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World-wide, sustainable crop production is increasingly dependent on the protection

of crops from adverse local climate conditions by using controlled environment

agriculture (CEA) facilities. Today’s greenhouses and plant factories are becoming

very technologically advanced. Important breakthroughs in our understanding of the

deployment of affordable artificial lighting systems that can supplement and even

replace solar radiation is the subject of this perspective article. The key to improving

sustainable CEA is to synchronize those environmental cues that best entrain the

natural circadian rhythm of the crop. Patterns of circadian rhythms reflect the balance

of daily metabolic cycles and phenological stages of development that integrate and

anticipate environmental changes for all complex organisms. Within the last decade,

our understanding of the use of light-emitting diodes (LEDs) as spectrally tunable tools

for stimulating plant responses has expanded rapidly. This perspective proposes that

extending the photoperiod in CEA is an economically sustainable goal to for year-round

productivity of tomato, using dynamic LED shifts that entrain the circadian rhythm.

When the photoperiod is extended too far, tomato experiences injury. To avoid yield

reduction, we look to nature for clues, and how circadian rhythms evolved in general

to long-photoperiods during the summer in high-latitudes. It follows that circadian

rhythm traits are good targets for breeders to select new tomato cultivars suitable

for CEA. Circadian rhythm entrainment, using dynamic LED cues, can be tailored to

any latitude-of-origin crop, and thus expands the strategies ensuring sustainable food

security including healthy diets locally in any region of the world.

Keywords: circadian rhythm, LEDs, controlled environment agriculture (CEA), photoperiod, continuous light,

tomato, photoperiodic injury
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INTRODUCTION

The strategy of using circadian rhythm (CR) entrainment
principles to maximize yield sustainably is innovative and
deserves application. In nature, plants evolved to predictable
environmental cues that ensured fitness during different
seasons (i.e., light quality, intensity, and duration). Controlled
environment agriculture (CEA) facilities are sustainable
production systems that can mimic nature’s cues. This brief
perspective article focuses on CR entrainment when designing
lighting recipes, because light energy drives crop productivity.

To maximize CEA yields, implementing continuous lighting
(CL) strategies is economically viable (Lanoue et al., 2019,
2021a,b; Hao et al., 2020a,b). Low intensity, long-photoperiod
lighting can achieve the same daily light integral (DLI) as a
short-photoperiod reliant on high light. DLI is understood to
be a limiting factor of yield in CEA. Capital cost expenditure is
reduced under CL strategies, since fewer fixtures are required.
Furthermore, lighting during the nighttime greatly reduces the
electricity costs as many countries have off-peak pricing during
the night. Utilizing off-peak electricity lessens the demand on
power grids. In plant factories, where air-conditioning consumes
25% of total electricity, low-intensity light at night imposes a
lower thermal load, reducing costs (Kozai and Niu, 2016a,b).
One possible problem of CL in greenhouses is a nuisance issue
in urban areas because of light pollution. New policies are
being developed to implement different strategies for deploying
nighttime light-abatement curtains. Regardless, strategies using
CL can sustainably reduce capital and electrical costs.

Crops respond differently to CL. While lettuce (Ohtake et al.,
2018) and cucumber (Lanoue et al., 2021a) are relatively CL-
tolerant, tomato (Hillman, 1956) and peppers (Demers and
Gosselin, 2002) show photoperiodic injury (PI) characterized by
interveinal chlorosis and reduced yield. Although, CL-tolerant
tomato genotypes have been identified, this adaptation still
needs acclimation. To effectively retain vegetative-generative
balance and avoid decreasing leaf area, CL-tolerant transplants
require 7-weeks of acclimation by incrementally increasing the
photoperiod from 16 to 24 h (van Ieperen, 2016; Hao et al., 2018).
PI has been a historical problem in trying to grow tomato under
CL ever since artificial lighting became widespread (Garner and
Allard, 1927).

A successful CL acclimation strategy, showing PI-tolerance,
involved alternating red LEDs during daytime and low intensity
blue LEDs during the night (12 h-R/12 h-LB) (Lanoue et al.,
2019). During low natural light periods, late-November to early-
December, tomato developed larger leaves, taller stems, and
had higher yields at first harvest periods in January-February.
During the later harvest periods in March-May, there was no
significant difference in yield between alternating 12 h-R/12 h-LB
and matched DLI treatment of non-alternating 12 h-R+LB/12 h-
dark (Lanoue et al., 2019). Importantly, reversed 12 h-LB day/12
h-R night and 24 h-R+LB/0 h-dark induced the worst PI and
yield reduction. Extending to 16 h-R/8 h-LB proved to be the
best treatment in reducing light intensity by 12%while sustaining
yield (Hao et al., 2020b).

Light quality plays a key role in PI. Lanoue et al.
(2021b) showed that tomatoes grown under supplemental

monochromatic red light has less PI and recovered faster when
compared to broad spectrum lighting. Velez-Ramirez et al.
(2019) showed improved PI-tolerance with supplemental far-red
(FR) 24 h-HPS+FR/0 h-dark. FR has positive morphological
effects on canopy architecture (Hao et al., 2016, 2017a;
Kalaitzoglou et al., 2019; Zhang et al., 2019). Furthermore, FR
increases dry matter partitioning to fruit through upregulation of
sugar metabolism and transport, especially at anthesis, increasing
sink strength (Ji et al., 2020).

It is well-known that a disrupted CR causes PI (Highkin
and Hanson, 1954; Hillman, 1956; Velez-Ramirez et al., 2017a).
But solving this problem requires applying CR entrainment
principles. The CR phenotype, termed chronotype, governs crop
responses to environmental cues, such as light and temperature
shifts. Knowing the chronotype informs the grower how best
to apply dynamic LED entrainment strategies that improve
acclimation. We suggest that alternating lighting using LEDs can
be considered as a CR entrainment strategy.

Tomato is our case study as it displays CR desynchrony
symptoms as PI, has recent literature describing CR latitudinal-
cline, and has demonstrated successful CL commercial-scale
trials previously mentioned. The sections below will briefly walk-
through CR entrainment principles and present the perspective
that high-latitude chronotypes would be the best fit for CL in
CEA. Finally, preliminary evidence using LEDs discusses whole-
plant gas exchange patterns displaying entrained rhythmicity that
leads to enhanced growth rate and no PI under CL, presents
hypotheses and predictions on the nature of CR disruption in PI,
comments on CR inputs other than light, and briefly points out
methods for CR phenotyping.

Circadian Rhythm Entrainment
The CR can be viewed as an endogenous network of transcription
factors, metabolites, protein products, and post-translational
states often in negative feedback loops organized into a morning
complex (MC), core complex (CC), and evening complex (EC)
that oscillates with a period of ∼24 h under constant free-
running conditions (see reviews by McClung, 2006, 2019).
The endogenous free-running CR period length under constant
conditions (τ ) should resonate with the environment period (T)
for optimal fitness. For example, Arabidopsis and Cyanobacteria
mutants with 20 h τ (non-24 h τ ) grown in resonating 20 h T
outperform mutants whose τ 6= T, by comparing vegetative
growth and competitive cultures, respectively (Dodd et al., 2005;
Ma et al., 2013). Improved fitness was dependent on the τ -
chronotype, regardless of which CR gene mutation that caused
it (Ma et al., 2013). However, τ is not necessarily 24 h, unlike
earth’s rotation (T = 24 h), and the discrepancy can provide
entrainment clues by investigating phase responses (ψ) (see
“the art of entrainment” Roenneberg et al., 2003). Thus, an
entrainment program refers to the daily phase-shifting cues that
bring τ in resonance with T.

The endogenous phase at which an environmental input (i.e.,
light pulse) (zeitgeber, “time giver”) is given and the differential
endogenous phase sensitivity to the zeitgeber will determine the
ψ relationship (phase of entrainment) (Roenneberg et al., 2003).
This differential sensitivity of a zeitgeber to phase of entrainment
is also known as gating. Light sensitivity is generally gated at
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dawn and dusk enabling anticipation of the next day’s length
(McWatters and Devlin, 2011). Gated inputs may activate or
repress regulatory components in a signal transduction pathway,
interact directly in the cascade, or both (Hotta et al., 2007).
A zeitgeber’s influence on ψ may also be masked by its direct
action (Roenneberg et al., 2003). The reader is referred to a
few foundational studies on CR input photoreceptors, namely
phytochromes (Phys) and cryptochromes (Crys), that describe
light quality, light intensity, period shortening or lengthening,
and their interactions on overall chronotype behaviour (Lin et al.,
1998; Cantón and Quail, 1999; Tóth et al., 2001; Yanovsky et al.,
2001; Millar, 2003; Hughes et al., 2012).

CR can be entrained parametrically, ψ being a continuous
function of the input (i.e., gradual changes across light intensity),
or non-parametrically, ψ being discretely shifted by an input
(i.e., abrupt light pulses), with a consensus that both are involved
(Aschoff, 1981; Pittendrigh, 1981; Daan, 2000).Webb et al. (2019)
proposed the CR has dynamic plasticity; timing between CR
components can change and accommodates both entrainment
modes by considering oscillation velocity being accelerated or
decelerated by an input (parametric) or by an abrupt phase-shift
from a stimulation with no effect on velocity (non-parametric).

Understanding the “Latitudinal Rule”
Proposed by Pittendrigh and Takamura
A central theme to this perspective is the latitudinal rule.
Evolution seems to have adapted similar latitudinal gradients
in chronotype across various organisms such as insects, fish,
birds, mammals, and plants, however, it was best described
in insect systems (Yerushalmi and Green, 2009; Hut et al.,
2013). High-latitude chronotypes require different entrainment
regimes than lower-latitude chronotypes and knowing these
differences will help in developing compatible long-photoperiod
dynamic LED recipes. Pittendrigh and Takamura (1989) found
high-latitude Drosophila strains had longer τ than lower-
latitude strains. High-latitude strains also had lower sensitivity
to light intensity, making phase-shifts from a 15-min pulse
for lower-latitude strains equivalent to a 120-min pulse for
high-latitude strains. In phase response curve terminology,
lower-latitude strains have strong resetting type-0 responses
and high-latitude strains have weak resetting type-1 responses
(Pittendrigh and Takamura, 1989).

Aschoff’s rule (diurnal animal and plant τ lengthens under
CL) was applied to build a model that incorporates latitudinal
strain relationships (Pittendrigh and Takamura, 1989). The
zeitgeber strength of light input, to achieve the necessary ψ

for τ = T resonance, is conditionally compensated between
intensity and duration. The compensation is conditional since
high-latitudes have longer days and weaker intensity than lower-
latitudes, a parametric trade-off, but there is also non- parametric
trade-off in daily photoperiod changes. High-latitude adaptation
uses a τ > T, creating a larger –ψ to keep up with greater daily
photoperiod changes. Lower-latitudes donot need a longer τ ,
and subsequently do not require a larger –ψ, thus they rely on
greater component sensitivity for fine-tuned ψ. In formulating a
latitudinal rule by Pittendrigh and Takamura (1989), it seems τ

FIGURE 1 | A simple model of seasonal and latitudinal zeitgeber patterns for

plants and daily solar spectral shifts. Gating circadian light inputs during dawn

and dusk is logical when considering the natural solar spectral shifts. There is

a dramatic change in light quality and intensity during the first 2 h of the

photoperiod whereas there is a minor change during the hours approaching

solar noon (A,B). Spectral change during time-of-day (dawn to solar noon)

with a few timepoints highlighted, and others omitted for clarity, is emphasized

to note the difference between morning and solar noon (B). Measurements

were taken every 10min using Flame-S-XR1 (Ocean Optics Inc, Florida, USA)

on Oceanview software with a 10µm slit grating, 100ms integration time, and

a cosine corrector (CC-3-UV-S) pointed directly at the sun at every timepoint

during the 2017 summer solstice in Guelph, Ontario, Canada (43.5◦N,

80.2◦W). Using this day-long dataset and datasets from different seasons

(data not shown), timepoints were transformed to solar elevations using sun

path maps (Oregon, 2007) to model the seasonal, and latitudinal trends (A).

Phytochrome photostationary state (PSS) (Sager et al., 1988), was calculated

to represent plant perceived light quality shifts, and photosynthetically active

radiation (PAR) was calculated to represent plant perceived light intensity shifts

(A). The daily pattern changes only in phase and amplitude over the seasons.

It changes in phase, amplitude, and deceleration/acceleration across

latitudes. Acceleration refers to differences in non-linear slopes of PAR and

PSS. Acceleration of spectral change relates to Webb et al. (2019) parametric

(Continued)
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FIGURE 1 | entrainment mode and Müller et al. (2016, 2018) describing the

deceleration of the circadian clock in tomato’s northward domestication. The

proposed model of spectral changes can be used in tests on counter-gradient

variation of phenotypes (for example leaf area and stem elongation) across

latitude-of-origin chronotypes. The model shows a high-latitude will have a

lower acceleration, in PSS and PAR, than a lower-latitude. We can set up two

controlled environments, one matching the high-latitude and the other

matching the lower-latitude PSS and PAR acceleration, and both set to a 12 h

photoperiod to mimic the fall/spring equinox where both latitudes would

experience the same photoperiod. Then, grow two different latitude-of-origin

ecotypes/cultivars, one originating from a high-latitude and another from a

lower-latitude, in each controlled environment. It is predicted that the

high-latitude ecotype would have a relatively normal phenotype in the

high-latitude environment whereas the lower-latitude ecotype would have an

exaggerated phenotypic response in the high-latitude environment (larger leaf

area and stem elongation). The opposite trend would be observed in the

lower-latitude environment. This simplified experiment would support the

notion that counter-gradient variation could normalize the phenotypic

response if we took chronotypes into consideration and designed an LED

recipe that altered the acceleration accordingly (or phase shifted a “critical

PSS/PAR” value).

and type-0/1 sensitivity are the main traits used for adaptation
to seasonal variations in photoperiod across latitudes. Therefore,
high-latitude strains have a long-τ and lower sensitivity (type-
1). This conditionality on latitude-of-origin chronotype is crucial
in understanding why permutations in DLI (via photoperiod or
light intensity) do not impact all cultivars/ species similarly.

Part of the latitudinal rule was shown in plants while
screening 150 Arabidopsis accessions that revealed a correlation
between long-τ and long-photoperiod adaptation (Michael
et al., 2003). Greenham et al. (2017) confirmed long-τ
chronotypes in high-latitudes by observing its natural selection
in wild Mimulus guttatus populations across a latitudinal
gradient and unintentional breeding for it in soybean maturity
groups. CR sensitivity, the other part of latitudinal rule, was
shown by Gigantea expression, a CR component, being less
sensitive to lengthening of photoperiod in high-latitude-of-origin
Arabidopsis accessions (de Montaigu and Coupland, 2017).

Importantly, there is a link between the latitude-of-origin
chronotype and phenotypic plasticity in response to photoperiod
changes. Gigantea is pleiotropic, it interacts in the EC and has
effects on the phenotype of stem growth rate. Counter-gradient
variation was used to explain how all accessions retained a
similar phenotype although they each grow in different latitude-
of-origins, yet if one accession is grown in the other’s latitude it
would express a different phenotype (Conover and Schultz, 1995;
de Montaigu and Coupland, 2017).

Applying the Latitudinal Rule to a Case
Study of Tomato in CEA
Tomato has an altered phase and lengthened τ associated with
domestication and northern migration to Europe (Müller et al.,
2016, 2018), reinforcing the latitudinal rule. However, more
studies are needed to verify the positive correlation between
northern-latitude bred tomato cultivars and PI-tolerance under
CL. Velez-Ramirez et al. (2014) noted the tomato cultivar “Sub-
Arctic Plenty” had PI-tolerance independent of chlorophyl-
a-b-binding-protein-13 (CAB-13) inferred PI-tolerance and

proposed it was related to its northern-latitude breeding program
(northern Alberta, Canada). As for sensitivity, PhyA and PhyB1
CR signaling pathways are altered (Müller et al., 2016, 2018).
Velez-Ramirez et al. (2019) also identified PhyA and PhyB1
transduced PI-tolerance in a light quality-dependent manner.
PhyB1 expression is upregulated more under CL in PI-tolerant
genotypes (Velez-Ramirez et al., 2019). Furthermore, PhyB1
overexpression and light intensity-dependent signaling results
in a longer τ (Somers et al., 1998; Salomé et al., 2002;
Müller et al., 2018). These results suggest PI-tolerance may
be obtained by long-τ chronotypes and altering PhyB1-/PhyA-
dependent sensitivity.

A Simple Model of Solar Spectral Circadian
Rhythm Inputs Driving the Latitudinal Rule
Natural CR entrainment patterns have evolved to the solar
patterns prevalent at a geolocation as described previously.
Although natural T = 24 h, the photoperiod within 24 h changes
depending on season and latitude. For optimal fitness in the
environment, τ = T, ψ must perfectly match the progression
of seasonal photoperiod changes at a given latitude. Seasonal
and latitudinal parametric entrainment cues (amplitude and
acceleration) and non-parametric (daily dawn/dusk phase shifts
in photoperiod) are proposed as key inputs that supply the CR
with geotemporal information (Figure 1A).

Assuming clear days, daily trends of light intensity and
spectral quality are dependent on solar elevation. As the sun
transits the sky, atmospheric thickness can be over 10-times
greater near the horizon than at solar noon on a summer
day (NOAA, 2021), which dramatically increases the path
length that filters light quality non-uniformly through Rayleigh
scattering and decreases light intensity uniformly through Mie
scattering. Light quality shifts to its ∼90% maximum much
sooner (∼1 h) than light intensity (∼3–4 h) and then changes
relatively little in late-morning to late-afternoon (Figures 1A,B).
If the spectra are normalized to solar elevation, sun path maps
(Oregon, 2007) can be used to predict patterns of daily, seasonal,
and latitudinal changes. However, this method is limited as
there are seasonal changes in atmospheric parameters (pressure,
temperature, and humidity) and latitudinal differences in air
mass. These differences could be accounted for in future models,
nonetheless, a simplified model that used acquired solar spectral
data and sun path maps is presented (Figure 1A). This model
supports why light quality is a key gated CR input (through Phy
pathways) and why this pathway is modified according to the
latitudinal rule.

DISCUSSION

Rhythmic Whole-Plant Gas Exchange
Patterns Under Continuous Light
A preliminary CL dynamic LED recipe that produced a healthy
tomato plant in a closed environment is presented that combines
alternating spectra and FR (Figure 2). The diurnal net carbon
exchange rate (NCER) and evapotranspiration (ET) data show
rhythmic patterns (Figures 2B,C). Future work will extend the
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FIGURE 2 | An example of circadian rhythm entrainment using a dynamic LED recipe in a whole-plant gas exchange system. The dynamic LED recipe, which

combines Lanoue et al. (2019) and Velez-Ramirez et al. (2019) treatments, grows a healthy and rhythmic 5week-old tomato “Basket Vee” plant under continuous light

(Continued)
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FIGURE 2 | without photoperiodic injury (LED, black line). A originally larger (evident by its higher whole-plant Net Carbon Exchange Rate) 5 week-old sister tomato

“Basket Vee” plant, seeded and grown under same pre-treatment conditions in a growth chamber (12 h light/12 h dark), was treated at the same time, lost rhythmicity,

and developed severe photoperiodic injury under continuous high-pressure sodium lights (HPS, yellow line). The data was collected by a controlled environment

whole-plant system previously used to study light quality effects on net carbon exchange rate (NCER) and evapotranspiration (ET) (Lanoue et al., 2017, 2018;

Leonardos et al., 2019). (A,B) are the first 6 days since the plants were placed in the whole-plant system, whereas (C) is the last 6 days showing NCER only. The total

experiment spanned 12 subjective days and 14 subjective nights, with NCER measurements every 9min (averaged every hour) and ET based on weigh scale logged

every 30sec and summed every hour. Both plants were pre-entrained to 200 µmol m−2 s−1 of their respective light qualities, warm white (LED), and high-pressure

sodium (HPS), under 12 h light/12 h dark. Then, for the dynamic recipe, the photoperiod was still 12 h subjective day/12 h subjective night, the photoperiod light is

warm-white LED (3000K) at 200 µmol m−2 s−1, but in addition there was a 3.5 h pulse of red (R), blue (B), and warm-white (WW) LED of 400 µmol m−2 s−1 at

zeitgeber time 2.5 (8 a.m. subjective day ON, 10:30 a.m. light pulse given), and the subjective night was 50 µmol m−2 s−1 low blue (LB) and 50 µmol m−2 s−1 low

far-red (LFR) (12 h-WW + 3.5 h@ZT2.5 R+B+WW/12 h-LB+LFR). This recipe was repeated every 24 h. The bright morning pulse was meant to mimic what would

happen in a greenhouse, where a section of canopy at some point of the morning would have direct sun exposure and then be shaded as the solar elevation changes.

The dynamic LED recipe is compared to a sister plant grown under HPS at the same DLI with constant 200 µmol m−2 s−1 24 h day/0 h night (LED DLI calculation

includes LFR, otherwise it’s slightly lower than HPS DLI). HPS started off as a larger plant, but by 5 days its NCER decreased slightly, whereas LED NCER increased

(A). Note, dynamic LED NCER is above the whole-plant compensation point during subjective night (A,C). The dynamic LED recipe also induced ET rhythms, with

increases preceding subjective day (showing the increase is not a “masking” error) (B, slopped lines). HPS clearly shows a retention of ET rhythm on the first

subjective night (notice ET decreases even though it was under continuous light), however HPS lost the detectable rhythm the following subjective night (B). HPS

NCER and ET patterns do not show rhythms after the first subjective day/night of free-running conditions, unlike Arabidopsis in Dodd et al. (2004) that displayed clear

rhythms, which could be due to tomato’s weak rhythms. Also, on the 9th, 10th, and 11th day of treatment, after longer-term entrainment cycles, the dynamic LED

recipe has clear NCER increases in anticipation of subjective day indicated with red sloped lines (C). The increase can be a rhythmic change in whole-plant radiation

capture and/or a decrease in respiration and/or an increase photosynthetic performance. Regardless, this shows it takes time to entrain at the whole-plant level and

there were observed rhythms in NCER that were not due to masking error. The LED plant clearly had healthy leaves, indicated by leaf number (D). Whereas HPS had

accelerated senescence of L1, interveinal chlorosis in L3/L5, marginal chlorosis in L8, and more brittle leaves (E). Furthermore, photosystem II operating efficiency

was measured as another proxy of leaf health on L3 before the whole-plant system run (Pre-) and after the run (Post-) (F). It remained high in the LED treatment,

despite the ∼2 weeks of leaf maturity difference, whereas it dropped nearly 50% in the HPS treatment (F).

subjective day, compare bright pulses at different phases during
morning to afternoon, and introduce FR pulses at different
phases from end-of-day (EOD) to end-of-night (EON).

Does Continuous Light Lock the Circadian
Rhythm in Its Evening Complex?
Müller et al. (2016, see Section Applying the Latitudinal Rule
to a Case Study of Tomato in CEA) showed TIMING-OF-CAB-
EXPRESSION-1 expression patterns under CL, that suggest CR is
“locked” in EC. Although the wild accession is transcriptionally
rhythmic, its amplitude is relatively reduced by not being
sufficiently repressed in its anti-peaks, supporting the need for
entrainment cycles regardless of genotype. Being locked in EC
can have repercussions on photosynthesis and other metabolic
processes that are upregulated at dawn by the MC. It could
provide a network-wide explanation as to why fitness associated
with carbon metabolism declines under CL (i.e., photosynthetic
genes are downregulated, senescence genes are upregulated, and
starch degradation is inhibited) (Velez-Ramirez et al., 2017b,
2019; dos Anjos et al., 2018; Webb et al., 2019; Lee et al.,
2021). It’s possible that LB night treatment is essential in
transitioning the CR out of EC. If so, temporal transcriptomics
and carbon pools would reveal correlations dependent on LB
night treatment between (a) the full anti-peak of EC CR
transcripts by dawn and (b) the subsequent upregulation of
MC CR transcripts at dawn. Starch pools are rhythmic under
the LB night treatment, providing downstream support of the
hypothesis (Lanoue et al., 2019).

Entraining With Other Environmental Inputs
All environmental inputs should be considered for their
CR entrainment effects in addition to their traditional
physical/physiological effects. For example, temperature
shifts are very important inputs to CRs and can induce ψ for

a robust entrainment program. This is distinguished from
“temperature compensation,” as the latter refers to the retention
of τ under a broad range of physiological temperatures once
stabilized after >24 h (Pittendrigh, 1954). PI-tolerance has been
found by providing temperature differentials (Haque et al., 2015,
2017) and temperature drops (Ikkonen et al., 2015; Hao et al.,
2017b). Temperature drops have been successfully integrated
into CL commercial production trials that resulted in reduced PI
and increased yield (Hao et al., 2017b). Combining temperature
differentials and drops with light quality and intensity shifts
seems like an interesting area of study considering PhyB has been
shown to integrate light and thermal signals (Legris et al., 2016).

Furthermore, PI-tolerance has been observed to depend on
rootstock choice and the lighting environment effects on the
rootstock (Lanoue et al., 2021b). A possible explanation, in
context of this perspective, is that CR oscillators display organ
specificity, with τ shown to be longer in roots than shoots
and the roots are independently light sensitive (Bordage et al.,
2016). Thus, long-distance rootstock-derived CR outputs may be
inputs for scion CR entrainment. Also, rootzone entrainment, via
irrigation timing, creates temperature, nutrient availability, and
water potential rhythms.

Measuring and Testing Entrainment
Classifying the chronotype is an untapped technique that can
resolve some apparently disparate cultivar responses to light
quality and gives more breeding traits. Chronotyping could be
accomplished via the TRiP screening protocol developed by
Greenham et al. (2015) and laborious phase response curves
may be simplified via the “singularity response” method given by
Masuda et al. (2021). The end-goal is a cumulative combination
(light quality, intensity, duration, and temperature shift induced
phase responses) creating a net –ψ that makes τ resonate with
T under CL. The latitudinal rule, natural seasonal/latitudinal
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spectral shift trends, and counter-gradient variation allow the
initial prediction of phase responses. This can help guide dosage
and phase of FR cues. It has been shown that FR-PhyA dependent
hypocotyl elongation is a gated response to EOD and not EON
(Seaton et al., 2018). If the hypothesis is correct, EOD-EON could
be an adjustable timeframe to maintain a desired morphological
phenotype consistently between cultivars with differing τ and
type-0–1 sensitivity.

CONCLUSION

Our perspective is to apply CL in CEA with dynamic LED
shifts that entrain the circadian rhythm of crops. It follows
that traits such as long-τ chronotype and enhanced sensitivity
are good targets for breeders designing new CEA crops (see
McClung, 2021 for additional CR breeding considerations).
However, it may be possible to accommodate chronotypes from
all latitudes to CL by adjusting CR entrainment according to
their phase responses. Ideally, a universal framework for CEA
lighting will require a dynamic LED recipe for greenhouses, and
another for closed systems lacking natural light. We propose a
standardized day-spectrum, night-spectrum, and timed FR cues
can predictably keep tomato entrained under CL (with future
work on other CEA crops). The discussed dynamic entrainment
ideas for CEA offer strategies for growers in any region of the
world to contribute to nutritious sustainable food production
(Marcone et al., 2020).
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