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Irrigation strategies are keys to fostering sustainable and climate-resilient rice production

by increasing efficiency, building resilience and reducing Greenhouse Gas (GHG)

emissions. These strategies are aligned with the Climate-Smart Agriculture (CSA)

principles, which aim to maximize productivity whilst adapting to and mitigating climate

change. Achieve such mitigation, adaptation, and productivity goals- to the extent

possible- is described as climate smartness. Measuring climate smartness is challenging,

with recent progress focusing on the use of agronomic indicators in a limited range

of contexts. One way to broaden the ability to measure climate-smartness is to use

modeling tools, expanding the scope of climate smartness assessments. Accordingly,

and as a proof-of-concept, this study uses modeling tools with CSA indicators (i.e.,

Greenhouse Intensity and Water Productivity) to quantify the climate-smartness of

irrigation management in rice and to assess sensitivity to climate. We focus on a field

experiment that assessed four irrigation strategies in tropical conditions, Continuous

Flooding (CF), Intermittent Irrigation (II), Intermittent Irrigation until Flowering (IIF), and

Continuous soil saturation (CSS). The DNDC model was used to simulate rice yields,

GHG emissions and water inputs. We used model outputs to calculate a previously

developed Climate-Smartness Index (CSI) based on water productivity and greenhouse

gas intensity, which score on a scale between−1 (lack of climate-smartness) to 1 (high

climate smartness) the climate-smartness of irrigation strategies. The CSS exhibited the

highest simulation-based CSI, and CF showed the lowest. A sensitivity analysis served

to explore the impacts of climate on CSI. While higher temperatures reduced CSI, rainfall

mostly showed no signal. The climate smartness decreasing in warmer temperatures

was associated with increased GHG emissions and, to some extent, a reduction in

Water Productivity (WP). Overall, CSI varied with the climate-management interaction,

demonstrating that climate variability can influence the performance of CSA practices.

We conclude that combining models with climate-smart indicators can broaden
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the CSA-based evidence and provide reproducible research findings. The

methodological approach used in this study can be useful to fill gaps in observational

evidence of climate-smartness and project the impact of future climates in regions

where calibrated crop models perform well.

Keywords: climate-smart agriculture, climate-smartness, crop model, climate-smart indicators, water

productivity, greenhouse gas intensity, DNDC

INTRODUCTION

To maintain sustainable rice production, farmers need
to adapt to climate change and reduce Greenhouse Gas
(GHGs) emissions in rice systems. In this sense, the Climate-
Smart Agriculture (CSA) approach have been promoting
irrigation strategies to simultaneously achieve mitigation,
adaptation, and productivity in rice crops (Wassmann et al.,
2019). Such strategies have been placed in attendance to
the 2030 Agenda for Sustainable Development, intending
to achieve goals 2 (Zero hunger), 6 (Clean water and
sanitation), 12 (Responsible consumption and production)
and 13 (Climate action; United Nations Organization,
2015).

Irrigation practices like mild-season drainage or Alternate
Wetting and Drying (AWD) can reduce GHG emissions by
up to 60% and save water by up to 30% without affecting
productivity (Carrijo et al., 2017; Jiang et al., 2019; Liu
et al., 2019). However, a key challenge is that these objectives
often cannot all be achieved to the full extent because the
effectiveness of irrigation practices varies according to the
context, which results in trade-offs and synergies between
CSA objectives.

Several approaches have been developed to assess andmonitor
the performance of CSA strategies and bring a quantitative
measure of their effectiveness or “climate-smartness” (van Wijk
et al., 2020). A first instance is the use of so-called climate-
smart indicators, which are qualitative or quantitative variables
(agro-climatic, biophysical socio-economic, among others) that
inform the performance of the agricultural systems and work as
a benchmark for decision-making in CSA-oriented projects and
programs. Some publications as the “Climate-Smart Agriculture
Indicators” by the World Bank (2016); the “National level
indicators for gender, poverty, food security, nutrition and
health in Climate-Smart Agriculture (CSA) activities” (Duffy
et al., 2017) or the “CSA Programming and Indicator Tool”
(Quinney et al., 2016) they listed and categorized CSA indicators
used in different dimensions of the agriculture (i.e., social,
economic, biophysical).

Among the available methodological approaches that use
and combine different climate-smart indicators, the Climate-
Smartness Index (CSI) is a metric that brings a quantitative
measure of climate-smartness. The CSI is a composite index
based on agronomic indicators of CSA, normalized, and
aggregated to represent the synergy/trade-off between water
productivity and the greenhouse gas intensity in cropping
systems under water-oriented adaptation strategies (Arenas-
Calle et al., 2019).

The CSI was applied by Arenas-Calle et al. (2019) to
compare several independent studies with paired comparisons
of conventional irrigation and the Alternate Wetting and Drying
(AWD) irrigation in different contexts. The CSI identified trends
in AWD treatments across geographical locations and quantified
the climate-smartness of AWD treatments. To date, the use
of climate-smart indices based on field data is limited to the
spatial and temporal scales of the underlying measurements
(i.e., historical trials at the field scale). The use of crop model
simulations with climate-smart indices has the potential to vastly
broaden the range of places and periods where CSI can be
calculated. This approach could be used to identify CSA practices,
inform the robustness of future interventions, or estimate trade-
offs across spatial and temporal scales that could undermine
scaling up efforts (Pringle, 2011; Nowak et al., 2019).

This study presents the first logical step in using climate-smart
indices with a process-based model: to calculate the index based
on process-based model outputs, and thus provide an assessment
of simulated climate-smart practices in climatic scenarios beyond
the environment that have been tested in the field. We a climate-
smartness assessment based on model simulations and CSI for
water management strategies in rice. The assessment was aaplied
to a a 5-year experiment that evaluates four irrigation strategies
in rice following two steps: (1) modeling of rice yield, GHG
emissions and water inputs, and (2) calculation of CSI from
simulated output indicators for irrigation treatments during
2014-2019 cropping seasons and sensitivity analysis outcomes.

MATERIALS AND METHODS

A simulation-based climate-smartness assessment was developed
for several water management strategies using irrigated rice in
the Brazilian tropical region as case study. First, the DNDC
v.9.5 model was parameterized and evaluated using field data
from two cropping seasons (2016–2018). Rice yield, water inputs
and GHG emissions were simulated for all irrigation treatments
during 2014 to2019, and the Climate-Smartness Index (CSI) was
calculated. The simulations were re-run for the same period
under different rainfall and temperature scenarios created based
on the observed climate data. The application of modeling tools
to simulate CSA indicators, the model performance and CSA
assessment results were analyzed and discussed.

Field Experiment
This study used data from a 5-year experiment carried
out in the Embrapa Arroz e Feijão (Brazilian Agricultural
Research Corporation, Unit Rice and Beans) experimental station
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“Palmital”, municipality of Goianira, Goiás State, at the Brazilian

Midwest region (16◦26
′

8.45
′′

S−49◦23
′

38.31
′′

O, altitude 729m).
The location has a tropical climate with a well-defined dry
and wet season. The annual mean temperature is 23◦C, with
the minimum mean temperature reported in June (12.8◦C)
and the maximum temperatures in September (32.3◦C), and
annual precipitation of 1485mm distributed across wet periods
in October to April (220 to 270 mm/month) and dry periods
in May-September (6.6. to 11 mm/month; INMET, https://www.
gov.br/agricultura/pt-br/assuntos/inmet).

The experiment assessed different irrigation strategies
as follows: Continuous Flooding (otherwise described as
conventional irrigation) (CF); Intermittent Irrigation (II);
Continuous Soil Saturation, where the soil kept saturated or
above field capacity (CSS); and Intermittent Irrigation until
Flowering where the continuous flooding conditions were
maintained until harvesting (IIF). The N fertilization consisted
of basal dressing application at sowing and two split doses: the
first at the beginning of the tillering (25-28 days after sowing)
and the second at effective tillering (40–45) days after sowing.

The rice genotype cultivated was BRS Catiana, a modern
size with erect leaves, high tillering and robust stems, with
resistance to plant lodging and tolerant to the main rice
diseases, in special to blast (Fragoso et al., 2021). This genotype
presents high yielding potential, with mean flowering days
of 89 (104) and a cycle of 116 (131) days after emergence
in the tropical (subtropical) environment. This cultivar was
commercially released in 2016 and it is recommended for
cropping in the North, South, Southeast, Northeast and Midwest
regions of Brazil (de Morais et al., 2016). A detailed description

of the field experiment has been published by Barbosa (2018).
Weather data (min. temperature, max. temperature,

precipitation, humidity, solar radiation, and wind speed)
were available for the whole period assessed (2014–2019, https://
www.cnpaf.embrapa.br/climacnpaf/). Yield data were available

for all treatments during the assessed period except for season
2015/2016. As part of the experiment, methane (CH4) and

nitrous oxide (N2O) emissions were measured during 2015/2016
and 2016/2017 seasons in the plots under CF, II and CSS

treatments. Water inputs were available for the 2016/2017 and
2017/2018 cropping seasons in all irrigation treatments.

The static closed chamber technique was used to measure the
CH4 and N2O fluxes from the soil. The static chambers used
had a circular shape with a plastic lid (20 cm height and 17.5 cm
radius), inserted into the soil at 10 cm. The chambers included
a 38 cm high extender to adjust the chamber height as plants
grown. Gas samplings were performed in the morning, between
9:00 and 11:00 h, according to recommendations from Jantalia
et al. (2008), at the pre-established time intervals of 0, 15, and
30min after closing the chambers. Water was added to the top
of the basis and extenders (junctions) to avoid air leaking. Before
and after each air sampling, the temperatures inside the chamber,
soil, and air were monitored with a digital thermometer. The
concentrations of GHG gases were determined using a gas
chromatograph GC 2014 “Greenhouse” (Shimadzu Co., Tokyo,
Japan). In addition, fertilizer was applied inside the base of the

installed chambers; the N fertilizer applied inside the chamber
base was adjusted in the proportion of the chamber area. In all
seasons, direct seeding was carried out before irrigation.

Modeling of Rice Yields, Direct GHG
Emissions and Water Inputs Using DNDC
Model
The DNDC model (https://www.dndc.sr.unh.edu/) is a process-
based biogeochemistry model (DNDC) that simulates carbon
and nitrogen cycles in agroecosystems. The model is based on
two main modules. One module contains the soil climate, crop
growth, and decomposition sub-models to simulate physical
and chemical soil proprieties. A second module comprises
nitrification, denitrification, and fermentation sub-models that
simulate plant-soil gas exchange (Li, 2000). Although DNDC is
commonly used to modeling carbon and nitrogen dynamics in
the soil, the model also can simulate crop growth using a GDD-
based sub-model (Zhang and Niu, 2016). We used the DNDC
v.9.5 to simulate rice yield, water inputs and GHG emissions
(CH4 and N2O) for the irrigation strategies assessed in the
experiment described in Section Field Experiment.

Input Data and Calibration of Cultivar
Parameters in DNDC Model
The input requirements in the DNDC model consist of (1)
climate data, (2) soil data, (3) crop parameters, and (4)
agronomic management such as fertilization, tillage, irrigation
or flooding, as well as dates of sowing and harvesting. Daily
weather data, namely, maximum and minimum temperature
(◦C), precipitation (cm), wind speed (m s−1), solar radiation
(MJ m−2) and humidity (%), were obtained from the local
meteorological station located at the experimental station for
the period 2014–2019. Average climate parameters for the five
cropping seasons are summarized in Table 1. Daily variation
of temperature and rainfall distribution can be consulted in
Supplementary Figure 5.

Soil parameters such as texture, clay portion (%), bulk
density (g/cm3), organic matter (g kg−1, OM) and total
carbon (%), and pH were obtained from soil analysis of the
experimental site. Porosity was calculated based on the bulk
density and the soil particle density (2.65 g cm3) as is shown
in equation 1. The water-filled pore space (WFPS %) at field
capacity and wilting point were calculated based on gravimetric
soil water content at 33 and 1,500 kPa and bulk density
according to Equations 2 and 3. Table 2 shows the soil initial
condition parameters.

Porosity (%) = (1−
BD

PD
) ∗ 100 (1)

%WFPS(Field capacity)_ =

(

θ at 33kPa ∗ BD

1− BD
PD

)

∗ 100 (2)

%WFPS(Wilting point) =

(

θ at 1500kPa ∗ BD

1− BD
PD

)

∗ 100 (3)
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TABLE 1 | Summary of mean min and max temperature and cumulative rainfall in each cropping season.

Seasons

2014/2015 2015/2016 2016/2017 2017/2018 2018/2019

Min. Temp (◦C) 18.5 19.3 18.6 18.5 18.5

Max. Temp (◦C) 30.8 31.2 30.4 30.1 31.3

Cumulative Precip. (mm) 817 834 739.3 978 476

Mean wind speed (m s−1) 1.4 1.5 1.5 1.3 1.2

Cumulative solar radiation (MJ m−2 ) 2,202.9 1,960.2 2,253.4 2,188.2 2,288.2

Mean humidity (%) 74.5 76 75.8 77 75.1

TABLE 2 | Soil parameters used in DNDC parametrization.

Soil parameters Value

Soil texture Sandy clay loam

Clay content (%) 21.6

pH 4.9

Bulk density (BD, g cm−3) 1.4

Porosity (%) 51

WFPS at field capacity (%) 60

WFPS at wilting point (%) 42

Soil Organic Carbon (kg C kg soil−1) 0.02

Hydro-conductivity (m h−1)* 0.023

NH+

4 -N (mg kg−1)* 0.05

NO−

3 -N (mg kg−1)* 0.5

*Default DNDC model parameters based on BD, texture, SOC content and porosity (%).

where BD, bulk density (g /cm3); PD, particle density (2.65 g
/cm3); θ at 33 kPa, gravimetric soil water content at field capacity
and θ at 1500 kPa, gravimetric soil water content at wilting point.

The parametrization of the irrigation management used the
treatments description provided by Barbosa (2018) and the
records of water inflows estimated by the hydrometers installed
in the field. The irrigation started on the same date in all
treatments at 17–18 days after emergence. Treatments started
to differentiate after the water from the first flood drained (∼1
week). After the first irrigation, the CF management kept flooded
until 1 or 2 days before harvesting. The II had maintained
intermittent irrigation with re-flooding approximately every 5 to
7 days. The IIF had a similar irrigation schedule to II until the
flowering stage when a continuous flood was maintained until
harvesting. As SCC was in theory saturated soil, the hydrometers
showed a few flood events during the cropping season. The urea-
based fertilization consisted of one base application during the
sowing and a top-dressing fertilizer (80 kg ha−1 N) split into two
doses. Table 3 shows the agronomic data for the two seasons
(2016/207 and 2017/2018) to validate the model.

Cultivar BRS-Catiana was calibrated based on traits reported
in the literature and field data. Thermal degree days for maturity
(TDD) was calibrated based on the range of TDD values from the
five cropping seasons. From this range, the TDD average from
the five seasons obtained the yield and Leaf Area Index (LAI)

with the lowest RMSE. Maximum grain biomass was manually
calibrated based on independent experiments reported by dos
Santos et al. (2017) and Rangel et al. (2019). Biomass fractions
and optimum temperature were taken from de Castro (2020),
who optimized the calibration of BRS-Catiana in the Oryza2000
model using an independent experiment of BRS-Catiana carried
out in the experimental station “Palmital”. Thus, the default
rice crop parameters in DNDC were modified as follows:
the TDD was modified from 3,800 to 1,943, the maximum
grain biomass from 5,200 to 4,531 kg C/ha/yr; biomass fraction
at maturity of grain/leaf/stem/root from 0.4/0.22/0.22/0.16 to
0.48/0.07/0.25/0.2, and the optimum temperature from 25
to 34◦C.

Evaluation of the DNDC Model
To evaluate the DNDC model it were used the yield and water
input observed in CF, II, IIF and CSS and the GHG fluxes in
all the irrigation treatments except IIF during the 2016/2017 and
2017/2018 seasons. The observed data from both seasons were
selected to validate the model because they had the information
needed to calculate the CSI.

The Total Water Input based on rainfall and irrigation (TWI)
was estimated using the daily water balance simulations (Tian
et al., 2021). Cumulative fluxes of N2O and CH4 were calculated
from the sum of the daily fluxes during the cropping season.
The net global warming potential (expressed as CO2-equivalent)
resulted from the sum of CH4 and N2O cumulative fluxes after
their conversion to CO2-eq by multiplying their 100-year time
horizon global warming potentials (GWP); 28 for CH4 and 265
for N2O (Myhre et al., 2013). The Water productivity (WP;
kg/m3) was calculated by dividing the rice yield (kg/ha) by total
water input (m3 Equation 4) and the GHGI by dividing the
cumulative fluxes or the area-based GWP expressed in CO2-eq
/ha by rice yield (kg CO2-eq / kg grain; Equation 5).

WP =
Rice yield

TWI
(4)

GHGI =
Area− based GWP

Rice yield
(5)
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TABLE 3 | Agronomic management in 2016/2017 and 2017/2018 cropping seasons [numbers in brackets next to dates indicated days after sowing (DAS)].

Management (DAS) Cropping season

2016/2017 Urea applied (kg/ha N) 2017/2018 Urea applied (kg/ha N)

Sowing 10 Oct 27 Oct

fertilization 10 Oct (0) 13 27 Oct (0) 20

1st fertilization 7 Nov (28) 30 21 Nov (22) 30

Irrigation started 8 Nov (29) 23 Nov (24)

2nd Fertilization 30 Nov (51) 50 18 Dec (52) 50

Harvesting 20 Feb (133) 7 March (131)

Calculation of the Climate-Smartness
Index
The water-oriented Climate-Smartness Index (CSI) proposed
by Arenas-Calle et al. (2019) was calculated for the modeling
outcomes to quantify the climate-smartness of irrigation
treatments. The CSI provide a measurable and replicable metric
of climate-smartness. Given the high crop water requirements
and the significant contribution of rice systems to GHG
emissions, one indicative of climate-smartness in such systems is
their potential to achieve rice with high water use efficiency and
low carbon footprint.

The CSI is calculated using water productivity (WP), based
on irrigation and rainfall, and Greenhouse Gas Intensity (GHGI)
that can be calculated as is shown in Equations 4 and 5. The
Climate-Smartness Index (CSI) was calculated based on values
of WP and GHGI that were normalized on a scale of 0–1, as is
shown in Equations 10 and 11. For the normalization of WP and
GHGI, we used the same maximum and minimum references
reported by Arenas-Calle et al. (2019) in their literature review.
To obtain such reference values the authors consulted 113
studies that reported WP and GHGI in rice systems around
the world from were obtained 381 data points of WP and
499 of GHGI

WP(N) =
WPObs − WPmin

WPmax − WPmin
(6)

GHGI(N) =
GHGIObs − GHGImin

GHGImax − GHGImin
(7)

GHGImin = 0.01-kg CO2-eq/kg grain, GHGmax = 7.8 kg CO2-
eq/kg grain, WPmin = 0.1 kg grain m−3, WPmax = 3.7 kg grain
m−3. The Equation 12 shows the calculation of the Climate-
Smartness Index (CSI) from the substation of GHG (N) toWP (N).

CSI = WP(N) − GHGI(N) (8)

CSI has a scale between −1 and 1, from lowest to highest
climate-smartness. Negative CSI values indicate a lack of climate
smartness when the GHG emissions per kilogram of grain
(GHGI) are proportionately high than the amount of rice
produced per unit of water applied (WP). On the contrary, when

the system reports higher production per unit of water than
GHG emissions produced per kilogram of grain, the CSI take
positive values indicating climate smartness. Between higher the
GHGI with respect to WP, the CSI will become negarive and vice
versa. CSI was calculated for all irrigation treatments and seasons.
Moreover, the CSI was compared against the temperature and
precipitation scenarios set in the sensitivity analysis. Results of
the CSI were compared, analyzed, and discussed.

Statistical Analysis
The coefficient of determination (R2, Equation 6), the root
mean square error (RMSE; Equation 7), the normalized RMSE
(Equation 8) and the relative deviation (RD, %); Equation 9)
were calculated for the yield, cumulative GHGs and water inputs,
and CSI to quantify the goodness fit between simulated and
observed values.

R2 = (

∑n
n = 1

(

Obsi − Obs
)

(

SMi − SM
)

√

∑n
i = 1 (Obsi − Obs)2

∑n
i = 1 (SMi − SM)2

)2 (9)

RMSE =

√

∑n
i = 1 (Si − Obsi)

2

n
(10)

nRMSE (%) =
RMSE

Obs
∗ 100 (11)

RD (%) = (
(

Obsi − SM
)

/Obsi)
∗100 (12)

Where Obsi is the observed value in the field; Obs is the average
of observed values; SMi is the simulated value SM is the average
of simulated values; n is the number of measured values.

Simulation of Yield, Water Use and Greenhouse gas

Emissions for the 2014–2019 Period
DNDC simulations for the four irrigation treatments evaluated
under the experimental conditions described in Section Field
Experiment were assessed to describe the climate-smartness of
different irrigation strategies in irrigated rice under tropical
conditions,. The simulated yields, water inputs and GHG
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emissions were used to analyse the trade-offs and synergies
between these agronomic indicators among irrigation treatments
and calculate the CSI.

Sensitivity Analysis
A sensitivity analysis was conducted to evaluate the response
of the CSI to the variation in climate. Temperature was varied
between −2 and 2◦C by 1◦C rate and the rainfall were varied
from −25 to 25% at 5% increments. CSI was calculated for
all irrigation treatments and seasons. The CSI was compared
against the temperature and precipitation scenarios set in the
sensitivity analysis.

RESULTS

DNDC Model Validation
The DNDC model generated a good estimation of rice yields.
Simulated and observed yields showed a good correlation (R2

= 0.68) and RMSE = 533 kg/ha, which represents an nRMSE
(%) <10%. The comparison of observed and simulated Leaf
Area Index (LAI) until the initiation of senescence also showed
a good fit, these data are available in Supplementary Figure 1.
The Relative Difference RD (%) between simulated and observed
yield was 1.3% for CF, II, and IIF and 5% for CSS in 2016-
2017. The RD (%) in the 2017/2018 season was higher; simulated
yields in II and IIF treatments were 6 and −8.4% lower than
the observed yields. Yield under CSS was underestimated by
19%, being the poorest estimation among the four treatments
in both seasons. The simulation of Total Water Inputs (TWI)
showed different responses. Overall, the model presented a poor
simulation, especially CF treatment during the 2016/2017 season
where TWI was overestimated by 74% and IIF treatment by
117%. The 2017/2018 season showed better performance with RD
(%) between 0.3 and 28%. In both seasons the differences among
treatments were similar; the highest TWI in CF treatments
followed by IIF, II and CSS (Figure 1).

The comparison of GHG emissions between simulated and
observed data showed a good simulation of CH4 emissions
but an underestimation of N2O emissions in all treatments
(Supplementary Figures 3, 4). Overall, the model produced a
poor simulation of N2O fluxes, which showed a low correlation
with observed data (R2 < 0.1). The DNDC model could capture
the peaks of N2O generated during fertilization, but DNDC
assumes zero N2O emissions during flooding periods, which
disagreed with observed fluxes. In treatments with prolonged
flooding conditions like CF, the model underestimated N2O
cumulative fluxes by up to 90%.

Despite that N2O was underestimated, net Global Warming
Potential presented a high correlation with the observed data
(R2 = 0.9). The RD (%) of net GWP was <25% in all
treatments except for CSS-2016/2017 (RD%−40%). These results
evidence the main contribution of methane in the overall GHG
emissions, in contrast with treatments under predominantly
aerobic conditions such as CSS, where the N2O represents
the principal contributor to overall GHG emissions. Water
productivity (WP) and Greenhouse Gas Intensity (GHGI)
indicators were calculated using simulated data and compared

with the observed values (Figure 2). Both indicators showed a
good correlation with observed data (R2 = 0.8 and R2 = 0.9,
respectively). The poor simulation of TWI for the 2016/2017
season resulted in an underestimation of WP of 52% for the
CF treatment (Figure 1). The Relative Difference (RD %) in WP
between observed and simulated data varied between−36 to−5%
in the 2017/2018 season. Greenhouse Gas Intensity (GHGI)
simulations showed a better fit than WP, with RD% ranging
between−3 to 12%, except in the case of the GHGI in CSS-
2017/2018, which was overestimated by 60%.

DNDC Outputs From 2014/2015 to
2018/2019 Crop Seasons
The simulations showed differences in CSA outputs under
different irrigation management across the five seasons
(Figure 3). The season with the highest accumulated rainfall
(2017/2018) presented the highest TWI for CF and IIF
treatments. The lowest TWI occurred in the driest season
(2018/2019). The differences in the TWI among the treatments
showed that IIF used 4% less water than CF treatments, while
II can save 20% more water than CF. Finally, CSS treatment
presented the highest water-saving potential; 60% less water than
CF (Figure 3A).

Rice yield was 3.8% higher in CF IIF, while the difference
between II and CSS was 6 and 26% higher, respectively
(Figure 3B). Rice yield also showed temporal differences; the
Sustainable Yield Index (SYI) indicated that CF, IIF, and IIF
presented similar stability (ranged from 0.76 to 0.77), while
CSS showed less yield stability (SYI = 0.59). The lowest yields
occurred in 2018/2019 during the lowest cumulative rainfall in
a cropping season. The highest yield occurred in the 2017/2018
season under CF treatment; however, II and IIF presented the
highest yields during 2015/2016 which is the season with the
second-highest cumulative rainfall.

The GHG emissions showed differences among treatments
and seasons. The CH4 emissions were from high to low in
the following order: CF>IIF>II>CSS (Figure 1). Continuous
Flooding (CF) treatment ranged between 209 to 393 kg CH4 ha

−1

season−1 while IIF treatments present on average, 56% fewer
emissions (87 to 174 kg CH4 ha

−1 season−1). The CF treatment
was 74% higher than II and 95% than CSS where the methane
emissions ranged between (−0.5 to 30 CH4 ha−1 season−1).
The lowest methane emissions for CF, IIF, and CSS treatments
occurred during 2018/2019, and the highest was in the 2014/2015
season (Figure 3C).

Seasonal N2O emissions were lower in CF than in IIF
and II treatments (16.5 and 18%, respectively; Figure 3D).
The irrigation treatment with the highest N2O emissions was
CSS, with 87% more N2O emissions than CF. Despite the
differences in N2O emissions among treatments, the emissions
were generally low, ranging from 0.46 to 0.87 kg N2O ha−1

season−1. The N2O emissions also showed temporal differences:
the lowest N2O emissions occurred during the 2018/2019 season
and the highest during 2014/2015. Although CSS treatment
presented the highest N2O emissions, the lowest N2O among
seasons occurred during the drier year (2018/2019; Figure 3D).
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FIGURE 1 | Observed (white bars) and simulated (gray bars) data of Yield (kg ha−1), methane (CH4, kg CH4 ha−1 season−1), Nitrous oxide (N2O, kg N2O ha−1

season−1) and Total Water Inputs (TWI, mm) for the 2016/20127 and 2017/2018 cropping seasons. Error bars represent the standard error.

FIGURE 2 | Observed (white bars) and simulated (gray bars) data of Water productivity (WP; kg/m3 ); Greenhouse Gas Intensity (GHGI; kg CO2-eq kg grain−1 );

Climate-Smartness Index (CSI) for the Continuous flooding (CF), Intermittent Irrigation (II) and Continuous Soil Saturation (CSS) for the seasons 2016/2017 and

2017/2018. Error bars represent the standard error.
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FIGURE 3 | Simulations of (A) Total Water Input (TWI); (B) rice yield; (C) methane (CH4); (D) nitrous Oxide (N2O); (E) Water productivity (WP); (F) Greenhouse Gas

Intensity (GHGI) under Continuous Flooding (CF), Intermittent Irrigation (II); Intermittent Irrigation until Flowering (IIF) and Continuous Soil Saturation (CSS) for the period

2014-2019.

FIGURE 4 | Mean percentage contribution of CH4 and N2O in the overall emissions of rice fields under Continuous Flooding (CF), Intermittent Irrigation (II), and

Intermittent irrigation until Flowering (IIF) and Continuous Soil Saturation (CSS) for the period 2014–2019. Numbers in the center of each plot indicate the total

seasonal emissions expressed in ton CO2-eq/ha/season.
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The relationship between water input and yields was
consistent across CF, IIF, and II treatments, reflected in water
productivity ranging between 0.13 and 0.11 kg m−3 among
treatments. In contrast, CSS presented the highest WP (0.33 kg
m−3, during 2018/2019: Figure 3F) despite having the lowest
yields across the seasons (Figure 3E). The results suggest that
II and IIF treatments are effective strategies to save water and
maintain rice yields; however, they could be insufficient to
increase the efficiency of the rice crop. The water productivity
showed seasonal variability, with the highest WP in CF, IIF
and II during 2014/2015, while the highest WP achieved under
CSS occurred during 2018/2019. Based on the WP and GHGI
results (Figures 3E,F), it is possible to elucidate the climate
smartness of the different irrigation treatments. Treatments with
low GHGI such as CSS express 514 higher climate-smartness
than treatments with high GHGI (e.g., CF treatment); similarly,
relatively 515 high WP increases the climate-smartness over
other treatments with lower WP.

In all seasons, the mitigation potential of II, IIF and
CSS treatments reduce the Greenhouse Gas Intensity (GHGI)
compared with CF, despite these treatments also reported
reductions in yield (Figure 3F). While CF treatment showed
an average GHGI of 1.2 kg CO2-eq per kilograms of grain, IIF
showed the half (0.55 kg CO2-eq kg grain−1) and II treatment
a GHGI 66% lower (0.4 kg CO2-eq kg grain−1) than CF. The
CSS treatment with the highest impact on CH4 showed the
lowest mean GHGI (0.13 kg CO2-eq kg grain−1). The GHGI
also showed seasonal differences within the treatments. The
highest GHGI occurred during 2014/2015 for CF, IIF and CSS
treatments, while the lowest GHGI for CF, IIF and II treatments
occurred during 2016/2017. The GHGI in CSS showed the lowest
value during 2018/2019 but also coincided with a relatively low
GHGI during 2016/2017.

The net Global Warming Potential (GWP) in CF treatments
was, on average, 53% higher than IIF and 66% more than in
II treatments. CSS irrigation had the lowest GWP (92% lower
than CF treatments) across all seasons. The differences among
the irrigation managements also varied among the seasons; IIF
treatment emits between 42 and 63% less GHG emissions than
CF, and II between 51 and 84% less than IIF. Differences in
the GHGs cumulative fluxes among the treatments evidenced
the contribution of each non-GHGs to the net GWP (Figure 4).
Methane is the main contributor to net GWP in CF (95.6%),
IIF (85.3%), and II (76.9%) treatments. For its part, methane
represents 37.9% of net GWP in CSS treatment, whereas nitrous
oxide represents the main contribution (62%).

CSI Values and Intercomparison of Water
Management Options Based on DNDC
The performance of the agronomic/biophysical indicators
simulated in this study was contrasted among irrigation
strategies. The lower GHGs are indicative of the mitigation
potential of the strategies, while the low water inputs as
the potential indicator of water-saving. The most effective
synergy among the irrigation strategies occurred in CSS,
where the water-saving and the CH4 mitigation (showed

FIGURE 5 | Radar plots of 4 Climate-Smart indicators (Water Saving, yield

and, N2O and CH4 mitigation) under Continuous Flooding (CF), Intermittent

Irrigation (II), intermittent irrigation until Flowering (IIF) and Continuous Soil

Saturation (CSS). The points of the radar plots were calculated using a 0–1

normalization method based on the highest and lowest mean value of each

indicator among irrigation treatments and seasons.

the highest values among treatments). Conversely, CSS
presented the lowest N2O mitigation potential. In contrast, the
high yields (compared with the other irrigation treatments)
and the mitigation of N2O were, on average, the most
representative impact of CF treatment. The II and IIF
irrigation treatments presented an intermediate methane
mitigation potential with a similar impact on yield to CF
(Figure 5).

To provide a quantitative measure of climate-smartness
based on WP and GHGI, the Climate-Smartness Index (CSI)
was calculated (Figure 6). The CSI can provide a quantitative
measure of the relation between WP and GHGI, where
the climate-smartness is expressed by relatively lower GHG
emissions, high productivity and high water use efficiency.
Based on CSI results, the climate-smartness of irrigation
treatments from high to low is in the following order:
CSS>II>IIF>CF. The CF treatment presents the lowest climate-
smartness (−0.14, with the lowest CSI scores reported in the
2014/2015 season: CSI = −0.2). The IIF and II also score
negative CSI values, ranging between −0.083 to −0.054 for IIF
and −0.061 to −0.02 for II. On the contrary, CSS presented
the highest CSI scores ranging between −0.027 to 0.1 and
was the only treatment to score positive CSI. The Climate-
Smartness Index (CSI) varied among cropping seasons. The
CSS treatment showed the highest climate-smartness during
the 2016/2017 and 2018/2019 seasons, while for II and IIF,
the highest CSI occurred during the 2016/2017 season. The
Continuous Flooding (CF) treatment expressed the lowest
climate-smartness in the 2014/2015 season, which improved
during the 2016/2017 season.
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FIGURE 6 | Heatmap of Climate-smartness Index (CSI) scores of the

Continuous flooding (CF), Intermittent irrigation until Flowering (IIF), intermittent

irrigation (II) and Continuous soil saturation (CSS) treatments.

Sensitivity Analysis of Climate-Smartness
Index
The CSI was calculated to assess the sensitivity of CSI to changes
in climate for the four treatments and five seasons under different
temperature and rainfall scenarios (Figure 7). According to the
results, CSI is sensitive to changes in temperature: warmer
conditions reduce the climate-smartness in all treatments, while
a reduction in temperature improve the CSI scores. The
Climate-Smartness Index (CSI) in CSS treatment presents the
lowest sensitivity to temperature, followed by the II treatment.
Continuous Flooding (CF) and IIF treatment showed higher
sensitivity to changes in temperature, where +1◦C reduced the
CSI up to 26% and+2◦C up to 42%. Climate-smartness increased
between 1 to 25% in CF and IIF treatments when the temperature
decreased to −1◦C and 11 to 34% at −2◦C. The CSI in CSS
treatment increased between 0.6 to 11% with temperature −1◦C
to ambient and 4–17% at−2◦C.

The sensitivity of CSI to rainfall was lower than the
temperature (Figure 8). The CSI decreased when the
precipitation increased for all treatments during 2014/2015
and 2017/2018, which correspond to the highest cumulative
rainfall seasons. During 2015/2016 and 2016/2017, CSI slightly
increased (0–1%) in all treatments except for CSS, where CSI
decreased in scenarios with more rainfall. The treatment with
the highest sensitivity to rainfall changes was the CSS; CSI
decreased between 7 and 15% for each 5% increase in rainfall.
Irrigation demand decreased proportionally with the increase in
rainfall. In the DNDC model, the increment of rainfall reduces
the irrigation demand; thus water productivity (WP) presented
negligible changes in treatments like CF, IIF, and II. On the
contrary, the WP in CSS treatments decreased in the scenarios
with increased rainfall because the TWI increases were higher
than yield gains.

Greenhouse gas emissions showed negligible sensitivity to
rainfall in CF, II, and IIF treatments. However, the yields

increased between 0 and 3% for each 5% increase in rainfall.
This yield/ rainfall synergy reduce the GHGI; increasing the
climate-smartness of CF, IIF, and II treatments during 2015/2016
and 2016/2017. GHG emissions were more sensitive in CSS
treatment than in CF, II and IIF treatments. Although CH4

emissions increased by <1% for each +5% increase in rainfall,
N2O increased up to 18% while drier conditions reduced N2O
and CH4 emissions. As the GHG emissions and yields increased
proportionally across the increased rainfall scenarios, the GHGI
was stable; thus, the climate-smartness was mainly affected by the
reduction in WP in CSS treatments.

DISCUSSION

Use of the DNDC Model to Simulate
Climate-Smart Water Management Options
This study used the DNDC model with the Climate-Smartness
Index (CSI) to assess the climate-smartness of irrigation
management strategies in irrigated rice systems. Driven by field
data, the DNDC model simulated various irrigation strategies.
The model outputs were used to develop a climate-smartness
assessment and evaluate the sensitivity of CSI to temperature
and rainfall. Process-based models are useful tools to evaluate the
performance of agronomic strategies in a wide range of contexts
and climate scenarios (Xiong et al., 2014). Thus, the modeling
approach represents a cost-efficient method to evaluate climate-
smart strategies, explore the effectiveness of scaling up CSA
interventions and interpret the trade-offs and synergies between
mitigation, adaptation, and productivity across different time and
spatial scales.

The DNDC model has been used to simulate GHG emissions
and soil carbon dynamics in a wide range of crops and agronomic
management at the site and regional scales. The list of published
studies that use DNDC is available on the Global DNDC network
webpage. Most of the studies that have applied DNDC to rice
fields have focused on the modeling of GHG emissions; however,
several published papers reported the use of DNDC to simulate
rice yields. Studies such as Tian et al. (2018), Pandey et al.
(2021) and Shi et al. (2021) modeled the trade-offs between GHG
emissions and yields. Moreover, Tian et al. (2021) simulated the
relationship between yields, GHG emissions and TWI. In this
study, the first step toward modeling climate-smartness metrics
was to evaluate the performance of the DNDCmodel to simulate
GHG emissions, yield, and water input. The model validation
indicates that the DNDCmodel performedwell in simulating rice
yields and seasonal CH4 emissions; however, it underestimated
N2O emissions and showed discrepancies between observed and
simulated Total Water Inputs (TWI).

Although DNDC is not a crop model, the yield simulations
achieve reasonable results. Zhang and Niu (2016) drew
similar conclusions from their review, which summarized the
application of the DNDC model to crop modeling. The authors
remarked that rice, maize, barley, rapeseed, soybean and sugar
beets are the main crops simulated in DNDC and count with
validations in several geographical contexts. Ku et al. (2019)
obtained similar validation results for rice yields [nRMSE (%)
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FIGURE 7 | Sensitivity analysis of Climate-Smartness Index (CSI) to changes on temperature of rice crop under Continuous flooding (CF), Intermittent Irrigation until

Flowering (IIF), Intermittent Irrigation (II) and Continuous soil saturation (CSS) treatments.

FIGURE 8 | Sensitivity of Climate-Smartness Index (CSI) to changes on rainfall of rice crop under Continuous flooding (CF), Intermittent irrigation until flowering (IIF),

intermittent irrigation (II) and Continuous soil saturation (CSS) treatments.
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= 15–19%] under different fertilization schemes using DNDC.
Similarly, Pandey et al. (2021) reported a consistent RMSE with
this study for flooded rice systems with organic fertilization. It is
necessary to adjust the default crop parameters (optimum crop
yield, biomass fraction, and biomass C/N ratio) to improve yield
estimations in DNDC; this is also important for improving the fit
of GHG emissions simulations (Nie et al., 2019).

Despite the reasonably good results that have been obtained
by DNDC simulating rice yields, the model presents limitations
modeling detailed physiological and phenological processes Tian
et al. (2018). Moreover, the modeling of yields at regional scales
using DNDC may be limited by the calibration approach used
for the model where only one rice cultivar can be calibrated
regardless of the area covered (Zhang and Niu, 2016). An
alternative to overcome such limitations could be the coupling
with crop models such as ORYZA200O, DSSAT or CERES-Rice

The observed and simulated GHGs emissions data resulted
in a good fit of Net-GWP despite the underestimation of N2O
emissions; except in the case of the CSS treatment during
the 2016/2017 season, in which the N2O represents the main
contributor of overall GWP. Similar results were reported by
Zhang et al. (2019) argue that, despite discrepancies in the
N2O simulation, owing to the strong agreement with methane
fluxes and the low contribution of N2O the model can be
used to estimate GWPs from tropical paddy fields. The poor
performance of the model in simulating N2O may occur
because the model assumes homogeneous microbial distribution
and over/underestimates the soil moisture under different soil
drainage conditions (Tonitto et al., 2010). Moreover, the DNDC
model simulates suppressed rates of nitrification in anoxic soil
conditions (i.e., during continuous flooding periods), assuming
zero N2O emissions (Babu et al., 2006; Hao et al., 2016).

In addition, nitrification and denitrification occurred
simultaneously in the soil during a redox condition window
between well-drained and saturated soil conditions, thus
inaccuracies in the parametrization of water affect the estimation
of Eh and the concentrations of NO−

3 and NH+

4 in the soil
(Simmonds et al., 2015). Our results confirm that poor N2O
simulation may not affect the net GWP of treatments with
negligible N2O emissions; however, the accuracy of N2O gains
relevance when assessing the mitigation potential of water
management strategies that are prone to increase N2O emissions
as the case of AWD (Lagomarsino et al., 2016) or mid-season
drainage (Liu et al., 2019).

Flooding was modeled based on the irrigation schedule and
the duration of flooding events evidenced by the records in
the hydrometer. This parametrization approach may lead to
discrepancies in the amount of water used and the water column.
The parametrization of irrigation treatments can be complex
when is consider the approach to modeling soil hydrology in
DNDC. The model uses a tipping bucket water flow model that
drains the soil profile to field capacity, which could generate an
underestimation of soil moisture in treatments like CSS where
soil keep saturated or above field capacity. Moreover, the fact
that DNDC can underestimate rainfall drainage could lead to the
systematic overestimation of TWI during the 2017/2018 season
that showed the highest cumulative rainfall (Kiese et al., 2005;

Kröbel et al., 2010; Uzoma et al., 2015). Although discrepancies
in the estimations, simulated TWI, were consistent among
treatments and comparable with TWI observed for the same
treatments in other studies (Li et al., 2005; Tian et al., 2021).

Climate-Smartness Water Management
Options and Its Sensitivity to Climate
The simulated CH4 and N2O emissions in this study were
consistent with those observed in other studies. The net-GWP
observed in the CF treatments are within the emissions range
observed by Jiang et al. (2019) in their meta-analysis, which also
found a similar percent reduction between CF and controlled
CF (53%) that in this study is equivalent to II treatment. The
CSS treatment showed the highest climate-smartness; however,
the reduction in yield could discourage farmers from adopting
it. These results evidenced that CSS management enhance
agronomic efficiency; however, the economic implications of
implement CSS needs to be considered before to recommend its
adoption as a climate-smart practice. An example is an economic
study reported by Ishfaq et al. (2021), which recognized that
aerobic rice systems have a low cost of implementation and high
potential as a water-saving technique; however, the net returns
are also lower compared with CF conditions.

When the yields are analyzed in function of the net returns,
the CSS management could incur in a higher cost per unit of
product. Cost/benefits analyses are needed to integrate economic
indicators within the climate-smartness assessments. Identifying
when irrigation strategies show promising mitigation and
adaptation potential are economically feasible for small farmers
and subsistence farming is equally important to agronomic
performance. This type of analysis will contribute to finding
better strategies to overcome adoption barriers.

The sensitivity analysis evidenced that the performance of
irrigation managements can vary depending on changes in
climate. The extent of these impacts depend of the interaction
between soil parameters and climate. For instance, the adoption
of severe and mild AWD strategies in sandy soils could lead
to yield penalties compared with CF treatments; moreover, the
water-saving potential of irrigation strategies might differ among
wet and dry seasons due to soil factors such as percolation rates
and SOC content Carrijo et al. (2017). These results show the
importance of irrigation suitability assessments, such as those
developed by Nelson et al. (2015), who used a water balance
model to determine the areas climatically suitable for AWD.

Reductions in climate smartness in warmer temperatures
are associated with the increase of GHG emissions and- to
some extent- by the reduction of WP. High temperatures
will increase crop evapotranspiration and the water demand.
Thus, WP will decrease either way, by an increment of water
requirements to maintain yields or by a reduction of yield by
water stress. Accordingly, rice cultivation in warmer conditions
would require additional water (Hossain et al., 2021), which,
in turn, could increase methane emissions. Conversely, cooler
temperatures result in lower GHG emissions and water demand,
reflected in the higher CSI scores in irrigated rice compared
with warmer temperatures. These results agreed with studies
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reported by Minh et al. (2015) and Nie et al. (2019), where
DNDC model simulate the sensitivity of methane emissions
to climate and found that, while increased precipitation has a
negligible impact on the CH4 emissions, warmer temperatures
significantly elevate them.

Deng et al. (2016) reported similar results regarding the
impact of precipitation and temperature in N2O emissions.
The authors argue that precipitation could stimulate microbial
activity (Giltrap et al., 2010), particularly in dry soils. Rainfall in
dry soil can generate a optimal “soil moisture window” to the
nitrification/denitrification processes. Several studies reported
such optimal conditions; Liu et al., 2022 found the higher net
N2O emissions between wetter (80–100% WHC) and drier (20–
60%) soils. For its part, Ciarlo and Bartoloni (2007) reported in
their incubation experiment that Overall N2O daily emissions
were highest at 80% WFPS. N2O emissions under 100% WFPS
treatment were significantly greater than those soils under 40%
WFPS. Although the N2O production also depends on soil
texture and organic matter content, several studies coincide
with the optimal water content for N2O production under field
capacity conditions (from approx. 60% to 100% WFPS%). Soil
moisture conditions become less optimum for N2O production
from wilting point (approximately 15% WFPS in coarse soil
texture and 32 to 26% in fine texture soils), where water scarcity
can constraint biological activity (Wang et al., 2021). These
results might explain the lower N2O emissions obtained during
the driest season in 2019 and the reduction of climate-smartness
(by the increasing of GWP) in the rainfall scenarios above 10% of
rainfall increase.

This finding may explain the highest sensitivity of N2O
emissions to precipitation in CSS treatment during the driest
season (2018-2019) of the period assessed, where N2O increased
up to 18% when precipitation increased by 25%. Minamikawa
et al. (2016) attribute the increment of CH4 under warmer
temperatures to the acceleration of SOM decomposition and
N mineralization driven by a stimulation of biological activity
in the soil. The authors also pointed out that the effect of
temperature on GHG emissions may vary among climates zones,
having a higher sensitivity in low temperatures compared to
warmer places. Given that mineralization rates may increase
under warmer conditions, the SOM become a relevant parameter
for mitigation in rice systems. In this sense, modeling-based
assessments would be more suitable to elucidate a wider view of
soil carbon in the long term in rice fields.

Although the CSI showed a low sensitivity to rainfall, the
irrigation demand was lower in all treatments with higher
rainfall. This occurred because in DNDC if the crop water
demand is the same, the larger the proportion of rainfall
the crop will be less dependent on irrigation. A reduction of
irrigation demand is desirable and could represent a contribution
to climate-smartness if it contributes to increasing water-use
efficiency. The sensitivity of climate-smartness to temperature
and rainfall reinforces the idea of the strong context-dependency
of climate-smart agriculture. For instance, CSS proved to be the
irrigation management with the highest climate-smartness in the
study site; however, climate change could bring about changes
in the climate-smartness of CSS, potentially even reducing it to
negative values of CSI.

This sensitivity analysis assumed a constant concentration of
atmospheric CO2 across cropping seasons. However, it is worth
mentioning that rising atmospheric CO2 trigger an increment
in the photosynthetic rate in the plants, resulting in higher
biomass accumulation (Lv et al., 2020). In the case of the
rice crop, Ainsworth (2008) reported from their meta-analysis,
elevated CO2 increased rice yields by 23%, as a response to
increased grain mass, panicle, and grain number. Moreover,
the stomatal conductance reduction under elevated CO2 can
increase water productivity and indirectly reduce greenhouse
gas intensity. Although elevated CO2 might potentially improve
climate-smartness indicators, severe changes in temperature and
rainfall can overshadow yield gains. For instance, Krishnan
et al. (2007) simulated the impact of the interaction between
elevated CO2 and temperature on rice yields, finding a trade-
off between both parameters. Under elevated CO2 (25% on
average) yield increase until the temperature increased between
+3◦C to +5◦C, resulting in yield penalties between −10.5
and−34%.

CONCLUSIONS

In this study, we used the DNDC model to simulate cumulative
CH4 and N2O fluxes, rice yields and water inputs from tropical
irrigated rice systems under several irrigation managements. The
DNDC model simulations showed a good fit with the methane
and yield observations. Nitrous oxide fluxes and water inputs
were poorly simulated, evidencing the need for an adequate
parameterization of hydrological parameters.

Results demonstrate that seasonal variability in climate
may influence the performance of irrigation management
practices. Temperature increases can reduce- even reverse- the
mitigation potential of irrigation management. Thus water-
oriented strategies must be able to be adjusted responsively to the
climate if they are to be an effective adaptation measure.

Combining models and CSI can offer spatial and temporal
continuity to climate-smartness analyses, strengthening
the discussion around the context-dependency of CSA.
Modeling agronomic and biophysical indicators bring valuable
information, fills data gaps in existing experiments and
generates evidence from scenarios that otherwise will be
technically impossible to measure (e.g., climate projections or
hypothetical socio-economic scenarios). Furthermore, CSI can
synthesize model output and thus facilitate the interpretation of
model results.
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