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The consistent use of synthetic fertilizers and chemicals in traditional

agriculture has not only compromised the fragile agroecosystems but

has also adversely a�ected human, aquatic, and terrestrial life. The

use of phytostimulants is an alternative eco-friendly approach that

eliminates ecosystem disruption while maintaining agricultural productivity.

Phytostimulants include living entities and materials, such as microorganisms

and nanomaterials, which when applied to plants or to the rhizosphere,

stimulate plant growth and induce tolerance to plants against biotic and abiotic

stresses. In this review, we focus on plant growth-promoting rhizobacteria

(PGPR), beneficial fungi, such as arbuscular mycorrhizal fungi (AMF) and plant

growth-promoting fungi (PGPF), actinomycetes, cyanobacteria, azolla, and

lichens, and their potential benefits in the crop improvement, and mitigation

of abiotic and biotic stresses either alone or in combination. PGPR, AMF, and

PGPF are plant beneficial microbes that can release phytohormones, such as

indole acetic acid (IAA), gibberellic acid (GA), and cytokinins, promoting plant

growth and improving soil health, and in addition, they also produce many

secondary metabolites, antibiotics, and antioxidant compounds and help to

combat biotic and abiotic stresses. Their ability to act as phytostimulator and

a supplement of inorganic fertilizers is considered promising in practicing

sustainable agriculture and organic farming. Glomalin is a proteinaceous

product, produced by AMF, involved in soil aggregation and elevation of soil

water holding capacity under stressed and unstressed conditions. The negative

e�ects of continuous cropping can be mitigated by AMF biofertilization. The

synergistic e�ects of PGPR and PGPF may be more e�ective. The mechanisms

of control exercised by PGPF either direct or indirect to suppress plant

diseases viz. by competing for space and nutrients, mycoparasitism, antibiosis,

mycovirus-mediated cross-protection, and induced systemic resistance (ISR)

have been discussed. The emerging role of cyanobacterial metabolites and the

implication of nanofertilizers have been highlighted in sustainable agriculture.
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Introduction

The term “phytostimulant” was aptly defined by Du Jardin

(2012) stating “substances and materials, with the exception

of nutrients and pesticides, when applied to plants, seeds or

growing substrates in specific formulations, have the capacity

to modify physiological processes of plants in a way that

provides potential benefits to growth, development, and/or

stress response.” Phytostimulants play a substantial role in agro-

environmental sustainability as their use in crop production

model seeks to protect the environment by reducing detrimental

amounts of chemical inputs to crop fields, while maintaining

crop yield and quality.

Plant growth-promoting rhizobacteria are plant beneficial

bacteria that produce metabolites to protect plants from getting

infected and also assist in the healthier growth of plant

against environmental stresses. Induced systematic resistance,

antibiosis, and production of bioactive metabolites are the

indirect action of PGPR (Meena et al., 2020). PGPF and

AMF can coexist with other microorganisms, present in the

rhizosphere soil, and can form a beneficial relationship with

the plant roots, improve plant growth, and provide assistance

to plants to adapt adverse environmental conditions, such as

drought, salinity, heavy metal toxicity, hydrocarbon toxicity,

and diseases (El-Maraghy et al., 2021; Murali et al., 2021).

Cyanobacteria are a major component of biogeochemical cycles,

as they are exploited for biofertilizers and produce plant growth-

promoting hormones and bioactive compounds (Gupta et al.,

2021). Lichen is a stable symbiotic association between algae and

fungi and contains a massive reservoir of secondary metabolites

(Calcott et al., 2018; Kanivebagilu andMesta, 2020). In addition,

it is a good indicator of atmospheric pollution. Azolla is a fern

and serves as a valuable nitrogen (N) source, particularly in rice

field, and exhibits high bioremediation potential for Cd, Cr, Cu,

and Zn (Yang et al., 2021). It can work alone and more so in

synergism with cyanobacteria.

Fungal phytostimulants

Fungi are considered integral components of the soil,

existing in different forms and shapes (Yan et al., 2019).

Some fungal species are pathogenic and are catastrophic to

plant health, while some benefit the plants in numerous ways.

Beneficial fungi act as a phytostimulant and play an essential

role in the functioning of ecosystem as they progressively

intervene various soil nutrient cycles and enhance water

retention properties, making a positive impact not only on plant

performance but also enhance abiotic and biotic stress tolerance

in plants (Begum et al., 2019).

Classification of beneficial fungi

Beneficial fungi can be broadly classified into two main

categories: plant growth-promoting fungi (PGPF) and

mycorrhizal fungi (MF). MF establishes an intimate association

with the roots of majority of land plants through the network

of hyphae (arbuscules) and in turn consumes plant products

like lipids and carbon substrates to accomplish their life cycle

(Jiang et al., 2017). Based on the hyphal arrangement of MF

within cortical tissues of plants, MF can be classified into three

main types: (1) Endomycorrhiza forms intracellular arbuscules,

for example, arbuscular mycorrhizal fungi (AMF), (2)

ectomycorrhiza develops intercellular network of hyphae, and

(3) ectendomycorrhiza is a combination of both intracellular

and intercellular network of arbuscules (He et al., 2020;

Tedersoo et al., 2020).

On the contrary, PGPF is a heterogeneous group of

nonpathogenic fungi that form a non-symbiotic, non-obligate

mutualism with a broader range of host plants. PGPF

can include species of the genera Aspergillus, Fusarium,

Trichoderma, Penicillium, Piriformospora, Phoma, and

Rhizoctonia. Based on the type of plant tissues they inhabit,

PGPF can either be (1) endophytic {found inside both the

aerial (stems and leaves) and belowground tissues of plants

[seeds and roots (Guerreiro et al., 2018)]}, (2) epiphytic

[found on the phyllosphere (aerial parts-leaves) of plants and

survive by consuming carbohydrates and amino acids exuded

by the leaves (Bacon and White, 2016)], and (3) free-living

PGPF/rhizosphere fungi [found in close proximity of plant

roots (Busby et al., 2017)]. Francioli et al. (2021) found plant

functional groups as the main factor driving root-associated

fungal saprophytic community richness. The details are given

in Figure 1.

Arbuscular mycorrhizal fungi

AMF are obligate biotrophs and form an excellent symbiotic

relationship with the plant roots by penetrating the cell walls

and cell membranes via extraradical and intraradical hyphae,

thus radically improving the nutrient transport system of

plants (Bowles et al., 2016; Jiang et al., 2017). Moreover,

AMF improve the soil texture, nutrient cycling, and nutrient

uptake (N, P, and K) of plants and also improve plant

tolerance to biotic/abiotic stresses (Oliveira et al., 2017a,b).

Glomalin is a proteinaceous product, produced by AMF,

involved in soil aggregation and elevation of soil water

holding capacity under stressed and unstressed conditions

(Sharma et al., 2017).
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FIGURE 1

Schematic illustration of classification of beneficial fungi on the basis of their relationship with plants, habitat, nutrition, and hyphal arrangement.

PGPF, plant growth-promoting fungi; MF, mycorrhizal fungi; AMF, arbuscular mycorrhizal fungi.

Positive impact of beneficial fungi on
plant growth responses

AMF affect growth-related functions in plants, such as

stomatal conductance and leaf gas exchange, leaf relative

water content (LRWC), photosynthetic capacity (photosystem

II efficiency), plant biomass, and CO2 assimilation (He et al.,

2017; Chandrasekaran et al., 2019). AMF not only improve

plant yield but also play a significant role in increasing

bioactive components of essential oils in medicinal plants

and their nutritional status as indicated by Khalediyan et al.

(2021). Continuous cropping can cause scarcity of nutrients
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TABLE 1 Plant responses to the combined application of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting fungi (PGPR).

AMF species PGPR species Plant species Plant responses References

Rhizophagus

irregularis

Azotobacter

vinelandii, Bacillus

megaterium, Frateuria

aurantia

Triticum aestivum L. Improved chlorophyll contents, nitrogen

accumulation. Increased rhizosphere microbial

biomass

Dal Cortivo et al.,

2020

Glomus clarum,

Glomus mosseae, and

Gigaspora margarita

Bradyrhizobium sp.,

Bacillus subtilis

Cyamopsis

tetragonoloba L.

Improved chlorophyll content, and nutrient

uptake. Improved proteins, carbohydrates, fats,

starch, and guaran contents in the seeds.

El-Sawah et al., 2021

Glomus intraradices Azotobacter

chroococcum

Lens culinaris Medik Showed maximum increase in biomass yield, seed

yield and seed protein.

Amirnia et al., 2019

Rhizophagus

intraradices, Glomus

aggregatum,

Claroideoglomus

etunicatum

Pseudomonas

fluorescens,

Pseudomonas sp.

Tomato (Solanum

lycopersicum L.)

Positively affected the flower and fruit production

and the concentrations of sugars and vitamins in

the tomato fruits.

Bona et al., 2017

Glomus

intraradices and G.

mosseae

Sinorhizobium

meliloti, B. subtilis,

Bradyrhizobium sp.

and P. fluorescens

Ocimum basilicum

and Satureja hortensis

Increased essential oil content, P, N, Fe, K, Cu

content. Increased bioactive compounds in

essential oil.

Khalediyan et al.,

2021

Glomus sp.,

Sclerocystis sp.,

Acaulospora sp.,

Acinetobacter sp.,

Rahnella aquatilis,

Ensifer meliloti

Vicia faba L., Triticum

durum L.)

Improved N, P, Ca, K, and Na shoots contents, as

well as the contents of sugar and proteins

Raklami et al., 2019

P, phosphorus; N, nitrogen; Fe, iron; K, potassium; Cu, copper; Ca, calcium; Na, sodium; DW, dry weight; FW, fresh weight.

and an imbalance in the microbiome of the rhizosphere

resulting in reduced yield and poor plant quality. A study

by Liu et al. (2020) reported that the negative effects of

continuous cropping of American ginseng, such as decreased

seedling emergence rate, shoot and root dry weight, soil pH,

ammonium contents, and available P and K contents in the

rhizosphere, were relieved by the use of endomycorrhizal fungi

biofertilizer (Rhizoglomus irregulare, Funneliformis mosseae,

and Funneliformis caledonium). Moreover, it increased the

relative abundances of Acidobacteria and Ascomycota in the

rhizosphere microbiota. A recent report by Xu et al. (2021)

indicated that fungal epiphytes (PGPF) namely Fusarium

fujikuroi and Fusarium oxysporum produced elevated levels

of endogenous IAA, resulting in increased aboveground and

belowground biomass of Ipomoea cairica cuttings.

Plant growth responses to AMF
when in combination with PGPR

Plant growth-promoting rhizobacteria are plant beneficial

bacteria that can improve plant growth through mineral

solubilization and mobilization, nitrogen fixation, production

of phytohormone and siderophore, and increased soil water

holding capacity (Santoyo et al., 2021). PGPR-induced beneficial

changes in the root morphology include increased root

surface area and absorption of nutrients mainly solubilized

by plant microbiome, including PGPR (Grover et al., 2021).

Pseudomonas fluorescens and Bacillus subtilis are examples

of mycorrhiza helper bacteria that facilitate AMF symbiosis

(Wilkes et al., 2021; Yadav et al., 2021). The magnitude of

stimulation offered by AMF is significantly augmented when

combined with PGPR, such as plant nutrient availability and

nutrient use efficiency and yield (Kamali and Mehraban, 2020).

Table 1 shows responses of plant species treated with AMF

and PGPR. Research has also been conducted on assessing the

beneficial effects of using more than two biofertilizers. One such

study by El Amerany et al. (2020) reported that the application

of AMF (Glomus sp. Sclerocystis sp. Acaulospora sp.), chitosan,

and compost increased chlorophyll fluorescence, sugar, and

protein content of tomato plants, as well as improved root and

shoot growth and stem tissues. Chitosan and compost when

applied together could be a continuous source of nutrition

(Xu and Mou, 2018).

Plant–microbe interactions involve complex mechanisms

and the extent to which a host plant benefits depend on

numerous variables, including environmental conditions, soil

microbiota, host plant species, and the species of microbes

inoculated as biofertilizers. Some combinations of inoculants

performed better than others (Desai et al., 2016).
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Biotic stress management using
fungi

Plant disease

Beneficial fungi employ various biocontrol mechanisms,

either direct or indirect, to suppress plant diseases. These

mechanisms include outpacing the pathogens by competing

for space and nutrients, mycoparasitism, antibiosis, mycovirus-

mediated cross-protection, and induced systemic resistance

(ISR) (Ghorbanpour et al., 2018). Liu et al. (2020) reported less

incidence of root disease after the use of AMF biofertilizer

(Rhizoglomus irregulare, Funneliformis mosseae, and

Funneliformis caledonium). Furthermore, the treatment

was able to recruit beneficial soil microbes in soil subjected

to continuous cropping that suppressed pathogenic microbes

like Fusarium oxysporum, Fusarium solani, and the harmful

bacteria Candidatus solibacter. Yeast is a promising biocontrol

agent that can colonize pathogenic fungal hyphae and retard

its growth, while producing vitamin B12 that promotes

mycorrhizal growth in the rhizosphere (Mukherjee et al., 2020).

AMF can be combined with non-filamentous fungi, such as

yeast to combat fungal-borne diseases. One such study was

reported by Nafady et al. (2019) in which co-inoculation of

sunflower plants with yeast (Brettanomyces naardensis) and

AMF not only reduced the root rot and charcoal rot disease

incidence by 11 and 5%, caused by Macrophomina phaseolina,

but also improved plant growth parameters (plant height,

dry weight, and leaf number) in both healthy and infected

plants. A decrease in malondialdehyde (MDA) was reflective

of induced immune system that translated into mitigation of

disease symptoms. Similarly, enhancement of plant growth was

indicative of enhanced plant nutrient availability. Another study

reported by Sarabia et al. (2018) concluded that rhizosphere

yeasts (Cryptococcus flavus and Candida railenensis) improve P

uptake of maize via hyphae of AMF (Rhizophagus irregularis)

and improved root length. The ability of PGPR to synthesize

pathogen-antagonizing compounds and triggering induced

systemic resistance (ISR) assist AMF in improving plant disease

resistance (Jiao et al., 2021). Co-inoculation of AMF (Rhizobium

leguminosarum and Glomus spp) and PGPR (Bacillus subtilis

and Pseudomonas fluorescens) also proved to be an effective

biocontrol against Sclerotium rolfsii (White Rot fungi) as

significant increase in nutrient uptake (P and Fe) and plant

defense enzymes, for example, chitinase, peroxidase, and

polyphenol oxidase were observed in common beans. Stress

mitigation was evident through increased straw and green pod

yields of plants infected by Sclerotium rolfsii (Mohamed et al.,

2019). Naziya et al. (2019) reported that PGPF (Talaromyces

sp. NBP-61, Penicillium sp. NBP-45, and Trichoderma sp.

NBP-67) offered protection in chili (Capsicum annuum L.)

plants against anthracnose disease caused by Colletotrichum

capsici, as evidenced by the accumulation of lignin and callose

(indicative of induced ISR) and enhanced antioxidant enzyme

activities in PGPF-treated plants.

Abiotic stress management using
fungi

Drought and salinity

Various mechanisms have been proposed by which AMF

reduce the negative effects of drought and salinity stress. AMF

maintain ionic homeostasis and offer osmoprotection.

It facilitates expedites nutrient uptake and augments

photosynthetic efficiency, water use efficiency, stomatal

conductance, and leaf gas exchange. In addition, production

of metabolites (proline content and alpha-tocopherol content)

and antioxidant enzymes (SOD, CAT, and POX) by plant assists

in the amelioration of the negative effects of drought and

salinity stress (Evelin et al., 2019). Malondialdehyde (MDA)

is an indicator of plant membrane damage caused by lipid

peroxidation and can be reduced by AMF (Li et al., 2019). It

was reported by Zhang et al. (2020) that AMF (Rhizophagus

intraradices) ameliorated the drought and salinity stress of

castor bean plants as evidenced by increment in protein and

proline contents and decrease in MDA content. Photosynthesis,

stomatal conductance, and transpiration rate of castor bean were

also increased concomitant with the decrease in the intercellular

CO2 concentration. Zhang et al. (2019) monitored endogenous

hormonal changes in mycorrhizal inoculated (Funneliformis

mosseae) trifoliate orange under drought stress and found

significant increase in root abscisic acid (ABA), indole-3-

acetic acid (IAA), methyl jasmonate, and brassinosteroids

concentrations. These AMF-treated plants under drought

stress exhibited significantly higher root-hair density, length,

and diameter in taproot and lateral roots. Klinsukon et al.

(2021) reported colonization by AMF (Glomus sp., Gigaspora

albida, and Gigaspora decipiens) improved salinity tolerance

of eucalyptus plants by increasing photosynthetic pigments

and K/Na ratio, while reducing proline accumulation. Another

study by Li et al. (2020) reported alleviation of moderate salinity

stress (100 and 150mM) in Euonymus maackii (an important

ecological restoration tree) by AMF (Rhizophagus intraradices)

as improved photosynthesis, plant nutrient absorption, and

antioxidant enzyme activities were observed. Studies have

reported drought and salinity stress mitigation via the use of

dual combination of AMF and PGPR. Maximum increase in

biomass, ion, and nutrient content in maize was exhibited by

plants under salinity stress, treated with combination of AMF

(Rhizoglomus irregulare) and PGPR (Pseudomonas reactans

and Pantoea alli) (Moreira et al., 2021). In another study by

Kamali and Mehraban (2020), Azotobacter and Azospirillum

(PGPR) in combination with Glomus mosseae (AMF) resulted

in significant amelioration of drought stress in sorghum as
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indicated by enhanced antioxidant enzymes (CAT, POD, and

APX), total carotenoid, anthocyanin, and flavonoid contents.

Improved auxin (IAA) content, root colonization, grain yield

(27%), and grain protein yield (19%) were also reported. The

performance of Casuarina obesa under saline stress conditions

was improved by PGPR (Pantoea agglomerans and Bacillus

sp.) and AMF (Rhizophagus fasciculatus and Rhizophagus

aggregatum) as high survival rate, accumulation of proline,

improved photosynthetic contents, and plant biomass were

observed (Diagne et al., 2020). Halophytes are salt-tolerant

plants and naturally survive in saline soils. In a study reported

by Pan et al. (2020), a typical halophyte (Elaeagnus angustifolia

L.) was found more responsive to AMF (Glomus mosseae)

over single treatment of PGPR (Bacillus amyloliquefaciens) or

combined treatment of both PGPR and AMF. Glomus mosseae

improved soil enzymes and root surface area, in addition to

biomass accumulation in aboveground parts that favored light

absorption and maximized photosynthetic capacity and gas

exchanges of Elaeagnus angustifolia L. seedlings in saline-sodic

soil. Combined AMF (Funneliformis mosseae and Rhizophagus

irregularis) and PGPR (Pseudomonas fluorescens and P. putida)

inoculation improved drought resistance of Myrtus communis

as indicated by improved essential oil yield (non-enzymatic

antioxidant), survival rate, leaf physiology, reduced electrolyte

leakage, MDA, and proline concentrations (Azizi et al., 2022).

Heavy metal contamination

Exposure to heavy metals could result in disturbed plant

metabolic activities which negatively influence plant growth and

physiology (Sharma et al., 2017). Agricultural crops such as rice

and maize act as hyper-accumulators of chromium and copper,

respectively, posing highest cancer risk in people consuming

these grains (Sharma P. et al., 2021). Oxidative stress induced

by heavy metal accumulation triggers defense mechanisms in

plants. Non-enzymatic antioxidants like proline, carotenoids,

glutathione, and ascorbic acid and enzymatic antioxidants, such

as SOD, CAT, glutathione peroxidase, and guaiacol peroxidase

(GPX), scavenge reactive oxygen species and assist the plant

in tolerating oxidative stress (Dhir, 2021). Fungi especially

AMF elevate the production of these phytohormones under

heavy metal contaminated soils, produce siderophores and

ACC deaminase, regulate root morphology, and improve plant

nutrient absorption. Rhizoglomus intraradices is reported to

mitigate arsenic toxicity by participating in the antioxidant

defense system and thiol metabolism of wheat (Sharma et al.,

2017). Zhang et al. (2020) also reported beneficial effects (root

morphology, plant biomass, and growth hormone regulation)

of Rhizoglomus intraradices on plants (black locust) grown

in arsenic-contaminated soil. Rostami et al. (2021) reported

that the dual inoculation of PGPR (Pseudomonas putida) and

AMF (Funneliformis mosseae and Rhizophagus intraradices)

ameliorated cadmium stress in corn through improved plant

nutrient status, biomass, and photosynthetic capacity. As

AMF maintain strong affiliation with host roots, it reduces

the mobility of heavy metals in plants, a term known as

phytostabilization, and increases efficiency of metal degradation.

Ikram et al. (2018) treated wheat plants grown on heavy

metal contaminated soils (Ni, Cd, Cu, Zn, and Pb) with

IAA-producing fungal endophyte Penicillium roqueforti Thom.

and reported restricted transfer of heavy metals from soil

to the plants due to IAA-producing ability of P. ruqueforti.

Furthermore, in comparison with control, plants grown under

heavy metal concentrations had higher plant growth, nutrient

uptake, and low concentrations of heavy metals in shoot

and roots. Another study showed that AMF Funneliformis

mosseae reduced effects of lead (Pb) toxicity in R. pseudoacacia

seedlings, by improving the plant biomass, root activity,

antioxidant enzymes, and photosynthetic activities (Huang et al.,

2019). A flowchart (Figure 2) highlights the role of PGPF in

sustainable agriculture.

PGPR phytostimulants in sustainable
agriculture

Plant growth-promoting rhizobacteria comprise a group of

bacteria found in rhizosphere of plants and also form association

with plants (Meena et al., 2020). They promote plant growth

through direct or indirect mechanism. Direct mechanism

includes phytohormone production and solubilization of soil

nutrients through acid secretion to make them available to

plants root system (Kumar and Meena, 2019). Indirectly, they

suppress plant pathogens by providing defense to plants through

secretion of secondary metabolites or induce plant immunity

through activation of induced systemic resistance or systemic

acquired resistance pathways.

Notable genera of bacteria acting as PGPR include

Pseudomonas, Enterobacter, Bacillus, Variovorax, Klebsiella,

Burkholderia, Azospirillum, Serratia, Planomicrobium,

and Azotobacter.

PGPR biofertilizer as phytostimulants

Biofertilizer, defined as formulation containing live or latent

cell of efficient strains of bacteria (PGPR) mixed with carrier

material, can be applied to seeds, plant surfaces, or soil, colonize

the rhizosphere or the interior of the plant, and promote

growth by increasing the availability of primary nutrients

to the host plant (Mohammadi and Sohrabi, 2012). PGPR

significantly increased soil microbial biomass, total nitrogen,

available phosphorus, and soil organic matter contents in the

form of biofertilizers (Ju et al., 2019). The role of PGPR

biofertilizer is summarized in Table 2.
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FIGURE 2

Schematic illustration of phytostimulation and stress mitigating properties of fungi and their e�ects on plant responses. IAA, indole acetic acid;

GA, gibberellic acid; ABA, abscisic acid; ZR, zeatin riboside; PGPR, plant growth-promoting rhizobacteria; AMF, arbuscular mycorrhizal fungi;

ACC, amino cyclopropane carboxylate; FW, fresh weight; DW, dry weight; LRWC, leaf relative water content; MDA, malondialdehyde; ISR,

induced systemic resistance; N, nitrogen; P, phosphorus; K, potassium; Zn, zinc.

TABLE 2 PGPR as biofertilizers.

PGPR Crop Mechanism References

Bacillus aryabhattai Rice Zn accumulation in grain and higher grain yield Prathap et al., 2022

Serratia sp. S119 Maize Peanut: Increased productivity of both in P deficient soils. Ludueña et al., 2018

Bacillus amyloliquefaciens Pepper sustain pepper growth under drought, salinity, and heavy

metal stresses

Kazerooni et al., 2021

Paenibacillus riograndensis Paenibacillus alvei Cotton Improve root and shoot fresh weight, total chlorophyll

content under Cd-contaminated soil.

Li et al., 2022

Bacillus sp.,

Mucilaginibacter sp.

and Pseudomonas sp.

Cannabis Improve rooting speed of cuttings, yield attributes, and

physiological variables

Lyu et al., 2022

Burkholderia sp Tea Increase polyphenol content and increase K solubilization Zhang et al., 2022
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PGPR produces secondary
metabolites

Phytohormones

Plant growth regulators (auxins, gibberellins, and

cytokinins) are the organic compounds produced in extremely

low concentration but greatly influence the biochemical,

morphological, and physiological metabolic activities of plants.

PGPR produce indole acetic acid (Sharma S. et al., 2021),

gibberellin (Baghel et al., 2019), and abscisic acid (Kour et al.,

2020). The signaling between rhizobia and legumes is a model

for hormone-type signaling between PGPR and plants. Plants

respond to compounds which are produced by PGPR through

systemic acquired resistance (SAR) in which a cascade of

defense mechanisms are involved (Kamle et al., 2020). For

instance, SAR involves signal transduction, generation of

phytoalexins, protection from oxidative stress, and lignification

(Kallamadi et al., 2022; Yu et al., 2022). In all of these defense

mechanisms, salicylic acid (SA), jasmonic acid (JA), and

ethylene play vital roles. These hormones may also impart in

plant growth stimulation.

Rhizobacteria activate salicylic acid (SA)-dependent

pathways and defense-related genes (pathogenesis-related

proteins) in inoculated plants against phytopathogens (Huang

et al., 2021). Pseudomonas aeruginosa has the ability to induce

systematic resistance via SA-dependent pathway against

Rhizoctonia solani and M. phaseolina (Tewari and Arora, 2018;

Rahman et al., 2022).

PGPR produce signaling molecules

The bioactive compounds secreted by phytostimulants

activate signaling pathways in plants (Yakhin et al., 2017).

Peptide signaling is important in various aspects of plant

development, growth, and defense responses to biotic and

abiotic stresses (Vaahtera et al., 2019). Specific signaling

peptides affect defense response, callus growth, meristem

organization, root growth, leaf-shape, and nodule development

(Cataldo et al., 2022). Flavonoids, isoflavonoids, and phenolic

signaling molecules excreted by the plant root induce expression

of rhizobial nod genes. In response to these compounds,

rhizobia produce a series of host-specific signaling molecules,

for example, LCOs also referred to as nod factors (NFs).

For instance, genistein, a phenolic compound along with

other potential signal compounds secreted include daidzein,

O-acetyldaidzein, 6′-O-malonylgenistin, 6′-O-malonyldiadzin,

glycitin, and 6′-O-malonylglycin secreted by soybean and other

plants, activates nod gene expression in B. japonicum (Gray and

Smith, 2005). The nod genes common to all rhizobia include

nods A, B, and C which are responsible for the biosynthesis

of the basic LCO. The structure-specific nod genes, required

for the “decorative” features found on the chitin backbone

of LCOs, play a role in regulating the specificity of the

symbiosis; these species-specific features of LCOs contribute to

host specificity of bacterium-to-plant signaling and response

mechanisms (Persson et al., 2015). Hence in future, plant-to-

bacteria signals will be shown to enhance the production of

growth stimulating materials produced by non-rhizobial PGPR.

Antimicrobial substances

Plant growth-promoting rhizobacteria produce a wide

range of antimicrobial substances, for example, broad-spectrum

non-ribosomal antibiotics, organic acids, lysozymes, and

bacteriocins (Nazari and Smith, 2020). Bacteriocins are

ribosomally synthesized cationic peptides which inhibit the

growth of target organisms by binding the phospholipid

membrane of target strain. For instance, bacteriocin produced

by P. fluorescens SF39a (isolated from wheat rhizosphere)

inhibited the growth of phytopathogenic Pseudomonas and

Xanthomonas strains (Godino et al., 2016).

Until now, 18 different bacteriocins extracted and purified

from B. thuringiensis have been reported. These include thuricin,

thuricin7, entomocin110, morricin269, and tochicin (Cherif

et al., 2008; Nazari and Smith, 2020). These compounds

promote plant growth via activation of antioxidant cascade,

modulating protein activities, synthesis of enzymes related to

plant defense systems, increase in photosynthetic rate, stimulate

the production of IAA, SA, and ABA, and modify the root

system in host plants for better uptake of water and nutrients

from soil (Subramanian and Smith, 2015; Nazari and Smith,

2020).

Antibiotics

Rhizospheric PGPR are excellent biocontrol agents

suppressing soilborne diseases in host plants caused by fungi,

bacteria, viruses, and nematodes. Nowadays, PGPR are used

in integrated pest management. In association with planta,

they secrete antibiotics which are oligopeptides of varying

specificity and mode of action. Antibiotics inhibit the protein

synthesis in pathogen cell as it retards the formation of initiation

complex on small ribosome subunit, thus inhibiting the growth

of pathogenic bacteria (Watcharin, 2015). Antibiotics also

act as inhibitory factor to some important enzymes like

aldose reductase which isomerase the glucose to fructose

(Barbier et al., 2017).

Antibiotics of PGPR origin are phloroglucinols, D-gluconic

acid, 2-hydroxymethyl-chroman-4-one, oomycin A, phenazine,

pyoluteorin, pyrrolnitrin, tensin, tropolone, cyclic lipopeptide

oligomycin A, kanosamine, zwittermicin A, and xanthobaccin

(Maheshwari et al., 2013). Various Pseudomonas spp. produces
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FIGURE 3

E�ect of siderophores on Fe acquisition.

2,4-diacetylphloroglucinols that arrested the growth of R.

solanacearum and fungal pathogens, such as Rhizoctonia solani,

Sclerotium rolfsii, Macrophomina phaseolina, and Fusarium

oxysporum, compared to control (Suresh et al., 2021).

PGPR as phytoremediator of heavy
metals and trace metals

PGPR assist in phytoremediation of heavy metals in

various ways, that is, (i) chelate heavy metals via secretion of

siderophore (Patel et al., 2018), (ii) lower ethylene levels of

plants to combat heavy metal stress through secretion of ACC

deaminase (Ghosh et al., 2018), produce exopolysaccharides and

osmoprotectants (Kumar and Verma, 2018). PGPR produce

rhamnolipid biosurfactants which remediate soil from heavy

metals (Chellaiah, 2018). Cadmium-contaminated soil has

inhibitory effect on plant growth due to the formation of

ethylene, whereas ACC deaminase exhibiting P. putida alleviated

the production of ethylene and reduced the inhibitory effects of

heavy metal stress on plant (Hassan et al., 2017; Pramanik et al.,

2018).

Siderophore production

Siderophores are lowmolecular weight proteins produced by

PGPR to chelate the insoluble form of iron (Fe+3) into soluble

form (Fe+2) and make it available to the host plant (Figure 3).

Siderophore can be of different types, for example, hydroxamate

siderophores, catecholate siderophores, and mixed ligands.

Siderophore binds with iron tightly, reduces the availability of

iron to phytopathogens, and inhibits their growth (Rajkumar

et al., 2010). Inoculation of P. fluorescens and S. acidiscabies to

cowpea in nickel-contaminated soil exhibited dual role.

Induced systematic resistance

In plants, Induced systematic resistance (ISR) is triggered

upon colonization with biological agent like herbivore /

other pathogens attack or chemical inducers (Pieterse et al.,

2014). Plant defense system has the ability to recognize

specialized microbial compounds (i.e., flagellin and fungal

chitin) commonly called microbe-associated molecular patterns

(MAMPs) or pathogen-associated molecular patterns (PAMPs)

through specialized pattern recognition receptors (PRRs) which

activate PAMP-trigger immunity (PTI) (Pel and Pieterse, 2013).

Pathogens have the ability to suppress the first line of defense,

the PTI, or suppress pathogen-detection system of host.

Subsequently, plants induce effector trigger immunity (ETI) and

cause cell death at infected area to prevent further invasion of

pathogen (Chuberre et al., 2018). After PTI and ETI, host cells

trigger signals to uninfected parts to induce immunity in distal

parts remote from site of infection, and this kind of immunity is
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TABLE 3 PGPR as biocontrol agent.

Bacteria Mode of action Phytopathogen Crop Disease References

Fluorescent

Pseudomonas

Inhibit reproductive phase of pathogens Phytopthora capsica Pepper Foot rot disease Kim et al., 2012

P. aeruginosa Produce toxic volatile compounds Fusarium oxysporum Egg plant Fusarium wilt Altinok et al., 2013

P. chlororaphis Siderophores, extracellular antibiotics,

production of volatiles

Erwinia carotovora subsp

atroseptics

Sorghum Charcoal rot of sorghum Pathak et al., 2017

P. aeruginosa Inhibits the cell wall degrading enzyme

polygalacturonase, cellulase).

Sclerotium rolfsii Groundnut Stem rot disease Kishore et al., 2005

P. fluorescens Produces siderophore to inhibit the growth

of phytopathogens

Erwinia carotovora Potato Bacterial stem rot Défago and Haas, 2017

Pseudomonads sp. Produces Pyoverdine siderophore Fusarium oxysporum Potato Wilt disease Islam et al., 2018

B. subtilis Produce siderophore for biocontrol of

pathogens

Fusarium oxysporum Pepper Fusarium wilt of pepper Wu et al., 2015

Pseudomonas spp Produce antibiotic 2,4-diacetylphloroglucinol Gaeumanomyces graminis Wheat Root disease Weller et al., 2007

P. fluorescens Produces Phenazine-1-carboxylic acid and

cyclic lipopolypeptide

Gaeumanomyces graminis Wheat Take-all disease of wheat Yang et al., 2017

P. fluorescens Induced systematic resistance Rhizoctonia solani Rice Sheath blight Kannan, 2019

termed as systemic acquired resistance (SAR) (Pusztahelyi, 2018;

Teixeira et al., 2019).

Plants inoculated with PGPR have developed ISR against

foliar and root-borne pathogens (Beneduzi et al., 2012)

(Table 3). Induced resistance involves the activation of

pathogen-related proteins parallel to salicylic acid synthesis,

which induces defense response in plants. Many secondary

metabolites secreted by PGPR phytostimulants are involved

in providing defense to plants against pathogen attack. It

was reported that tomato, inoculated with ACC deaminase

secreting Paenibacillus lentimorbus B-30488, provided tolerance

against southern blight disease caused by Sclerotium rolfsii,

upon activation of antioxidant enzymes, and pathogen-

related gene expression analysis (Backer et al., 2018). Cotton

plants, inoculated with Bacillus spp., exhibited increased

gossypol and jasmonic acid secretion reducing larval feeding

by Spodoptera exigua (Zebelo et al., 2016). Enterobacter

asburiae BQ9 induced resistance in tomato against yellow

leaf curl virus by increasing the expression of defense-related

genes and antioxidant enzymes, including phenylalanine

ammonia lyase, peroxidase, catalase, and superoxide dismutase

(Li et al., 2016).

Role of cyanobacteria in agricultural
sustainability

Cyanobacteria are emerging candidates for efficient

conversion of radiant energy into chemical energy. Their

biomass can be used for large-scale production of food,

biofertilizers, secondary metabolites, and medicines. This

bacterium increases the atmospheric O2 level which provided

a platform for biota to move from simple to more complex

form. Their N-fixing ability enables them to maintain the

N cycle in ecosystem. It became a potential candidate to be

exploited on agriculture and industrial level due to lower

production of CO2. In climate change scenario, this organism

has the potential to release methane into atmosphere, which

is 20 times more potent than CO2 (Bižić et al., 2020). An

in-depth knowledge of research is needed to bioengineer some

new physiological mechanism in this organism that could

switch off the CH4-producing properties to make them 100 %

efficient, effective, and resilient in sustaining future agriculture

practices. A flowchart related to the role of cyanobacteria in

soil, environment, and plant is summarized in Figure 4. Some

important roles are discussed below.

Nitrogen fixation

Heterocyst is a specialized cell found in cyanobacteria; it

contains cyanophycin which acts as storage house of nitrogen.

The fixed nitrogen species can easily be assimilated by plants.

It could be used to supplement chemical nitrogen fertilizers to

reduce the cost of crop production by 25 to 40%. The formation

of soil crust in cultivated cyanobacteria field can avoid the

runoff and therefore reduces the risk of water contamination

with nitrogen. Anabaena species has the ability to fix nitrogen

even under nitrogen deprived environment (He et al., 2021).

In modern agriculture practices, cyanobacteria could be used

as biofertilizer as they provide 70–75% fixed N to agriculture

system (Berthelot et al., 2015; Klawonn et al., 2016).
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FIGURE 4

Flowchart showing the importance of cyanobacteria in sustainable agriculture.

Nutrient availability and increased
organic carbon level

Cyanobacterial biomass is reservoir of N, P, K, Mg, S, and

Fe. These nutrients play an important role in plant metabolism.

Cyanobacteria fix atmospheric CO2 and convert it into organic

biomass (Pathak et al., 2017). After death and decay by

other organisms and grazers, the biomass assimilates into soil

resulting in increased organic carbon in soil. Noteworthy is the

secretion of extracellular polymeric substances by cyanobacteria

imparting enhanced carbon content of soil. They improve soil

quality and make the macro- and micronutrients available

resulting in enhanced yield and quality.

Soil physico-chemical properties

Several studies have shown that the application of

cyanobacterial biomass to soil helped to maintain pH, removed

heavy metals from affected soil, and improved water retention

property of soil. Improvement in soil characteristics, such as

soil aggregation, porosity, permeability, aeration, and humidity

level, has been reported in soil inoculated with cyanobacteria

(Costa et al., 2018; Abinandan et al., 2019).

Production of secondary metabolites

Phenolic compounds provide protection against pathogens

due to their antimicrobial, fungicidal, and antioxidant

properties. Terpenoid compounds play an important role

during preliminary growth and development of plants, as well

as on the attraction of pollinators (Lin and Pakrasi, 2019).

Cyanobacteria provide protection to crops against bacteria,

insects, and other organisms due to their antimicrobial,

allelochemical, and antioxidant properties (Gonçalves, 2021).

Free fatty acids (FFAs) derived from cyanobacteria are

extensively explored for biodiesel production (Madusanka and

Manage, 2018). Polysaccharides have a preponderant role in
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the improvement of soil quality, with major properties like soil

conditioner, nutrient carrier, and a safe release of agrochemicals.

Carotenoids have been applied in soil bioremediatory, as

an antioxidant, fertilizers, and biopesticides with major

impact on soil improvement and crop protection. They also

increase the availability of provitamin A in biofortified crops

(Gonçalves, 2021).

Apart from its importance, there are some constraints

to the use of cyanobacteria, as they secrete some toxins like

cylindrospermopsin, anatoxin, and saxitoxin in fresh water with

harmful effects on humans, animals, and aquatic biota (Moreira

et al., 2021). Therefore, some mechanical, that is, artificial

mixing, hypolimnetic aeration, dredging, and sonication

and biological (biomanipulation, macrophytes, and straws),

methods should be employed to manage cyanobacterial bloom

(Kibuye et al., 2021).

Azolla—The green manure for
sustainable agriculture

Azolla is a macrophyte fern (pteridophyte) commonly

known as duckweed fern or mosquito fern. The frond of

this genus harbors in their dorsal leaf lobe ellipsoid cavities

which act as nest of Anabaena (cyanobacterium) association

referred to as Azolla-anabaena symbiosis. The nitrogen-fixing

Anabaena allow Azolla to grow rapidly in nitrogen-free

medium (Carrapiço, 2017). Eily et al. (2019) reported that

glutamine synthetase (GS) and glutamate synthase (GOGAT)

genes regulate the machinery used by Azolla-Nostoc symbiosis

for nitrogen assimilation. Azolla is an ideal candidate in

intercropping as it improves N use efficiency and quality of water

(Yang et al., 2021). The content of N reported in standing crop

treated with Azolla ranged from 2 to 4Kg N/ha/day. It has been

grown as intercrop cover in paddy field to reduce ammonia

volatilization and improved nitrogen use efficiency of rice (Yang

et al., 2021), and also used as top dressing over water surface

to control weeds, mosquitoes, and improved water quality by

removing nitrates and phosphorous from water.

Lichen in sustainable agriculture

A stable symbiotic association between photobiont (algae)

and mycobiont (fungi) leads to evolution of lichen (Calcott

et al., 2018). About 95% thalli of lichen is composed of fungi

(ascomycota and sometime basidiomycota), and only 5% is

comprised of cyanobacteria or green algae. Lichens produce

metabolites which induce protection against damaging effect

of light, herbicides, act as effective source of solubilizing

macro- and micronutrient, and also act as indicator of the

atmospheric pollutants (Abas, 2021). Lichen is a natural

reservoir of 6,000–8,000 secondary metabolites, which include

allelopathic compounds, such as depsides, depsidones, depones,

and dibenzofurans, that provide protection against damaging

effect of light, acts as weathering compounds also exhibit

antiherbicidal property. Among other metabolites, barbatic

acid, barbatolic acids, diffractaic acid, and evernic acids are

well-known biological control agents for pests and insects

(Kanivebagilu and Mesta, 2020). GC-MS analysis of Teloschistes

flavicans showed vicanicin, methyl oleate, methyl palmitate,

and patchouli alcohol were the main compounds showing

anti-termite activity (Avidlyandi et al., 2021). Dermatocarpon

miniatum, a species of lichen, had high amount of amino acids

(histidine, alanine, cysteine, glutamate, aspartate, asparagine,

glutamine, and glycine), organic acid (butyric, propanoic, malic,

malonic, citric, maleic, and succinic acid), and hormones (GA,

SA, IAA, and ABA) (Gunes et al., 2016). Along with Parmelia

saxatilis, both species had sufficient macro-(N, P, K Ca, Mg, and

S) and micro-(Fe, Cu, Mn, Zn, and B) nutrient contents. Both

had significant potential to be used as an organic fertilizer for

plant growth in organic farming.

Nanobiofertilizers as
phytostimulants

Nanobiofertilizers are synthesized by using the desired

microorganism grown over particular nutrient media; after

complete growth phase, the biomass of microbes is separated,

and the nanoparticles are synthesized using the extracellular

secreted enzymes of bacteria which have the ability to penetrate

into plant cells via stomatal or vascular system of plants

and enhance the metabolic activities of plant cell and affect

the productivity (El-Ghamry et al., 2018). Micronutrients and

macronutrients are essential for the growth of plants, urea-

coated zeolite chips, and urea-modified hydroxyapatite, and Ca

and P hydroxyapatite nanoparticles increase the availability of N,

Ca, and P resulting in 20–33% increment in plant yield (Liu and

Lal, 2014). Nanobiofertilizers have the ability tomakeN available

to plants and prevent the denitrification, volatilization, leaching,

and fixation in soil by controlling the release of nutrients from

nanoparticles. The zeolite increases the crop yield (Preetha

and Balakrishnan, 2017; Singh, 2017). Nano-formulations using

TiO2 increase root vigor because they have the ability to trap

moisture content more than their size and make more water

available to plant for vigorous growth. Nanoparticles form a

strong interaction with genes of plant cells and enhance the

working of metabolic machinery of cell, convert the leaves

into biochemical sensors, and modify the expression system

(Khodakovskaya et al., 2009; Nair et al., 2010). Nanoparticles

assist the phytoremediation system by removing pollutants,

stimulate plant growth, and promote the phytoavailability

of pollutant. Plants under abiotic stress (heavy metal stress)

increase the ROS which increase and trigger the expression of

various genes when plants lag behind the destructive capacity of

abiotic stress. Nanoparticles enhance the activities of antioxidant

enzymes and stimulate accumulation of osmolytes and amino
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acids. Nanoparticles assist the phytoremediation by alleviating

metal-induced toxicity in plants (Khan et al., 2017). For

example, magnetite nanotubes act as a strong magnet and

adsorb the metals from water and soil whereas zerovalent ion

NPs act as reductant and reduced Cr (VI) to Cr (III) and

reduced the bioavailability of Cr(VI) to Brassica juncea plants

(Madhavi et al., 2013). Cu-NPs reduced the abiotic stress in

tomato by increasing the activity of phenylalanine ammonia

lyase (PAL), ascorbate peroxidase (APX), glutathione peroxidase

(GPX), superoxide dismutase (SOD), and catalase (CAT)

(Pérez-Labrada et al., 2019).

Conclusion

Plant growth-promoting fungi and PGPR are promising

tools for sustainable agriculture. Their combined effort also

mitigates climate-induced abiotic and biotic stresses experienced

in plants and in bioremediation of pollutants. The mycelial

web of PGPF increases the absorptive area of root enhancing

water and nutrient uptake, solubilizes soil nutrients, and

produces plant hormones (IAA, GA, and ABA), antibiotics,

osmoregulants, and antioxidant enzymes which allow them

to alleviate abiotic and biotic stresses. The mechanisms of

PGPR include regulating hormonal and nutritional balance

and induction of systemic resistance. In addition, PGPR show

synergistic and antagonistic interactions with microorganisms

within the rhizosphere and in bulk soil may be more beneficial

for agricultural sustainability and healthier soil and ecosystem.

The intricate relationship and cross talk between PGPR with

PGPF/AMF and rhizobia may be investigated in more detail

for better understanding signaling behavior and cross talk

particularly under biotic and abiotic stresses. The PGPR from

stressed rhizosphere and stressed plants impart tolerance

to plants against stresses when used as bioinoculant. To

function as phytostimulator, PGPR inoculants used in seed

dressing or applied to rhizosphere should proliferate in the

rhizosphere, make use of the organic/inorganic compounds

exuded by host plant roots, and able to compete with indigenous

microbes. The establishment of PGPR and PGPF depends

on soil characteristics, soil health biotic and abiotic stresses,

and environmental conditions. Their cross talk among each

other and production of bioactive metabolites modulating

the physiology of plants needs further investigation. Various

antibiotics synthesized by PGPR which include phloroglucinols,

D-gluconic acid, 2-hydroxymethyl-chroman-4-one, oomycin

A, phenazine, pyoluteorin, pyrrolnitrin, tensin, tropolone,

cyclic lipopeptide oligomycin A, kanosamine, zwittermicin A,

and xanthobaccin inhibit the growth of zoospore to prevent

proliferation of plant pathogens. Nanobiofertilizers assist

the phytoremediation by alleviating metal-induced toxicity

and bioavailability to plants. Azolla is an ideal candidate for

intercropping. Lichens produce metabolites which induce

protection against damaging effect of light, herbicides, act as

effective source of macro- and micronutrient, and also act as

indicator of the atmospheric pollutants. Cyanobacterial biomass

is a pool of phenolic compounds, terpenoids, free fatty acids,

polysaccharides, and carotenoids. These metabolites are active

against phytopathogens, as resource for biodiesel production,

and act as soil conditioner. Attention may also be given to

cyanobacteria, Azolla, and lichen for their role in agroecosystem

and their bioactive metabolites and the use of nanotechnology

in biofertilizer formulation with beneficial microbes. A

cumulative effect of the abovementioned phytostimulants

may be applied to boost productivity, revegetate barren

lands, and may also be implicated for sustainable

healthier ecosystem.
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