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A comprehensive understanding of the long-term data on the crop, soils,

environment, climate, and production management would facilitate efficient data-driven

decision-making in agriculture production under changing climate. We have employed

an explainable machine learning algorithm (random forest model coupled with LIME;

Local Interpretable Model-Agnostic Explanations framework) using multi-decadal

(1981–2015) data on climate variables, soil properties, and yield of major crops across

the Coterminous United States (CONUS). This data-driven approach explained the

multi-faceted factors of crop production for corn, soybean, cotton, and wheat under

field conditions by leveraging agricultural informatics. We attempted to show how crop

yields can better be correlated and explained when production input varies along with

changing climatic/environmental and edaphic conditions. Our findings suggest Growing

Degree Days (GDDs) as important climatic factors, while water holding capacity is one of

the dominant soil properties in interpreting crop yield variability. Our findings will facilitate

growers, crop production scientists, land management specialists, stakeholders, and

policy makers in their future decision-making processes related to sustainable and

long-term soil, water, and crop management practices.

Keywords: climate change, crop production, environment, soils, explainable machine learning, local interpretable

model-agnostic explanations

CLIMATE CHANGE—FOOD PRODUCTION—GLOBAL FOOD
SECURITY NEXUS

Climate change is one of the biggest challenges to the world in present times including its
threat to global food (and nutritional) security and hunger issues. Globally ∼750 million people
were undernourished as a direct and indirect effect of climate change in 2019, which is being
majorly contributed by a decline in food production, hike in food prices, and increase in social
conflicts for land and water availability (Misselhorn et al., 2012; Hobert and Negra, 2020). Thus,
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it seeks immediate and sustainable adaptation and/or mitigation
strategies although a number of them have been already
developed to offset the deleterious impact of climate change on
food production. The socio-economic development is greatly
hindered from local to a global scale with a complex interaction
with sustainable food production systems (Burchfield et al.,
2022). Increasing temperatures, drought, floods, and increasing
carbon dioxide release as a result of climate change in several
parts of the world have impacted the production of staple grains
and other economically viable crops (Fornara and Tilman, 2009;
Aiking, 2011; Herrmann and Bucksch, 2014; Brown et al., 2015;
Gitz et al., 2016; Pugh et al., 2016; Mbow et al., 2019). Yet at
the same time, global food production would have to be doubled
by 2050 to feed the burgeoning population (∼9 billion by 2050).
Moreover, the crop yield is estimated to decrease by 25% by 2050
due to ongoing climate change (FAO, 2018).

It is critical to understand the impact of climate change
on crop yield through the lens of global food security. The
future of climate change and its associated impacts is multi-
directional and highly unpredictable, which makes planning for
mitigation and adaptation a bit complex. Irrespective of other
uncertainties in climate change, its potential impacts will likely
decrease agricultural productivity in the coming years (Jones and
Hassan, 1991; Lobell and Gourdji, 2012). Many climate-smart
and climate-resilient agricultural practices and technologies have
been evolving as a part of an interdisciplinary approach to
manage crop production along with classical agronomic research
under the current and future climate change scenario. For
example, climate-smart water management (e.g., variable rate
irrigation), precision nutrient management (e.g., management
zone delineation, use of drones, remote sensing, hyperspectral
imaging, GIS mapping, etc.), digital andmodern agriculture (e.g.,
intensive data collection from the individual field), weather-
smart agriculture, carbon-smart crop management (e.g., no-
tillage, cover crop, sensors-based technology), socio-economic
knowledge-based practices, and agricultural extension capacity
building are in high demand (Gregory et al., 2005; Nelson et al.,
2009; Elliott et al., 2014; Troy et al., 2015; McLennon et al., 2021).

Variability in Crop Yield Due to Climate and
Soil Variables
Climate and management practices adopted might have
the greatest influence on the agricultural production of a
region. Historically, crop genetic development and agronomic
management practices are the main drivers for advancement
in agricultural production (Messina et al., 2009; Grassini et al.,
2013; Bailey-Serres et al., 2019; Van Tassel et al., 2020; Karavolias
et al., 2021). Variations in crop yield can be explained by
climatic and edaphic (∼soil) factors (Leng et al., 2016). The
intertwined relationship among these factors and how they
impact the management practices can explain the majority of
the variation in crop yield across broad temporal- and spatial
scales. On the other hand, the impact of climate change and
climate variability on the crop yield throughout the USA revolves
around the location-soil-crop triangle (Motha and Baier, 2005;
Cohn et al., 2016; Kukal and Irmak, 2018a). More specifically,

multiple factors could impact crop yields such as genetics (variety
selection), climate, soil, management practices, inputs (fertilizer,
manure, irrigation, row spacing, planting date and depth,
crop density), etc. In addition, there has been technological
advancement in crop production which magnificently improved
the crop yield and farm production (Raza et al., 2019). However,
lately, under the climate change situation, many climate variables
could be responsible for substantial modification in crop yield
despite advancements in agricultural technologies (Pugh et al.,
2016).

There has been an increasing trend in developing data-
driven statistical tools such asMachine Learning (ML) algorithms
to predict and explain crop yield variability using climate
and weather indices (Lobell and Field, 2007; Schlenker and
Roberts, 2009; Lobell and Burke, 2010; Lobell and Gourdji, 2012;
Urban et al., 2012; Osborne and Wheeler, 2013; Moore and
Lobell, 2014; Anderson, 2019). This quantitative data-driven
approach warrants a comprehensive understanding of climate
and environmental variables with crop yield from long-term data
repositories at the county level in the USA. It has been reported
that the annual Growing Degree Days (GDD) has been increasing
by 50◦C every century (Kukal and Irmak, 2018a), thus a strong
correlation between crop yield and climate variables is expected.
Moreover, the impact is region-specific and crop-specific. For
example, the yield of major row and/or crop rotation common in
the USA (e.g., corn, soybean, cotton, and wheat) can significantly
be impacted by agro-climatic changes under the recent trend
of climate change due to its effect on GDD (Kukal and Irmak,
2018b). However, the explanation of temperature (∼GDD) effect
on crop yield can be contingent on other climate factors (e.g.,
precipitation) and/or soil properties that as a single factor or in
combination can explain the yield variability and might follow
a non-linear pattern in their relationship. For example, higher
mean yield and its inter-annual variability are often associated
with high soil available water holding capacity, while lower inter-
annual variability in yield is generally associated with high Soil
Organic Matter (SOM) due to its high buffering capacity (Xue
et al., 2020).

Climate Variability Across CONUS
The projected increase in surface temperature with an increase
in intensity and duration of heat is making the world more food
insecure. The possible changes in temperature and precipitation
across the USA have the potential to alter the positive impact of
carbon dioxide (CO2) emissions. The sixth Intergovernmental
Panel on Climate Change (IPCC) reports changing conditions
for food production in the mid-to-high latitudes of the CONUS
(IPCC, 2021). The continuous warming and spatiotemporal shift
in climatic conditions across the CONUS project to the shift
in optimum climatic conditions for the production of rain fed
crops (e.g., corn, soybean, wheat, etc.) from Iowa and Illinois
to Minnesota and Dakotas with modulations in soil productivity
(Hoffman et al., 2020).

Broadly, GDD and precipitation are reported to be the two
important climatic parameters for yield variability in corn and
soybean (Kucharik and Serbin, 2008; Leng et al., 2016; Xu et al.,
2016). In general, the increase in the GDD develops more soil
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FIGURE 1 | Temporal trends of (a) crop (corn, soybean, cotton, wheat) yields in the ACDC (Agro Climatic Data by County) dataset.

moisture stress and decreases the time to crop maturity by
impacting themetabolic processes across the corn belt in CONUS
(Challinor et al., 2010) eventually leading to a reduction in
carbon assimilation (Lobell et al., 2013). Similarly, an increase
in GDD decreases the soybean yield up to 16% in southern
regions with an increase in temperature up to 2◦C while showing
no significant changes in yield in northern regions (Jones and
Hassan, 1991; Serdeczny et al., 2017). Additionally, a major
economic loss (∼2.2 billion dollars) has been encountered due
to drought in the cotton fields of Texas in 2011 (Acosta-
Martinez et al., 2014). Therefore, inter-annual variability of
climate factors (e.g., GDD and precipitation) likely influences
inter-annual variability in crop yield more than soil properties
(Figures 1–3).

CROP YIELD ASSESSMENT USING
DATA-DRIVEN APPROACH IN CLIMATE
AND SOIL VARIABILITY

There is a dire need for the development of modeling and
simulation strategies for agricultural decision making which
often lack an understanding of a comprehensive long-term data-
driven approach across CONUS. To that end, it is critical to
bridge gaps in global food security, agricultural food production,
and climate change nexus (McLennon et al., 2021). Our overall
objective was to utilize the digital access of long-term data

and interpreting using machine learning (ML) algorithms to
understand the impact of climate factors and soil properties
on the yield of four major crops across the CONUS for 35
years (1981–2015). The scope of this study considers GDD and
precipitation as climatic factors; and soil water holding capacity
(WHC), organic matter (OM), texture, pH, slope, erodibility,
and soil loss tolerance factor as soil properties. A collective
and thorough understanding of the impacts of changing climate
and soil properties on crop yield would facilitate building our
knowledge and navigating efficient data-driven decision making
in agriculture. We interpreted crop yield variation using long-
term data-based simulation, andmodeling obtained from climate
and soil variables is needed.

Our synthesis approach aims to evaluate the impact of
climate change drivers and soil properties on the production of
major food crops across the CONUS by leveraging agricultural
informatics. We have applied an explainable ML algorithm on
long-term crop yield data collected by the National Agricultural
Statistics Service, United States Department of Agriculture
(NAAS-USDA). This data-driven approach explains the multiple
climatic and soil factors of crop production under field
conditions and how crop yields can better be correlated and
explained when production input varies along with changing
environmental conditions in the past 35 years. These findings will
facilitate growers, crop production scientists, land management
specialists, and policymakers in their future decision-making
processes related to soil, water, and crop management practices.
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FIGURE 2 | Temporal trends of climate factors in the ACDC (Agro Climatic Data by County) dataset.

FIGURE 3 | Temporal trends of soil properties in the ACDC (Agro Climatic Data by County) dataset.

We have adopted data synthesized from literature (Yun and
Gramig, 2019) and quantified to estimate the impacts of
climate change and various soil factors on yields of four major

crops (corn, soybean, cotton, and wheat) grown in different
regions (total 3,070 counties) across CONUS for 35-years (1981–
2015).
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DATA SOURCES, STATISTICAL ANALYSES,
AND MACHINE (AND EXPLAINABLE)
LEARNING APPROACHES

Data Source
We adopted a published county-level Agro-Climate Data, which
was spatially and temporally consistent for agricultural yields,
climate, and soil variables across CONUS (Yun and Gramig,
2019). This publicly-available dataset contains annual crop yield
for major crops in the USA (Corn, Soybean, Cotton, and Winter
Wheat) synthesized by USDA-NASS (1981–2015). This Agro-
Climatic Data by County (ACDC) also includes the major
climatic and edaphic variables from publicly available spatial data
sources for diverse end-users.We represented temperature effects
from PRISM climate data as customizable growing degree days
(GDDs). GDD is also known as heat units, and it measures the
heat accumulation as crop growth is highly dependent on the
ambient temperature in a cumulative stepwise manner except
for any extreme events (e.g., drought or disease infestation). It
is calculated as a function of the daily maximum temperature
(Tmax), daily minimum temperature (Tmin), base temperature
(Tbase) as follows (Anandhi, 2016): GDD = (Tmax + Tmin)/2–
Tbase.

Daily GDD values are added together from the beginning
of the growing season, providing an indication of the energy
available for crop growth (Anandhi, 2016). GDD values are
accumulated by adding each day’s GDD contribution as the
season progresses. Cumulative GDD values are used for
comparing the progress of a growing season to the long-
term average and are useful for estimating crop development
stages. Unless stressed by other environmental factors (e.g., soil
moisture), development rates from emergence to maturity for
many crops depend on air temperature. Because many crop
developmental events depend on the accumulation of specific
quantities of heat, it is possible to predict when these events
should occur during a growing season regardless of differences
in air temperature from year to year. GDD units can be used to
assess the suitability of a region for the production of a particular
crop, estimate the growth stages of crops, heat stress on crops,
and predict maturity and yield.

There was a total of 120 GDD intervals in the ACDC dataset
(GDD interval of 1◦C, ranging between −60 and +60◦C). We
chose GDD values between −39 and +51◦C, which covers
the temperature ranges of the crop growing season for the
entire period. We further reduced the dimensionality of the
GDD data so that it can explain the yields of major crops
used in this study more suitably while reducing the chances
of over-fitting our Explainable ML model. Therefore, we used
cumulative GDDs for 3◦C intervals (a total of 24 categories
of GDD).

Spatial variations in soil properties across CONUS were
adapted from the USDA-NRCS gSSURGO dataset. Only non-
forestry agricultural classes were selected following USGS NLCD
land cover (∼land use) categories. See Yun and Gramig (2019)
for more information on numerical, computational, and geo-
computation methods used for data generation and processing
from original data sources, selection of agricultural masks,

and spatial aggregation or disaggregation approaches in the
ACDC dataset.

Data Visualizations, Temporal Trend, and
Correlation Matrices
All visualizations and temporal trends on yield of major crops,
climate factors, and soil properties were evaluated using the
ggplot2 (Wickham, 2008) package in R (version 4.1.0) (R Core
Team, 2021). Correlation matrices were generated using R-
ggstatsplot (Patil, 2018) package. Correlograms were created
using adjusted Holm correlation coefficients. All statistical
analyses were conducted at the 5% level of significance.

Machine Learning Models
We analyzed four different ML regression models (Random
Forest, K-Nearest Neighbor, Decision Tree, and Support Vector
Regression) to evaluate non-linear relationships between climate
factors, soil properties, and yields of major crops. For evaluating
the best regression model, we examined the coefficient of
determination (R2) and root mean square error (RMSE) values
of each model.

R2, or the coefficient of determination, was determined using
the following formula:

R2 = 1−
sum squared regression (SSR)

total sum of squares (SST)
(1)

= 1−

∑

(yi − ŷi)
2

∑

(yi − ȳ)2
(2)

where the sum squared regression is the summation of the
residuals squared, while the total sum of squares is the addition
of data distances from the mean squared.

RMSE, or the Root Mean Square Error, was determined using
the following formula:

RMSE =

√

∑n
i=1 (Pi −Oi)

2

n
(3)

where Pi is the predicted value, Oi is the observed value, and n is
the total number of observations.

The R2 metric is a statistical measure of how close the data is
to the fitted regression line. An R2-value closer to one indicates
a better fit. The RMSE values explain the measure of the error in
the model in predicting crop yield as impacted by climate and
soil variables. Higher the RMSE value, farther off the model’s
predicted value from the expected value. Consequently, a model
with a high R2-value and low RMSE value indicates a better fit.
After selecting the best regression model, we randomly divided
our data between training (80%) and testing (20%) to evaluate
the effect of climate and soil variables on the long-term yield of
four selected crops. We ranked the features based on the range of
variability in crop yields explained by selected climate factors and
soil properties.

Explainable Machine Learning Algorithm
To provide explainability within the agricultural yield domain,
we used a technique that utilizes yield data on major agricultural
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FIGURE 4 | Overview of explainable machine learning approach.

crops and features (climate factors and soil properties) in
conjunction with the LIME (Local Interpretable Model-Agnostic
Explanations) framework for furnishing human-readable results
(Figure 4; Ribeiro et al., 2016). The LIME framework provides

explainability to any machine learning model. Specifically, it
identifies the features most important to the output. Then, it
perturbs a sample to generate new ones with corresponding

predictions and weights them by proximity to the initial instance.
Furthermore, an interpretable model was trained using these

newly created samples, and the prediction is explained by
interpreting the local model. LIME can be beneficial when
the desired human explainability elucidates the impact of the

features on the output. In our study, the machine learning model
predicted crop yield, in a feature list consisting of climatic and soil
factors, and LIME determined the features that are positively or

negatively correlated to furnished crop yield predictions. In this
scenario, the user can obtain a prediction and a human-readable

explanation for the model’s decision.
To utilize the LIME framework for elucidating agricultural

yield inferences, we utilize a three-step process for obtaining
furnished explanations (Figure 4). First, for a given dataset, we

employ univariate feature selection for determining the features
to be employed in our machine learning models for all classes
to be predicted. Univariate selection utilizes statistical tests that

assist in computing the features having the best correlation with
the output. We used all features here. More specifically, the

SelectKBest technique, which uses the chi-squared statistical test,
was employed (Pedregosa, 2011). Second, since our data consists
of data collected periodically, we utilized machine learning
regression models for determining future trends. For each class
to be predicted, we trained our regression models on the best
features selected in the aforementioned univariate step and
evaluated them on novel data to be regressed. Lastly, for each
regression model trained, we utilized our LIME framework to
explain each outcome of the regressed data.

Splitting the LIME Framework for Different
Soil Features and Precipitation Ranges
We further split the ACDC data based on the numerical
fluctuations of the desired soil properties and precipitation
ranges. This was achieved by utilizing the minimum and
maximum values for selected variables to create three intervals
of equal distance. The crop yield dataset was split into one of
these three groups based on the interval values. Subsequently,
we trained Random Forest regression models on these different
intervals to evaluate if the effect of temperature (represented
by GDD) is contingent on the ranges of soil properties and
precipitation values.

VARIABILITY IN CLIMATE, SOIL, AND
CROP YIELD DATA ACROSS CONUS

While the yield of all four crops, precipitation, and GDD
(+5 to +30) generally followed normal distributions, the
GDD (+49 to +31) and GDD (+4 to −39) were more
skewed toward the left on the x-axis (Supplementary Figures 1,
2). Among different soil properties, WHC, silt content, clay
content, erodibility, and soil loss tolerance factors were normally
distributed (Supplementary Figure 3). We observed a bimodal
distribution of soil pH across 3,070 counties throughout the
CONUS. A strongly skewed relationship in soil slope and organic
matter (most of the values are concentrated at the lower end of
the x-axis) and soil loss tolerance factor (most of the values were
concentrated at the higher end of the x-axis) was also noticed.
Several studies have reported an average OM in top CONUS soil
ranges between 3.0 and 6.0% (Fenton et al., 2008), which closely
follows our observation in the ACDC data.

There is a general trend in the increase in all four crop yields
over time (Figure 1). We observed a significant increase in crop
yields with a 1.72, 1.62, and 1.84-fold increase in yield of corn
(R2 = 0.20, p < 0.001), soybean (R2 = 0.21, p < 0.001), and
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cotton (R2 = 0.17, p < 0.001), respectively, from 1981 to 2015.
We also observed inter-annual variability in climate factors, but
temporal trends (i.e., regressions between climate data and year
in Figure 2) of GDDs (R2 ranged between 1.1e-05 and 0.004, p
< 0.001 for all GDD intervals) and precipitation (R2 = 0.01,
p < 0.001) were not noticeable. For example, the wheat yield
significantly (R2 = 0.06, p < 0.001) increased (∼1.21 times) from
1981 to 2007, which can possibly be explained by a combined
effect of both climate variables as well as several developmental
changes in crop growth and physiology due to modification in
management practices. Further, drastic reductions in corn and
soybean (andmarginally wheat) yields were observed in 1988 and
2012 possibly due to the worst drought in theMidwest with many
locations receiving rainfall 40–50% lower than normal (Riebsame
et al., 1994). Similarly, a drastic yield reduction of corn was
noticed in 2012 (see blue rectangles in Figures 1, 2) as compared
to the inter-annual yield variability due to the “Great Drought” of
2012 across the CONUS (Nielsen, 2021). The severe to moderate
drought of 2012 impacted 33% of the CONUS during the peak
period of the growing season in June (NOAA, 2012). We did not
observe any temporal trend in soil properties, except WHC and
Soil Loss Tolerance Factor (R2 = 0.002 and p < 0.001 for both).

The inter-annual variability of crop yield was most likely
influenced by climatic factors, however, there may have been
some critical contribution by management factors that resulted
in this yield increase that have varied over these 35 years
(Figures 1–3). We noticed that yield modification can possibly
be attributed to the adoption of genetically modified and drought
tolerant cultivars (Ortiz-Bobea and Tack, 2018), the introduction
of precision farm management using modern farm machinery to
maximize crop production while minimizing ecological footprint
(McLennon et al., 2021), involvement of soil conservation
practices e.g., zero or minimum tillage, cover crops, increased
planting density and optimizing row spaces have also helped in
increasing crop yields (Basche et al., 2016; Assefa et al., 2018;
Licht et al., 2019) across the CONUS. Moreover, most of the
selected soil properties and climate factors also co-varied and can
contribute indirectly to variations in crop yields over space and
time (Supplementary Figures 4–7). Consequently, crop yields
were significantly correlated with all selected soil properties
with the exception of soil OM and WHC for cotton yield
(Supplementary Figures 4–7; Johnson and Trout, 2012; Xu J.
et al., 2021; Xu T. et al., 2021).

MODEL SELECTION AND PERFORMANCE

The best-fitted regression model was chosen based on the
coefficient of determination (i.e., R2) and average mean error
(i.e., RMSE) values to examine how close the observed data is
to fitted regression lines. From our results, the Random Forest
model consistently had the highest R2-value, with an average of
0.96 for all four crops (R2-values follow the trend of Random
Forest>Decision Tree>K-Nearest Neighbor> Support Vector
Regression, where lowest R2-values of 0.56 were obtained for
the SVR model, data not shown). Additionally, RMSE values
indicated that the Random Forest model consistently had the

TABLE 1 | Selection of random forest models for training and testing data on

yields of corn, soybean, cotton, and wheat from 1981 to 2015 for CONUS.

Crop R2 RMSE

Training Testing Training Testing

Corn 0.96 0.73 5.50 14.70

Soybean 0.97 0.75 1.49 3.98

Cotton 0.96 0.71 42.97 112.83

Wheat 0.96 0.74 2.08 5.51

least amount of error (RMSE) for all four crops, followed by
Decision Tree and K-Nearest Neighbor models, and the Support
Vector Regression model’s predicted value was farthest from the
expected values (data not shown). The RMSE value should be
minimized as much as possible. Therefore, we elected to employ
the Random Forest model in our future experiments on crop
yield data.

Model R2-values for corn (Training = 0.96, Testing = 0.73),
soybean (Training = 0.97, Testing = 0.75), cotton (Training
= 0.96, Testing = 0.71), and wheat (Training = 0.96, Testing
= 0.74) further confirmed that the Random Forest model
adequately represented the yield of all four crops (Table 1).
Among four crops, RMSE values were lowest for soybean
(Training = 1.49, Testing = 3.98), followed by wheat (Training
= 2.08, Testing= 5.51), corn (Training= 5.50, Testing= 14.70),
and highest for cotton (Training = 42.97, Testing = 112.83)
(Table 1).

When analyzing our results for the Random Forest models,
we can see that the classifiers had a high R2 score of at least 0.96,
thereby corroborating their regression abilities. Furthermore,
when examining the RMSE, values for our models, we observe
that the scores for testing were diminutive and similar to the
training values. A lower RMSE value indicates the competency
of the model to furnish output values that are near the actual
amount. Since our average error was minimal, the results and
derived correlations procured through LIME are valid.

To solve the issue of overfitting and further bolster our
models, we can filter the classifier’s utilized features to
incorporate only the top features. Consequently, we remove
previously employed features with low correlation on the output
that would reduce the overall robustness of our Random Forest
regression models. Additionally, we have tuned the parameters
of the Random Forest to incorporate less depth per tree. A higher
depth engenders more captured information, thereby resulting in
an overfitted model.

CLIMATE AND SOIL PROPERTIES IMPACT
CROP YIELD

The crop yield depends on the heterogeneity of climate factors
(temperature, here represented as GDD and precipitation; PPT)
and soil properties (e.g., WHC, soil organic matter, texture, pH,
erodibility, and soil loss tolerance factor, etc.). The exploratory
data analysis using the random forest model in our study revealed
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FIGURE 5 | Feature ranks and overall weight of features following explainable machine learning interpretations for (A) corn, (B) soybean, (C) cotton, and (D) wheat.
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FIGURE 6 | Feature ranks and overall weight of features following explainable machine learning interpretations for corn for low, medium, and high quartiles of

precipitation.

GDD as the most influential climatic factor for all four crops
(corn, soybean, cotton, and wheat) impacting the yield. In
contrast, the yield of the crops did not depend or be influenced
by any single soil property but was variably affected based on the
type of the crop and under the ranges of selected soil properties
across CONUS. Figure 5 represents the effect of climatic and soil
factors on crop yields defined as feature ranks for the random
forest regression model and overall weight of features for the
explainable machine learning algorithm (i.e., LIME correlations).
The size of the bar for plots representing feature ranks represents
the weight of the ranked features, whereas the size and direction
of the bar plots representing overall weight in LIME correlations
explain the strength of the negative or positive effect of the feature
on crop yield. Among the climatic factors, GDDs, in general,
indicated the most significant impacts on the yield of the crops
in the order of soybean > corn > wheat > cotton. In general, the
yield of corn and soybean was positively impacted by the GDD
interval of +42 to +45◦C. Seasonal precipitation also impacted
the yield for soybean, and marginally for corn but not for cotton
and wheat (Figures 5A–D). Other studies conducted in semi-arid
soils have shown similar results where the yield of wheat was
significantly correlated with higher temperature while showing a
non-significant relation with precipitation (Sommer et al., 2013).
On the other hand, heavy rainfall significantly impacted the boll

formation of cotton in vertisols but was non-significantly related
to the decreased yield of cotton (Njouenwet et al., 2021).

Among all the soil properties observed, the WHC affected
most of the corn yield followed by soybean, wheat, and cotton.
Soil WHC is an important driver for buffering corn yields against
climate variability (Williams et al., 2016). Similarly, higher water
content (above 75% of field capacity) was reported to decrease
the yield of mulched drip-irrigated cotton (Hu et al., 2009).
Optimally, corn and soybean growers maintain 50% of the
available soil WHC until the corn cob reaches the black layering
stage of the crop and most pods in soybean are yellow (Kelley,
2020). Corn and soybean grain yields are optimum at pH range
5.8–6.2 and decrease beyond this range (University of Wisconsin
Extension, 2012). Further, rainfall during the pod-filling stage
of soybeans can be beneficial for optimized yield as the crop
uses more water than the early stages (Pedersen and Lauer,
2004). Among four major crops, soil pH and silt (%) mostly
influenced the yield of soybean, followed by corn, wheat, and
cotton. In general, the range of optimal soil pH reported was
5.8 to 6.2 for the northern corn-soybean near-neutral to <5.2
for Pacific Northwest wheat (Mahler and McDole, 1987; Ghimire
et al., 2017) and >6.3 for soybean (lower critical limit at pH
5.2) (Pothula et al., 2019). Based on the feature ranking of these
major four crops, we observed that most of the factors sufficiently
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FIGURE 7 | Feature ranks and overall weight of features following explainable machine learning interpretations for soybean for low, medium, and high quartiles of

precipitation.

explained the yield variability in soybean, followed by corn and
wheat, but not for cotton (note the relatively smaller size of bars
for feature ranks associated with cotton yield in Figure 5C as
compared to other three crops in Figures 5A,B,D). It implies
that other factors (e.g., radiation, relative humidity, evaporation,
etc.), either as a single variable or co-variable(s), might have
impacted cotton yield. For example (Sawan, 2017) demonstrated
that flowering and boll formation in cotton can be greatly affected
by solar radiation and evapotranspiration.

Splitting Features to Evaluate the Influence
of Climatic Factors
Figures 6–9 represent grouped classification of each featured
rank of climatic properties (here precipitation) divided into
three ranges/categories (low, medium, and high quartiles),
respectively, and their impact on crop yields. For example,
precipitation (ranged between 0.91 and 1,753mm) is divided
into three quartiles based on its intensity from lowest to
highest, where 0.91–468, 469–769, and 770–1,753mm represent
1st, 2nd, and 3rd quartiles, respectively (Figures 6–9). The
highest featured rank for the middle quartile (i.e., 469–613mm
precipitation) showed a positive effect of warming, and corn yield
was expressed in the middle quartile range (Figure 6). Thus, a
warmer (GDD+40 to+42) and wetter climate favored corn yield

but its impact faded in the range of GDD of (+43) to (+45)
and (+49) to (+51). The lower and upper base temperature for
optimum corn growth and productivity is 50◦F (i.e., 10◦C) and
86◦F (30◦C), respectively (Akyuz and Ransom, 2015). A higher
yield (7.32Mg ha−1) of corn occurred at intermediate elevations
with mild temperatures and sufficient precipitation (Thomson
et al., 2002). Our findings support that overall corn yield response
to warming (13% for 1◦C) in the mid-latitude CONUS region
is much greater than discussed in the IPCC 6th assessment
(IPCC, 2021), where corn yields are projected to decrease by
5 to 20% with up to 3–4◦C of warming without any climate
change adaptation. There were positive impacts of climate factors
on crop yield due to higher GDD accumulated during growing
seasons for both corn and soybean (Figures 6, 7).

Featured ranking in cotton and wheat showed the highest
influence of climatic and soil factors in the middle quartile (i.e.,
469–613mm precipitation, see Figures 8, 9). Positive effects of
warming and cotton yield are expressed in the middle quartile
range where warmer (GDD +40 to+42) and wetter climates
negatively influenced cotton yield. In contrast, cotton yield can
possibly be better explained by positive GDD (high values)
than for corn and soybean. In years that are extremely hot
during the flowering and boll-filling, the crop matures earlier
and has smaller bolls than in years when the temperature is
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FIGURE 8 | Feature ranks and overall weight of features following explainable machine learning interpretations for cotton for low, medium, and high quartiles of

precipitation.

cooler (Reddy et al., 1999). Generally, cotton is adapted to
high temperature climates of the USA like Texas, Georgia,
and Arkansas. However, the elevated temperature declines the
boll formation and eventually the harvest index beyond 28◦C,
reaching zero boll harvest index at 33–34◦C (Reddy and Zhao,
2005). A similar observation was reported by Williams et al.
(2016) that excessive heat and drought conditions are known to
decrease the grain yield of corn. The increase in the wheat yield
was observed during drought conditions (i.e., low precipitation
quartile) (Figure 9) because it thrives well in low rainfall
intensive regions.

Splitting Features to Evaluate the Influence
of Soil Factors
Figures 10–13 and Supplementary Figures 8–15 represent the
influence of soil properties divided into three ranges/categories
(low, medium, and high quartiles) on crop yields. Soil WHC
(ranged between 3.23 and 43.76 cm/cm) is divided into three
quartiles: 1st (low: 3.2–19.8 cm/cm); 2nd (medium: 19.8–27.5
cm/cm); and 3rd (high: 27.6–43.8 cm/cm) quartiles, respectively
(Figures 10–13). A strong positive influence of GDD (+19 to
+21 and+31 to+36◦C) on corn and soybean yield was expressed
by their feature ranks for the middle quartile of WHC in
CONUS (Figure 10). Other studies also reported that optimum
precipitation and soil WHC can increase the stability in corn

productivity (Williams et al., 2016). For cotton and wheat, GDD
(+25 to +27) and GDD (+28 to +30) features ranked high in
the medium quartile of soil WHC (Figures 12, 13). GDD (+43
to +45) generally showed a negative impact for all four crops for
the low andmedium quartiles of soil WHC. However, GDD (+43
to +45) showed either a slightly positive or no impact for the
high WHC quartile, which indicates a potential buffering effect
of WHC against heat stress (represented by very high GDD) on
crop yields (Figures 10–13).

Supplementary Figures 8–11 represents the influence of soil
OM divided into three categories (low: 0.22–0.93%; medium:
0.94–2.13%; and high: 2.14–90.54%) on crop yield. According to
our findings, a strong influence on the yield of corn, soybean, and
wheat was expressed by their feature ranks for low to medium
quartile ranges of soil OM in CONUS. Low soil organic matter
decreases the buffering capacity of soil pH (Jiang et al., 2018).
Additionally, the negative correlation of soil pH with crop yield
for the low soil OM quartile is possibly due to a combined
negative effect of low soil OM and the associated increase in
soil pH and likely dispersion of soil particles that makes the
conditions unfavorable for crop growth.

Supplementary Figures 12–15 represents the influence of
clay content on crop yield which is divided into three ranked
categories (low: 0.95–20.5%; medium: 20.6–32.2%; and high:
32.3–65.5%). We observed a strong influence of climatic and
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FIGURE 9 | Feature ranks and overall weight of features following explainable machine learning interpretations for wheat for low, medium, and high quartiles of

precipitation.

FIGURE 10 | Feature ranks and overall weight of features following explainable machine learning interpretations for corn for low, medium, and high quartiles of water

holding capacity.
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FIGURE 11 | Feature ranks and overall weight of features following explainable machine learning interpretations for soybean for low, medium, and high quartiles of

water holding capacity.

FIGURE 12 | Feature ranks and overall weight of features following explainable machine learning interpretations for cotton for low, medium, and high quartiles of water

holding capacity.

soil factors on the yield of corn, soybean, and wheat under the
medium clay content category (Supplementary Figures 12, 13,
15). Colder (GDD −39 to −16) climate compromised corn yield
and warmer (GDD +40 to +42) climate favored soybean and
wheat yield in medium clay soil. On the other hand, the cotton
yield was impacted by both low andmedium clay content. Colder
(GDD−15 to−13) climate compromised the cotton yield under
low clay soil, followed by medium clay soil, and showed no effect
in high clay soil (Supplementary Figure 14). Higher clay content

in soil may have restricted plant growth possibly due to limited
nutrient availability, and a cooler temperature might have further
reduced the plant physiological metabolism.

CONCLUSION

Our quantitative synthesis is aimed to provide information on
the impact of climate variables and soil properties on the yield
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FIGURE 13 | Feature ranks and overall weight of features following explainable machine learning interpretations for wheat for low, medium, and high quartiles of water

holding capacity.

of four major crops grown in different regions (total 3,070
counties) across the Conterminous United States (CONUS).
We leveraged big data and machine learning algorithms to
evaluate the effects of climate factors (temperature; growing
degree days; and precipitation) and soil properties on the
long-term (1981–2015) yield of corn, soybean, cotton, and
wheat. Based on our observation, the most important climatic
factor explaining crop yield variability of these major crops
is GDD while WHC among many soil properties plays a
crucial role. Our empirical approach using the ACDC dataset
adequately explained yield variability in corn, soybean, and
wheat using climatic and soil factors. However, most of the
yield variability in cotton was not sufficiently explained by
climatic and soil factors under the current study which warrants
further investigation with other climatic variables (e.g., radiation,
relative humidity) as well as yet to know soil factors. A
proper understanding of these factors and their inclusion in
the prediction model would possibly help to improve the
performance of predictive models.

Our data-driven synthesis can serve as a guide to growers,
crop production scientists, land management specialists,
stakeholders, and policy makers for the timely management of
sustainable crop production for four major crops in CONUS.
It will help to prioritize structural resilience and resource
management for food security under climate change scenarios.
Although our current analysis is limited to CONUS, we expect
that the Explainable ML approach used here can be implied
in other agro-climatic regions or eco-regions (e.g., tropical
countries) as long as the data related to climate and soil
properties are available. Expanding our analysis outside CONUS
in the future will also be constrained by the availability of
sufficient data for training and testing purpose.
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Climatic Data by County) dataset.
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climate factors and yields of corn in the ACDC (Agro Climatic Data by County)

dataset.

Supplementary Figure 5 | Correlation matrices between soil properties and

climate factors and yields of soybean factors in the ACDC (Agro Climatic Data by
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Supplementary Figure 7 | Correlation matrices between soil properties and
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County) dataset.
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quartiles of soil organic matter.

Supplementary Figure 9 | Feature ranks and overall weight of features following

explainable machine learning interpretations for soybean for low, medium, and

high quartiles of soil organic matter.

Supplementary Figure 10 | Feature ranks and overall weight of features

following explainable machine learning interpretations for cotton for low, medium,

and high quartiles of soil organic matter.

Supplementary Figure 11 | Feature ranks and overall weight of features

following explainable machine learning interpretations for wheat for low, medium,

and high quartiles of soil organic matter.

Supplementary Figure 12 | Feature ranks and overall weight of features

following explainable machine learning interpretations for corn for low, medium,

and high quartiles of clay.

Supplementary Figure 13 | Feature ranks and overall weight of features

following explainable machine learning interpretations for soybean for low,

medium, and high quartiles of clay.

Supplementary Figure 14 | Feature ranks and overall weight of features

following explainable machine learning interpretations for cotton for low, medium,

and high quartiles of clay.

Supplementary Figure 15 | Feature ranks and overall weight of features

following explainable machine learning interpretations for wheat for low, medium,
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