetwally et al., 2020; Chiu et al., 2022; Javaid

et al., 2022). Despite Smart Agriculture technology evolving fast,

academics feel that the technology is still at a nascent stage.

Agricultural IoT application is currently fragmentary, and its

usefulness for integration in agricultural development has not

been fully investigated. This necessitates further research in

combining Smart Agriculture with Operation Research (OR)

theories (Hu et al., 2020).

Bibliometric analyses on Smart Agriculture have also been

conducted in the past. Abdollahi et al. (2021) conducted

a bibliometric analysis between the years 2002 to 2021 to

investigate the application of Wireless Sensor Networks (WSN)

in agriculture. Rejeb et al. (2022a) conducted a bibliometric

analysis between the years 2000–2021 to understand the

comprehensive application of drones in agriculture. Rejeb et al.

(2022b) looked at the applications of Artificial Intelligence

(AI) in agriculture between the years 1992–2021 by conducting

a bibliometric analysis. Rejeb et al. (2022c) analyzed the

applications of the Internet of Things (IoT) in Agriculture

between the year 2012–2020 by conducting bibliometric

analysis. However, past bibliometric analyses tried to understand

how the technologies such as WSN, AI, and IoT were being

integrated into agriculture practices over the years, but there

are few, if not any, bibliometric analyses on the application

of Operations Research (OR) theories in Smart Agriculture or

Agriculture 4.0 at a comprehensive level to understand how such

theories have been applied in farms that have already integrated

technologies such as AI and IoT systems. A complete evaluation

of the studies on Operation Research (OR) in IoT-based

intelligent agriculture is expected, considering this context. The

research questions are (1) How have OR theories are being

evolved over the last two decades to a more advanced and

complex level? (2)Which OR theories are being applied to Smart

Agriculture, and in what context? (3) How are Decision Support

Systems (DSS) being applied to optimize Smart Agriculture, and

for which objectives? (4) How are OR theories being applied to

aid in achieving Smart Agriculture objectives? (5) What are the

trends, gaps, and future research prospects in the application of

OR in Smart Agriculture?

The rest of the manuscript is outlined as follows:

The methodology used to conduct bibliometric analysis is

discussed in methodology section. The results and discussions,

compromising of descriptive, keyword, and historical analysis,

applications of DSS, as well as thematic analysis, are conducted

in results and discussion section. The gaps, extracted insights,

and future directions are discussed in gaps, future work, and

insights section. Finally, an extensive conclusion comprising

theoretical and practical implications, as well as limitations, are

presented in conclusion section.

2. Methodology

In order to convey a holistic overview of the past literature

on Smart Agriculture at a broad level over many the years,

it would be ideal to conduct a bibliometric analysis over

a traditional and systematic literature review. Traditional

literature review lacks a transparent and systematic approach,

and as a result, it is more likely to be biased (Kraus et al., 2020).

While systematic literature review is more methodological

to allow researchers to collect relevant research papers to

conduct analysis in a systematic way to identify research gaps

(Chakraborty et al., 2021). Whereas, bibliometric analysis can
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be applied to large data collection to allow us to visualize

and reveal the advancement of a discipline in a statistical and

mathematical method Rejeb et al. (2022b). It supports all the

main areas of the classical bibliometric approach and provides

various analyses using a graphical or visualization method

(della Corte et al., 2019). A structured content analysis using

bibliometric analysis allows researchers to identify themes and

is a powerful and reliable approach for conducting a literature

review (Chakraborty et al., 2021). This research is focused on

gaining a rounded overview of the OR applications in Smart

Agriculture, and in order to do so, it would be more feasible

to conduct a bibliometric analysis for better visualization of

how research has been gaining popularity and what are the

research gaps. Moreover, the articles collected would require to

be analyzed from different angles in an unbiased manner, which

both traditional and systematic literature reviews do not provide.

Hence, the bibliometric analysis would be an optimum choice.

FIGURE 1

Radial venn diagram.

Bibliometric analysis has been conducted to present a

state of intellectual structure and to highlight the key trends

of OR in smart agriculture. The analysis is performed using

R-package bibliometrix (Harzing and Alakangas, 2016), an

application designed for quantitative research in Bibliometrics

or Scientometrics. It supports all the main areas of the classical

bibliometric approach and provides various analyses using a

graphical or visualization method (della Corte et al., 2019).

As mentioned, to conduct a comprehensive overview of

past literature on Smart Agriculture at a broad level, a wide

variety of keywords is used to capture the maximum number

of papers within a defined framework. Bibliometric analysis of

the collected material in this article is conducted in six phases:

(1) Descriptive analysis, (2) Keyword analysis, (3) Historical

analysis, (4) Application of DSS in Smart Agriculture, (5)

Thematic analysis, and (6) Research gaps and future directions,

and (7) Conclusions.

During the first phase, a set of keywords was outlined in a

selected database to capture the past research work in the area

of smart agriculture. Figure 1 depicts a Radial Venn diagram

merging four different areas with specific keywords, highlighted

in Table 1, to collect material of interest to us (Resulting Area

of Interest). Boolean operators “OR” and “AND” were used to

achieve the desired merged area of research.

As shown in Table 2 and Figure 2, Scopus was used as an

online database to search for material. Two rounds of the search

were made, wherein the search term was confined to Keywords

in the first and the Article Title in the other. Since publications

within the field of OR in Smart Agriculture were near negligible

before the year 2000, as shown in Table 4, and to highlight the

interconnection between the literature paper, the search was

limited to final article papers published in English, and the time

range was set between 2000 and 2022. To further refine the

TABLE 1 Terms used for Scopus database search.

Area/Operator Terms

Area 1 (“vertical*” OR “smart*” OR “integrat*” OR “urban*” OR “greenhouse” OR “precision” OR “UAV” OR “Unmanned Aerial Vehicle” OR “Soil”

OR “Irrigation”)

Operator AND

Area 2 (“farm*” OR “agri*”)

Operator AND

Area 3 (“Internet of things” OR “IOT” OR “Artificial Intelligence” OR “AI” OR “machine learn*” OR “pattern* recognition*” OR “classif*” OR

“industry 4.0” OR “cloud computing” OR “big data” or “Web of Things” Or “Mobile of Things”)

Operator AND

Area 4 (“math* model*” OR “Decision*” OR “plan*” OR “schedul*” OR “simulat*” OR “optimiz*” OR “heuristic*” OR “greedy*” OR “tabu* search*”

OR “exact* method*” OR “constraint* method*” OR “constructive approach*” OR “metaheuristic*” OR “local* search*” OR “math*

program*” OR “linear* program*” OR “integer* program*” OR “dynamic* program*” OR “constraint* program*” OR “approximate*

dynamic* program*” OR “queu*” OR “game*” OR “markov* process*” OR “markov* decision* process*” OR “mdp*” OR “multi* objective*”

OR “multi* criteria” OR “monte carlo*” OR “deterministic*” OR “stochastic*” OR “robust* slack* allocat*” OR “cluster*” OR “Fuzzy”)

Asterisk (*) is used to include any variation at the end of a search term. For instance, farm* will find farms, farming, farmer, etc.
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TABLE 2 Query search.

Query Criteria

1 - From the Scopus database collection

- Search terms in keywords alone

- Refined by:

◦ Document type: Article

◦ Language: English

◦ Timespan: 2000–2022

- Articles appeared: 1,787

◦ Refined further with the discarding of articles in subject areas as

shown in Table 3, resulting in 1,291 articles

2 ◦ From the Scopus database collection

◦ Search terms in the Article title

- Refined by:

◦ Document type: Article

◦ Language: English

◦ Timespan: 2000–2022

- Articles appeared: 29

◦ Refined further with the discarding of articles in subject areas as

shown in Table 3, resulting in 25 articles

scope of interest to generate better graphs and results, articles

of specific subject areas, as shown in Table 3, were discarded.

A total of 1,305 articles were collected and exported in BibTex

format to be readily used for Biblioshiny software to conduct a

range of bibliometric analyses. Figure 2 shows the flowchart of

the literature selection process.

3. Results and discussion

This paper uses an approach similar to that of some scholars

(Aria and Cuccurullo, 2017) to draw a structure for a literature

review in OR in Smart Agriculture. The approach is based

on (1) data collection, (2) data analysis and visualization (3)

Interpretation. The following section outlines the outcomes of

the methodology phase described earlier.

3.1. Descriptive analysis

Table 4 shows statistics of publications through the past two

decades. It includes the number of published articles (yearly

and cumulative) from 2000 to 2022 and the total number of

articles that have cited the chosen articles. The data illustrate

that the number of articles in the scope of OR in Smart

Agriculture gradually increased from 2000 to 2017, whereafter

it dramatically increased, along with the number of citations per

year. We should point out that the reason that we started with

the year 2000 is because of the limited number of articles (max.

2000) that could be downloaded from the saved library in Scopus

in one file to be imported into the Biblioshiny application;

however, most of the studies have been done in the recent two

decades, as well.

Some of the highly cited articles relating to operations

research in smart agriculture focused on crop identification

using machine learning (ML) techniques (van Niel and

McVicar, 2004; Peña-Barragán et al., 2011; Ghosal et al., 2018),

precise irrigation using remote sensing and machine learning

(Thenkabail et al., 2009; Goap et al., 2018), smart farming using

the IoT (Mendas and Delali, 2012; Muangprathub et al., 2019),

crop prediction using simulation modeling (Ines et al., 2013; V.

Rodriguez-Galiano et al., 2014), and using Unmanned Aerial

Vehicles (UAV) for crop identification (Torres-Sánchez et al.,

2015; de Castro et al., 2018). The wide variety of topics of high

citation demonstrates the diversity of the research streams in

Smart Agriculture.

Likewise, some of the major categories of operations

research in smart agriculture were identified through the

Scopus database, which included agricultural and biological

sciences (about 40% of the articles published), Environmental

Science (38%), Computer Science (28%), Engineering (16%)

and decision sciences (2%). The most cited countries in the

Scopus database included the USA (4,825 citations), Italy

(3,826 citations), China (3,767 citations), and Spain (1,841

citations), indicating the regions around the world contributing

significantly to the field of operations research in smart

agriculture. Further, Figure 3 is a combination of annual

scientific production and annual trending topics generated

using bibliometrix. The graph indicates the increasing interest

of researchers in the field of operations research in smart

agriculture and, further, the increased complexity of the

knowledge applied in smart agriculture.

Topics were less sophisticated in terms of smart agriculture

and operations research between the years 2000 and 2017

since AI and ML methods were not well researched to be

better applied in agriculture. The topics commonly discussed

were decision support systems and management of information

technology for the optimization of agriculture (such as crops,

waste management, soil erosion, and water use). From 2017,

the trending topics indicate more complexity and precise

management of agriculture as research within AI and ML grows

further, in turn improving agricultural production and practices.

The topics trending since 2017 are focused on algorithms,

climate change, precision agriculture, decision trees, remote

sensing, and predictive analytics error in smart agriculture.

The crease in complexity and development of sophisticated

applications of Operations Research is an indication of the

increased need of the agriculturists to overcome challenges faced

to optimize their farming practices. Furthermore, the sudden

increase in the number of articles and total citations from the

year 2017 is also an indication toward the increasing interest of

researchers in the application OR in Smart Agriculture.
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FIGURE 2

Flowchart of the literature selection process.

3.2. Keyword analysis

This section details keyword analysis, which is useful

for conveying an overall summary of an article. Further

clustering and multiple correspondence analyses will be

conducted to better understand the research directions

within the scope of operations research in smart agriculture.

Biblioshiny, a data-mining and statistical application, was used

to generate the information required for the analysis. The

word treemap (Figure 4) was generated for high-frequency

keywords with a minimum of 85 occurrences. It has the top 40

keywords frequently used by scholars in Operations research in

smart agriculture.

The highest keyword occurrences are for agriculture (7%),

remote sensing (4%), crops (4%), and artificial intelligence

(4%), as listed in Figure 4, which indicates that major research

areas in operations research in smart agriculture are focused

on agricultural crops through the use of IoT and AI. In terms

TABLE 3 Articles of subject area discarded.

Subject area Query 1 Query 2

Biochemistry, genetics, and molecular biology 289 2

Immunology and microbiology 228 –

Medicine 54 –

Pharmacology, toxicology, and pharmaceutics 17 –

Arts and humanities 2 –

Nursing 6 –

Neuroscience 3 –

Physics and astronomy 112 3

Veterinary 4 –

of agricultural sectors, the most frequently used are crops,

irrigation, precision agriculture, and agricultural land. Table 5

lists the frequent keyword terms used within the collection
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of 1,305 articles between 2000 and 2022. With the refined

key terms used to capture the relevant topics, we were able

TABLE 4 Statistics of publications.

Year No. of

articles

Cumulative

no. of articles

Total

citations

Cumulative number

of citations

2000 4 4 20 20

2001 3 7 14 34

2002 2 9 18 52

2003 4 13 13 65

2004 10 23 115 180

2005 8 31 62 242

2006 13 44 132 374

2007 8 52 104 478

2008 20 72 360 838

2009 33 105 315 1,153

2010 38 143 1,573 2,726

2011 51 194 776 3,502

2012 51 245 980 4,482

2013 34 279 1,116 5,598

2014 48 327 1,635 7,233

2015 55 382 1,528 8,761

2016 77 459 2,295 11,056

2017 82 541 3,246 14,302

2018 113 654 6,540 20,842

2019 153 807 7,263 28,105

2020 260 1,067 9,603 37,708

2021 231 1,298 – –

2022 7 1,305 – –

to obtain an even percentage of articles that focused on

agricultural systems (such as soil, land use, irrigation, etc.)

using different smart approaches, which included AI, remote

sensing and machine learning. Within the agriculture group,

some of the highest cited articles discussed object-based crop

classification (Peña-Barragán et al., 2011), remote sensing

for agricultural applications (Weiss et al., 2020), predictive

modeling of agricultural pollution (V. F. Rodriguez-Galiano

et al., 2018), andmanaging farms through the use of information

systems (Espejo-Garcia et al., 2020).

Top-cited articles on remote sensing discussed various

aspects, such as Thenkabail et al. (2009) using remote sensing

to simulate a Global Irrigated Area Map (GIAM) to assist

precision agriculture (Weiss et al., 2020) and discussing the

applications of remote sensing in agriculture, (Ines et al.,

2013) combining remote sensing and simulation to increase

maize crop production, and (Torres-Sánchez et al., 2015) using

Unmanned Aerial Vehicles (UAV) in remote sensing methods

for better crop identification. It can be deduced that remote

sensing techniques are commonly employed in agriculture to

achieve better mapping, improve crop yields and classification to

enhance productivity, and achieve automated smart agriculture.

Articles on AI looked at the integration of multicriteria

decision analysis with GIS for agricultural land suitability

detection (Mendas and Delali, 2012), GIS-based photovoltaic

farm site detection (Sánchez-Lozano et al., 2014), selecting

patterns and features for crop weed row mapping using UAV

(Pérez-Ortiz et al., 2016), and predicting crop yield using fuzzy

cognitive mapping (Papageorgiou et al., 2009). Articles in ML

keyword criteria focused on designing a deep machine vision

model for plant detection (Ghosal et al., 2018), managing

irrigation systems in agriculture using decision support systems

FIGURE 3

Annual scientific production graph.
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FIGURE 4

Word tree map.

(Navarro-Hellín et al., 2016), value creation through big data

analytics (Saggi and Jain, 2018), etc., Other articles considered

deep learning convolutional neural networks (CNN) to detect

water pollution in agricultural irrigation (Chen et al., 2020),

precise automated leaf detection using image feature analysis

(Pantazi et al., 2019), and predicting soil moisture content using

hybrid machine learning (Prasad et al., 2018).

The wide variety of highly cited articles in AI and ML,

the heart of smart agriculture, indicates a great potential

for future research in different agricultural segments

and using big data analytics, farms are adopting more

precise management.

3.3. Historical analysis

Historical network analysis allows us to cluster a number

of research streams that have evolved over the years. It uses

the collection of bibliography from the articles collected and

generates a map of the most relevant citations (Borgman

and Furner, 2002; Garfield, 2016). The direct historical

network is discussed in this section, which was generated

through Biblioshiny.

The number of nodes was set to 40 to show a complete

overview of the different research paths. The following section

will discuss the six areas of research relating to Operations

research in smart agriculture; (1) Remote sensing and statistics,

(2) ML approach for precise agricultural mapping, (3) Precise

agricultural management using the IoT, (4) Cloud-based satellite

for precise irrigation mapping (5) Decision Support Systems

(DSS) to mitigate fertilizer-based loss and (6) Sustainable

agriculture using ML techniques.

3.3.1. Remote sensing and statistics

Locating and extending irrigation land is important for

better water management. Using remote sensing techniques

to gather large amounts of data enables decision-makers to

make better and more sustainable agricultural decisions. Two

authors- (Zhu et al., 2014) and (Meier et al., 2018), as

named in Table 6, both discussed using statistical approaches

involving different vegetation indexes (NDVI) for precise

irrigation to assist croplands. Both authors considered using

remote sensing and IoT to generate large statistical data to

achieve accurate measurements of irrigated areas for improving

agricultural practices.
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TABLE 5 Table of most frequently used terms.

Terms Frequency Terms Frequency

Agriculture 595 Satellite imagery 157

Remote sensing 323 Algorithm 146

Crops 318 China 143

Artificial intelligence 298 Water quality 143

Machine learning 280 Climate change 130

Agricultural robots 276 Biodiversity 128

Article 250 Learning systems 128

Decision trees 249 Nitrogen 122

Land use 247 Water supply 120

Irrigation 244 Cultivation 117

Decision support systems 226 Forestry 116

Decision making 225 Forecasting 110

Classification 217 Vegetation 106

Precision agriculture 217 Internet of things 102

Soil 216 United States 101

Soils 210 Image classification 98

Agricultural land 190 Classification (of

information)

95

Environmental monitoring 187 Crop yield 95

Soil moisture 178 Ecosystem 90

Decision support system 161 Land cover 88

Water management 160 Crop production 85

Zhu et al. (2014) employed remote sensing and time-series

NDVI for mapping irrigated lands in China. Large statistical

data were collected on different precipitation patterns, which

were downscaled using a spatial allocation model to locate new

irrigation areas. Meier et al. (2018) looked at using remote

sensing and multi-temporary NDVI to test existing maps and

used decision trees to extend irrigated areas. Such methods

of detecting newer irrigation land or extending the current

irrigation land support Smart Agriculture requirements by

increasing productivity since water is an essential source needed

by agriculture and farms to produce crops.

3.3.2. Machine learning for precise agricultural
mapping

Sustainable agricultural management of water resources

demands a better understanding of spatial irrigation patterns.

Both articles focused on the handling of large data to achieve

better and more precise irrigation in the context of a single

country using the ML approach. Deines et al. (2017) looked

at Northern U.S. and analyzed the high-resolution irrigation

maps produced by Landsat satellite imagery over the past 2

decades using Google Earth Engine to understand the irrigation

patterns to better manage the agricultural water resources.

Statistical modeling involving a random forest classifier was used

to understand how precipitation influenced irrigation over time.

Ketchum et al. (2020) used an ML approach to achieve

better mapping of irrigated agricultural lands in the Western

U.S. Similar to the first group, Google Earth Engine was used

to collect past data of four different classes: irrigated agriculture,

wetlands, uncultivated land, and dryland agriculture over 3

decades to cover a variety of spectra to better map the irrigated

agricultural lands to improve precise agricultural practices.

The higher resolution of irrigated lands and better

classification assists in enhancing precise irrigationmanagement

for farms, and such methods support Smart Agriculture goals by

improving resource allocation. Table 7 shows research stream:

ML for precise agriculture mapping.

3.3.3. Precise agricultural management using
the Internet of Things (IoT)

The research stream illustrated that IoT practices could be

more sustainable and profitable in terms of precise agriculture

through better water management and fertilizer allocation than

conventional models. Krishnan et al. (2020) employed smart

irrigation systems based on fuzzy logic using IoT to reduce

the amount of power for the watering of fields. A fuzzy logic

controller was used to determine the input parameters, such as

soil humidity, temperature, andmoisture, to compute the output

of the motor status. Farmers were assisted with smart irrigation

systems through Global Systems for Mobile Communication

(GSMC) to better manage the watering of agricultural fields by

knowing the job status, including the soil moisture, humidity,

and temperature, along with the status of motor power.

Kocian et al. (2020) used IoT-based agricultural decision

support methods for crop growth prediction. A dynamic

Bayesian network (DBN) was used to correlate the parameters of

crop growth with the environmental control parameters through

the unknown Markov Chain. The crop growth parameters

included lead-area index, dry weight, and evapotranspiration

on a daily basis, while the environmental control parameters

included solar exposure, vapor pressure, and temperature of the

controlled environment. Large expectation-maximization (EM)

algorithms were used to track states and better understand the

parameters of DBN.

Lin et al. (2020) focused on fertigation management

based on IoT for sustainable precision agriculture. The paper

addressed the irrigation and fertilizer allocation problems

through a framework using IoT to manage not only at the

short-term level but also in the long term. The integer linear

programming model was developed to allocate limited resources

among different crops to maximize the total profit (both

economic and environmental).

The use of IoT in smart agriculture supports the agriculture

4.0 requirements by adapting to climate change as water

resources are further decreasing due to increased demand, and
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TABLE 6 Research stream: remote sensing and statistics.

Author Technology Agricultural

solution

OR characteristic Agriculture 4.0

pillar

Zhu et al. (2014) Remote sensing (IoT)

using multi-temporary

NDVI

Locating irrigation land Statistics (spatial

allocation model)

Increasing productivity

Meier et al. (2018) Remote sensing (IoT)

using time-series NDVI

Extending irrigation land Statistics (decision trees) Increasing productivity

TABLE 7 Research stream: ML for precise agriculture mapping.

Author Technology Agriculture

solution

OR characteristic Agriculture 4.0

Deines et al. (2017) Satellite imagery using

Google Earth, and

Machine Learning

High resolution of

irrigated land

Statistics (random forest

classifier)

Better resource

allocation

Ketchum et al.

(2020)

Satellite imagery using

Google Earth, and

Machine Learning

High resolution of

irrigated land

Statistics (random forest

classifier)

Better resource

allocation

this requires the use of smart irrigation. IoT is also being applied

in Smart Agriculture, using probability to predict crop growth

to increase productivity; such methods support Agriculture 4.0.

Table 8 shows research stream: precise agriculture management

using IoT.

3.3.4. Cloud-based satellite for precise
irrigation mapping

All the articles in this stream utilized satellite imaging at

a cloud-based level for better mapping of different sectors

of agriculture, such as irrigation and soil moisture, to

improve precise agricultural practices. Such precise and accurate

agricultural practices assist farmers in adapting to climate

change and increase the productivity of their crops.

Bazzi et al. (2021) focused on precise irrigation through

mapping at plot scale using S1 and S2 data over 4 years

(2017–2020). Two irrigation metrics were adopted for selection

criteria, the first one based on Synthetic Aperture Radar (SAR)

using S1 and the other optical-based using S2; both were time

series. Random forest (RF) was used to build an irrigation

classificationmodel to validate the results. The proposedmethod

demonstrated a higher accuracy of irrigation maps compared

to empirical methods. Higher accuracy of irrigation mapping

assists Smart Agriculture goals by better resource allocation.

Likewise, Wellington and Renzullo (2021) considered

enhancing irrigated crop mapping using S2 images. Accurate

mapping for irrigated areas can be challenging to generate

at a small level, requiring complex models attached to image

stacks. Supervised random forest was applied to the collected

data for smallholder irrigation schemes, enhancing the mapping

of irrigation land. Pageot et al. (2020) also looked at better

detection of irrigated lands jointly using S1 and S2 along

with meteorological time series to improve crop irrigation

management. The study was conducted over 2 years in a

temperate area to detect rainfed plots. Monthly data was

cumulated, provided by satellite imaging to be readily used

in Random Forest Classifier. Through the combined use of

S1 (radar), S2 (optical), and meteorological (weather) time-

series data, the study showed significant improvement in both

classifications of irrigated crops and mapping of irrigated areas.

Detecting newer irrigated lands, in turn, leads to agricultural

production increasing, since there is a protentional for more

availability of water.

Gao et al. (2018) formulated a synergetic technique using S1

and S2 for mapping soil moisture and irrigated areas. The paper

developed an algorithm using the Water Cloud Model (WCM)

to spatialize the soil water content between 2015 and 2017. Along

with WCM, a decision tree approach using statistical indices

of soil humidity and Normalized Difference Vegetation Index

(NDVI) was used to classify irrigation maps at individual fields.

By analyzing themoisture content of the soil to classify irrigation

lands, the resources are better allocated for farms.

The research of Bousbih et al. (2018) was based on high-

dimensional automated algorithm satellite imaging for better

mapping to achieve precise management of different agricultural

sectors. Support Vector Machine (SVM) was used to identify

irrigated areas based on parameters of soil moisture such as

mean and variance. The model was tested in Tunisia, and the

research concluded that classification based on soil moisture
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TABLE 8 Research stream: precise agriculture management using IoT.

Author Technology Agricultural

solution

OR characteristic Agriculture 4.0

Krishnan et al.

(2020)

Global Systems for

Mobile Communication

(GSMC) or IoT

Smart irrigation Optimization (Fuzzy

logic)

Better resource

allocation

Kocian et al. (2020) IoT Crop growth prediction Probability (Markov

Chain)

Increase productivity

Lin et al. (2020) IoT Fertigation management Optimization (Integer

programming)

Better resource

allocation

TABLE 9 Research stream: cloud-based satellite for precise irrigation mapping.

Author Technology Agricultural solution OR characteristic Agriculture 4.0

Bazzi et al. (2021) Satellite imaging Precise irrigation mapping Statistics (random forest) Better resource

allocation

Wellington and

Renzullo (2021)

Satellite imaging Enhanced irrigated crop

mapping

Statistics (supervised

random forest)

Better resource

allocation

Pageot et al. (2020) Satellite imaging Detecting irrigated land in

temperate areas

Statistics (random forest) Increase productivity

Gao et al. (2018) Satellite imaging Soil moisture and irrigation

mapping

Statistics (WCM) Better resource

allocation

Bousbih et al.

(2018)

Satellite imaging Soil moisture and irrigation

mapping

Statistics (support vector

machine)

Increase productivity

properties proved useful in the improved mapping of soil

moisture and irrigated lands. Such precise management of

irrigated lands, in turn, increases the productivity of crops.

Table 9 shows Research stream: cloud-based satellite for precise

irrigation mapping.

3.3.5. Decision support systems (DSS) to
mitigate fertilizer-based loss

The nodes Meza-Palacios et al. (2020) and Zhang et al.

(2021), as named in Table 10, have LCS and GCS of (0,

3) and (1, 2), respectively, both having a low score due to

the publications being recent. Zhang et al. (2021) utilized a

new structure consisting of analytical hierarchy (AHP) and

modified analytical hierarchy methods (MAHP) along with

metaheuristic optimization techniques to ascertain the optimum

rate of nitrogen while considering the capacity and requirement

constraints. Such DSS was designated to satisfy both farmers

by generating high profits and the environmental experts by

keeping pollution low.

Meza-Palacios et al. (2020) focused on increasing the yield

of sugarcane by increasing the efficiency of fertilizer rates. The

research proposed a (DSS) based on two fuzzy models, the

edaphic condition model and NPK fertilization model, for a

better NPK (nitrogen, phosphorous, and potassium) fertilization

rate. Such DSS models enable farmers to ensure that they meet

the safety standards of minimizing the impact on climate and

human health.

3.3.6. Sustainable agriculture using machine
learning (ML) techniques

The nodes Hamrani et al. (2020) and Abbasi et al. (2021),

as named in Table 11, have LCS and GCS of (0,0) and (1,10),

respectively. All three papers looked at the application of

the ML approach to overcome environmental problems, to

achieve sustainable agriculture. Abbasi et al. (2021) used ML

algorithms to model carbon dioxide emissions from inorganic

fertilizers. The paper looked at six different models, viz., random

forest (RF), Feed Forward Neural Network (FNN), Radial

Basis Function Neural Network (RBFNN), Extreme Learning

Machine (ELM), Least Absolute Shrinkage and Selection

Operator (LASSO), and Support Vector Machine (SVM). The

paper retained the same input parameters, compared the output

of the different models, and found that RF was the best model for

predicting carbon dioxide emission from IF. Likewise, Hamrani

et al. (2020) also compared three additional ML models,

Deep Belief Net (DBN, Long Short-Term Memory (LSTM),
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TABLE 10 Research stream: DSS to optimize fertilizer use.

Author Technology Agriculture

solution

OR characteristic Agriculture 4.0

Zhang et al. (2021) Sensors Crop yield Optimization (MAHP) Adapting to climate change

Meza-Palacios et al.

(2020)

Sensors Optimum fertilizer rate Optimization (fuzzy models) Adapting to climate change

and Convolutional Neural Network (CNN). The models were

implemented using MATLAB software for comparison, and

they concluded that Deep Learning methods were better at

predicting greenhouse gas emissions from the soil, particularly

the LSTMmethod.

The research papers in this research stream looked at

different ML models to analyze which are useful in predicting

greenhouse gas emissions from the soil. The outcome of the

research stream supports the agriculture 4.0 goals of adapting

to climate change.

3.4. Application of DSS in smart
agriculture

The four areas that agriculture 4.0 looks to address are

directly related to accurate decision-making, and researchers

are designing and implementing Decision Support Systems

(DSS) to optimize crop productivity while addressing them.

Articles with the following keywords were filtered: Decision

Support System (DSS), optimization, and simulation. From the

resultant 238 articles, those which addressed the four areas of

Agriculture 4.0 were filtered to highlight the models they applied

in smart agriculture. Table 12 discusses the application of DSS in

smart agriculture.

Researchers have used a wide variety of methods to

design DSS to support farmers for better decision-making.

Recio et al. (2003) utilized the application of the advanced

decision-making tool AgriSupport II system to enhance the

agriculture production processes. The AgriSupport II system

provided farmers with decision-making solutions to improve

operations like operating cost, profitability analysis, scheduling,

and resource allocation. CPLEX optimizer was used to design

a model algorithm that would ensure optimum decision-

making suggestions by computing all feasible modes and then

performing a comparative analysis of all modes to suggest the

mode that is the least costly for agricultural task allocations.

By adopting the AgriSupport II system, farmers are assisted

in achieving higher efficiency at the least investment cost,

consequently enhancing agricultural production, which is one

of the requirements of Agriculture 4.0.

Conesa-Muñoz et al. (2016) and Nabaei et al. (2018)

both looked at using multi-robot sensing systems to allocate

agricultural work to appropriate robotic units. The multi-

sensing system was tested multiple times on a Spanish farm,

using both aerial and ground units, to assist farmers in the

optimal distribution of tasks. Both used the metaheuristic

optimization method for ground planning through Harmony

Search Algorithm. The multi-robot system collected agricultural

data using aerial vehicles controlled by a Mission Manager,

which was connected to a Base Station Computer. The system

assigned agricultural tasks to the most appropriate robotic unit,

allowing farmers to supervise and manage the entire process

through a multi-robot sensing system, a decision-making tool

for task allocation. Accurate imaging data collected can also

inform farmers about how much herbicides or pesticides are

needed for the crops. Such systems can act as essential supports

for Agriculture 4.0.

With the increase in the deployment of Aerial Unmanned

Vehicle (UAV) in various applications, including agriculture,

Alsalam et al. (2017) designed an onboard DSS system to detect

the precise location of crops with disease and then delegate

appropriate action to UAV, such as precise herbicide spray.

Through the assistance of the Object-Based Image Analysis

(OBIA) algorithm, the use of UAV can increase efficiency in

work with precise crop detection and management of toxic

damage on farms.

Within the scope of route planning, Keller et al. (2007) and

Bochtis et al. (2012) constructed Agriculture Decision Support

System (DSS) to optimize the deployment and utilization of

agricultural vehicles in fields with sensitive soil. The B-pattern

optimization algorithm was used as a tool to provide an optimal

route. Route planning and optimization enable vehicles to

consume less energy and cause less damage to sensitive soil. This

will enhance crop productivity, which supports the agriculture

4.0 requirement. Most current research for the application

of Agriculture Decision Support Systems (ADDS) for water

resource management is related more to irrigation management.

For example, Navarro-Hellín et al. (2016) designed a smart

irrigation decision support system (SIDSS) for better irrigation

planning through better, efficient, and accurate use of water

resources. The research looked at predicting the water needs

of the crops for better irrigation planning. Partial Least

Squares (PLSR) and Adaptive Neuro Fuzzy Interference Systems

(ANFIS) were used to provide reasoning results to generate the

decision support system requirement.

Frontiers in Sustainable FoodSystems 11 frontiersin.org

https://doi.org/10.3389/fsufs.2022.1053921
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Yousaf et al. 10.3389/fsufs.2022.1053921

TABLE 11 Research stream: sustainable agriculture using ML techniques.

Author Technology Agricultural

solution

OR characteristic Agriculture 4.0

Abbasi et al. (2021) Sensors Greenhouse gas emission Probability (random forest) Adapting to climate change

Hamrani et al. (2020) Sensors Greenhouse gas emission Probability (LSTM) Adapting to climate change

TABLE 12 Research stream: applications of DSS in smart agriculture.

Article Model Decision support Programming

type

Tool Area of

agriculture 4.0

Recio et al. (2003) AgriSupport II system Farm planning and operation Integer Programming CPLEX optimizer Better resource

allocation

Conesa-Muñoz

et al. (2016)

Multi-robot sensing

system

Task allocation Metaheuristic algorithm Mission manager Better resource

allocation

Nabaei et al. (2018) Multi-robot sensing

system

Task allocation Metaheuristic algorithm Mission manager Better resource

allocation

Alsalam et al.

(2017)

On-board DSS Optimal task allocation OBIA algorithm OODA loop Better resource

allocation

Bochtis et al. (2012) ADDS for route

planning

Vehicle route planning B-pattern algorithm iTech Pro Better resource

allocation

Keller et al. (2007) SoilFlex Vehicle route planning B-pattern algorithm Spreadsheet Better resource

allocation

Navarro-Hellín

et al. (2016)

SIDSS Optimal irrigation planning ANFIS and PLSR Machine learning system Increase productivity

Giusti and

Marsili-Libelli

(2015)

IRRINET Optimal irrigation planning

and scheduling

Fuzzy C-Mean algorithm Machine learning system Better resource

allocation

Schütze and

Schmitz (2010)

OCCASION Optimal irrigation planning

to reduce environmental risks

SCWFP GET-OPTIS Adapting to climate

change

Wenkel et al. (2013) LandCaRe Farm planning and operation

to reduce environmental risks

Simulation modeling

using C++

SQLite database Adapting to climate

change

Other authors, such as Giusti and Marsili-Libelli (2015),

used fuzzy DSS (FDSS) using the IRRINET model to improve

irrigation practices on farms. Similar to the finding of Navarro-

Hellin, such fuzzy DSS assist farmers by using a predictive model

and inference system of soil properties for better allocation

through daily water scheduling. Fuzzy C-Mean algorithms were

used to generate a decision support system for farmers by

suggesting the amount of water the crops require to remain

irrigated. Through better and smart management of irrigation

of crops, the research supported Agriculture 4.0.
Current researchers are also addressing climate change

through better farming adaptability using ADSS (El-Sharkawy,

2014; Weller et al., 2016). Schütze and Schmitz (2010) proposed
a methodology, Stochastic Crop-Water Production Function

(SCWPF), to quantify the effect of climate change on irrigation
in agriculture. The proposed DSS was tested on farms in
France, and it was concluded that the OCCASION model

formulated enabled farmers with adequate data on weather and

soil properties to evaluate the potential effect of climate change

on farms, and OCCASION can be used to adjust decisions

for irrigation scheduling and planning. Wenkel et al. (2013)

presented an interactive DSS named LandCaRe, which was

tested in Germany, and experimental findings showed that this

system could be used to predict weather conditions and the

extent of periods of vegetation. LandCaRe DSS can provide

farmers with optimal decisions for improved farming practices

under climate change.

3.5. Thematic map

The structure of the thematic map is generated by

bibliometrix based on the clustering of the frequency of the

repeated occurrences of keywords, and these clusters are known

to be themes. Bibliometrix utilizes a thematic map to outline the
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conceptual framework of the research topics. A thematic map

enables four different typologies of topics to be identified based

on which quadrant they are in. The motor themes are the motifs

in the upper-right quadrant. They are distinguished by a high

degree of centralization and density, indicating that they have

been developed and are important in the field of research.

The highly developed and isolated motifs, also known

as niche themes, are found in the upper-left quadrant.

They have matured internal links with high density but

insignificant outward links and hence are of little significance

in the field (low centrality). Emerging or declining motifs

appear in the lower-left quadrant. They have a low density

and centrality, indicating that they are underdeveloped and

peripheral. Basic and transversal themes are found in the lower-

right quadrant and have a high degree of centralization and

low density.

These themes are significant for a study field and cover

general topics relevant to all research areas of the field (della

Corte et al., 2019). As shown in Figure 5, thematic mapping

allows the mapping of four different themes of research.

Keyword Plus was used as it allows the capture of an article’s

features with greater depth. The thematic map is based on two

axes, one indicating the centrality or relevance of the keyword,

and the other, the density or the degree of development.

Cluster #1 (C1) and Cluster #2 (C2) are both within

the motor themes, where C2 is more central and less dense

compared to C2. The higher central aspect of C1 indicates that

the articles published within the scope of agriculture, article, and

classification are concerned more with crop classification.

Some of the recent publications within C1 focus on digital

soil mapping (Lagacherie et al., 2022), an intelligence-based

approach for agricultural soil prediction (Nguyen et al., 2022),

AI-based apple leaf disease classification (Al-Wesabi et al.,

2022), and simulating various water-deficit regimes for irrigation

scheduling optimization (Martínez-Valderrama et al., 2020).

Recent publications indicate that C1 is more inclined toward

procedures and classification of multiple aspects of agriculture

segments. C2, which is also within the motor theme quadrant, is

of higher density, indicating more research development in the

field of crops, AI, and decision support systems compared to C1.

About 37% of the total articles collected are within the scope of

C2, and the recent publications merge closely with C1.

Cluster #3 (C3) and Cluster #4 (C4) are within the emerging

or declining themes. Some of the recent articles in C3 discuss

mapping land suitability (Carlier et al., 2021), soil prediction

using AI (Nguyen et al., 2022), and modeling spatial dynamics

(Sodango et al., 2021). While some articles in C4 are of emerging

nature, including the combined use of machine learning

algorithms and UAV (Ndlovu et al., 2021; Onishi and Ise, 2021;

Qiu et al., 2021), machine vision yield monitoring (Dolata et al.,

2021), artificial neural networks for crop evapotranspiration

estimation (Gao et al., 2021), and usage of machine learning for

crop prediction (Almeida et al., 2021).

While there was no cluster within the niche or isolated

theme, all four clusters are shown to be interlinked through

the cross-collaboration of work between different subject

areas. The overall thematic map demonstrates that newer areas

of study within agriculture are turning toward precision

agriculture through precise modeling and estimating

of maps, soil, evapotranspiration, etc., using newer and

advanced technologies.

4. Gaps, future work, and insights

The comprehensive bibliometric analysis of OR in smart

agriculture revealed some gaps and future directions, which are

listed below:

1. Precision Agriculture focuses on the application of IoT to

achieve precise farming practices. IoT has mainly been used

to achieve optimization of conventional farming systems,

and such optimization models are included within the DSS

to assist farmers in making better decisions. The Decision

Sciences database covers 2% of the total material collected

from the Scopus database. Research within this scope was

inclined toward better task allocation or vehicle route

planning to assist farmers in better utilizing robotic units

in agriculture. Most such research used complex algorithms

such as metaheuristic algorithm, B-pattern algorithm, and

OBIA algorithm. The DSS was initially focused toward

applying OR theories to achieve better resource allocations

through route planning (Keller et al., 2007; Bochtis et al.,

2012), and recent papers have also focused on resource

allocation but through the application of robotic units for

better task allocations (Conesa-Muñoz et al., 2016; Nabaei

et al., 2018) and water management for irrigation planning

(Giusti and Marsili-Libelli, 2015; Navarro-Hellín et al., 2016).

The application of DSS allows farmers to make better

decisions for better farming; however, these methods are

mostly limited to resource allocation, and there is a lack of

research to address climate change, increase the productivity

of the farms, or reduce agriculture waste. Moreover, there

was a lack of research that utilizedmathematical optimization

programming, such as linear programming (LP), mixed

integer programming (MIP), dynamic programming (DP),

and Stochastic Programming (SP). Future research needs to

incorporate such techniques to allow farmers to not only

practice smart agriculture but also make decisions from the

business perspective of enhancing profitability by reducing

food waste.

2. Machine Learning (ML) and Artificial Intelligence (AI)

application in agriculture were heavily inclined toward

probability and statistics. As the world is facing water issues,

an essential component of farming, much of satellite imaging

methods were applied toward mapping and detecting

irrigation lands (Deines et al., 2017; Ketchum et al., 2020;
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FIGURE 5

Thematic map.

Pageot et al., 2020; Bazzi et al., 2021), mostly using the

Random Forest (RF) classifiers and at times Water Cloud

Model (WCM) and Support Vector Machine (SVM). While

one of the recent papers (Abbasi et al., 2021) compared

multiple AI and ML methods, such as FNN, RBFNN, and

SVM, to draw the conclusion that the RF modeling method

was optimum to be the application of prediction of carbon

dioxide emission. Such development within the field of ML

and AI in agriculture demonstrates that future research is

more focused on statistics and probability aspects of OR

theories. One primary reason could be that climate change

is causing unforeseen disruptions in agriculture productivity,

and in order to bring resilience to farming practices, such

theories are needed to predict the unforeseen circumstances

to better overcome the risks. However, such methods can

be capital intensive as the application of ML and AI on

large data sets require a powerful machine to conduct

computation, and also the computation times are lengthy.

Researchers are employing advanced knowledge of AI and

ML to enable farmers to mostly for better resource allocation

and sometimes for adapting to climate change or increasing

productivity. There is less focus on overcoming agriculture

wastage, which is one of themain pillars of Smart Agriculture.

This hints at the need for further research in terms of

optimization of agriculture wastages in order to overcome

this large research gap. Moreover, according to thematic

analysis, the articles within C4 highlighted that future streams

are expected to involve more complex OR theories, AI and

ML streams, with the combination of ML algorithms and

UAV (Ndlovu et al., 2021; Onishi and Ise, 2021; Qiu et al.,

2021) to optimize the productivity, and continue to apply ML

for prediction and estimation in crop management (Almeida

et al., 2021; Q. Gao et al., 2018). Such complex application

of OR is hinting toward future involving the analysis of large

data sets to meet Agriculture 4.0 goals.

3. The major research gap lies in most of the OR theories

being applied to conventional farming systems to make them

smarter and more automated. For example, some research

papers looked at providing optimal decision parameters for

farmers for better resource allocation using robots (Conesa-

Muñoz et al., 2016; Nabaei et al., 2018), while others

looked at the use of sensors with fuzzy models (Krishnan

et al., 2020; Meza-Palacios et al., 2020), RF (Abbasi et al.,

2021), and LSTM (Hamrani et al., 2020) to optimize crop

yields and reduce greenhouse gas emissions. Moreover, some

papers designed DSS for improved irrigation management

(papers), while others used satellite imagery to detect or

extend irrigation lands (papers). While such papers utilize
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the application of IoT and ML, however, they are mainly

being addressed toward optimizing traditional farming

systems. About 1.5 and 1% of the total material collected

addressed the application of OR in vertical farming and

plant factories, respectively. With the introduction of newer

farming methods such as vertical farms and plant factories to

accommodate countries that do not have conditions suitable

for agriculture, there is the prospect for future research in

the application of newer OR theories in these newer farming

methods to achieve agriculture 4.0 goals.

5. Conclusion

5.1. Discussions of findings

Research on Operations Research (OR) application in

smart agriculture is increasing. The literature review aids in

understanding the links and advancement of a research field

and provides insights into the activities of scholars. However,

the inherent subjectivity of narrative and systematic reviews is

reduced by bibliometric analyses.

Our study explored the operations research knowledge

applied to smart agriculture. In this context, we conducted a

descriptive analysis to describe how research is increasing. It has

been clear that since 2017, research has dramatically increased,

as newer knowledge in the Internet of Things (IoT), artificial

intelligence (AI), and machine learning (ML) approaches is

being enhanced for better application in smart agriculture. This

has been further validated by conducting a keyword analysis.

Then, historical analysis was also conducted by generating

historiography to check how some of the research streams

had evolved and what the current research publications are

focused on. It was noted that the major focus was on statistics

and prediction to achieve precise agriculture. This was further

supported through thematic mapping, where it was noticed

that emerging research was focusing on agricultural land use

mapping through satellite imaging, along with agricultural

robotics and remote sensing.

Further, articles within the scope of decision support system

(DSS) in smart agriculture were perused within the scope of

Agriculture 4.0 requirements. It was apparent that DSS models

were more inclined toward better allocation of resources using

smart technology; however, recent articles seem to be adopting

the climate change agenda (Hamrani et al., 2020; Abbasi et al.,

2021; Zhang et al., 2021).

Future research, according to thematic mapping, has

shown that ML and AI applications are moving toward more

complexity as complex OR theories are being combined. While

most current research and the future streams within ML

and AI scope are inclined toward probability and statistics

to predict and estimate for reasons such as prediction of

crops or evapotranspiration, and other reasons include adapting

to climate change. However, there was lesser focus toward

optimizing agriculture farms through reducing or reusing

wastage. Moreover, RF applications of OR were more readily

adopted for agriculture or irrigation mapping using satellite

imaging.With the increase in the sophisticated nature ofML and

AI, the future of OR is moving toward data sciences.

It was noted that most applications of ML and AI, with OR

theories, were being applied to conventional farming systems.

As food security and climate change are starting to become

more important, and countries that have arid climate conditions,

there is a prospect and need to apply OR theories within newer

farming methods. And since such newer farming methods, such

as vertical farms or plant factories, usually involve sensors to

control the environment, there is a scope to apply the current

and past OR theories within conventional farming systems that

involve sensors, robotic units and UAV.

Finally, as the population is expected to increase

drastically over the coming years, the agri-food demand

is correspondingly expected to increase, and in order

to achieve greater food security and a resilient agri-

food supply chain, future research needs to utilize

optimization and simulation techniques to reduce food

waste, ensure better food security, and optimize agricultural

resources to increase productivity within both precision

and smart agriculture, and to meet agriculture 4.0 goals

more holistically.

5.2. Theoretical implications

Our comprehensive bibliometric analysis within the scope

of OR applications in Smart Agriculture offers valuable

information to multiple stakeholders, including researchers,

decision makers, and consultants, who can understand and

visualize how OR theories are being applied in different areas

of Smart Agriculture to optimize and design DSS. Moreover,

as sustainability and climate change are taking center stage in

research, researchers will be able to understand how AI, IoT

and ML methods within Smart Agriculture are being applied to

overcome and mitigate climate change concerns. Moreover, our

research has demonstrated improving productivity and reducing

agricultural waste to meet Smart Agriculture goals are areas

of less focus, and this will motivate researchers to increase

their area of study to overcome this gap. While researchers

have been highly concentric toward irrigation planning between

the years 2014 and 2015, newer research is focusing toward

agriculturemapping and classification, and such future direction

will also allow the researcher to apply their current knowledge

in this field. Last but not least, the holistic overview of literature

between the years 2000–2022 will certainly give researchers and

multiple stakeholders the visual map of how research within the

scope of OR in Smart Agriculture is evolving and what are the

trending topics and the research gaps.
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5.3. Practical implications

Nations that do not have suitable conditions for agricultural

farming would have their governments trying to understand

how they can make their current farming practices efficient

and responsive in order to meet the increasing agri-food

demand. Our bibliometric analysis, specifically the application

of DSS in Smart Agriculture, would give some examples of how

governments can optimize and regulate their limited resources,

such as water, through irrigation mapping. Furthermore, as our

bibliometric analysis is demonstrating a drastic increase in the

publication within the field of OR in Smart Agriculture and

the application of UAV and robotic units, governments will see

the need to introduce policies to regulate the farms to ensure

the safety of people and the environment is being maintained.

Stakeholders who are not aware of the application of UAV

and robotic units through the use of IoT and AI for better

resource allocation will feel inclined toward adopting these

methods to their farms. One of the major practical implications

lies in understanding that most literature papers focus on OR

theories in traditional farming methods. To the best of our

knowledge, there are few or negligible literature papers that

apply OR theories toward newer agricultural methods such

as hydroponics, a part of vertical farming, plant factories or

urban agriculture. Such lack of literature focus would indicate

that governments and researchers would feel the need to adopt

AI and IoT to make newer agricultural methods to Smart

Agriculture and then apply OR theories to optimize them in

order to meet Smart Agriculture or Agriculture 4.0 goals.

5.4. Limitations of bibliometric analysis

Even though our attempt to understand a holistic overview

of OR theories in Smart Agriculture through bibliometric

analysis has given significant contributions, this review has

some limitations that needs to be addressed when reading

the results. One of the major shortcomings is that we only

considered the Scopus database, and our articles of selection

were limited to keywords and titles only. Future research should

consider other databases, such as the Web of Science and

integrate the findings with our results to provide a further

overview of the OR theories being applied in Smart Agriculture.

Moreover, if possible, future research should try to include

Abstracts within the Scopus database search to capture more

literature for a deeper bibliometric analysis. Our researchmainly

attempted to understand what are the current OR applications

in Smart Agriculture during historical analysis, and future

research should increase the span of historical analysis through

increasing the node above 40 on Bibliometrix to generate

more research streams and trends. While Smart Agriculture

is a wide field, future research may also incorporate how OR

theories are being applied specifically in livestock, soil and

water management through changing the keyword algorithms

to incline the literature search to be more subject matter. Finally,

as newer farming methods will be coming to light, future

researchers should conduct a bibliometric analysis on how OR

theories are being used within hydroponic, urban agriculture, or

plant factories.
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