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Most blended climate smart agriculture (CSA) technologies focusing on seed-fertilizer

combinations have either beenmarginally adopted or dis-adopted by smallholder farmers

due to the nature of design and implementation. A data science research approach

was used with 380 households in the mid-Zambezi Valley of Zimbabwe. The study

examines impact of adopting a farmer initiated CSA practice combining improved

sorghum seed variety and partial-organic fertilizer on household income and productivity

among smallholder farmers in the drylands of Zimbabwe. A cross sectional household

survey usingmulti stage sampling with purposive and stratified proportionate approaches

was conducted. A structured questionnaire was utilized for data collection. Endogenous

Switching Regression (ESR) model was utilized to account for self-selection bias of

sampled farmers. Overall, a combination of farm specific factors (arable land, variable

costs) and external factors (distance to the market, value of aid) have a bearing on

the adoption decision and the associated impact on productivity and income. The

counterfactual analysis shows that farmers who adopt the technology are relatively better

off in productivity and income. Our findings highlight the significance of improving access

to CSA practices which are initiated by the farmers using a bottom-up approach since

they suit their operating contexts better. Tailor-made supporting programs including

farmer networking platforms and decentralized markets need to be designed and scaled

up by policymakers to encourage farmers to adopt blended soil fertility CSA practices

in their farming practices. Networking arrangements need to be strengthened through

local, government and private sector partnerships along the sorghum value chain.

Keywords: climate smart agriculture, farmer-centric technology, agricultural productivity, Zimbabwe, endogenous

switching regression, counterfactual
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THE BACKGROUND

The dominance of inappropriate agricultural practices such
as improper soil preparation and management, indiscriminate
use of pesticides and application of chemical fertilizers beyond
the limit has persistently caused a range challenges including
decrease in crop yields, soil erosion, soil salinity and pollution
of water bodies. In southern Africa’s agricultural value chains,
this matrix of problems has culminated in reduced productivity
across strategic cereal crops such as maize (Zea mays), sorghum
(sorghum bicolor) and millets from on average 1.3 tons/ha to 0.9
tons/ha and lowered income by on average 23% due to a decline
in the weighted average prices by 19.2% between 2015 and 2019,
especially among smallholder farmers (Suresh et al., 2021). To
circumvent this array of problems, there is an emerging drive
toward co-designing a diverse range of resilient CSA programs
with a focus on farmers taking the center stage. Climate-smart
agriculture is defined as integrated pathway that enhances the
management of landscapes including the cropland, livestock
systems. The advent of re-orienting CSA programs has variably
pushed the design and scaling up of blended modern science and
Indigenous Knowledge Systems (ITK) packages across different
spatial and temporal scales (Nciizah et al., 2021). These blended
CSA packages entail a combination of CSA principles in a
way that direct response to the context specific challenges
such as access to and application of chemical fertilizers. The
core CSA practices included in these blended packages include
efficient irrigation, integrated pest management (IPM), different
dimensions of conservation farming and manipulation of seed
and other production factors such as the use of manure
(Sinyolo, 2020). Globally, therefore, the adoption of climate smart
agriculture (CSA) practices is also widely reported as a gateway
out of the challenges of low productivity and income among
smallholder farmers in the climate change exposed drylands
(Kauma, 2021; Martey et al., 2021).

In the drylands of Zimbabwe, these emerging CSA strategies
have however over focused on the more preferred cereal crops
including maize and cash crops such as cotton (Gossypium)
(Mkuhlani et al., 2018). Of note, are the traditional grains,
including sorghum and millets, that have not been adequately
and directly accommodated at all scales (Hamukwala et al., 2010;
Adegbola et al., 2013; Musara et al., 2018). However, pushed by
exponential decline in agricultural performance in these fragile
communities and increased incidences of income deterioration,
a handful of the emerging CSA interventions targeting
the peripheral crops, such as sorghum seed development,
financing, production and marketing support programs have
been implemented by the public and private sectors post 2010
(Mapfumo, 2017). The hope is that these direct mechanisms as
mentioned above will enhance sorghum productivity and income
through scaled up adoption of tailor-made CSA technologies
and strengtheningmarket linkages at the different administrative,
spatial and temporal scales. The acknowledgment is that, re-
embracing these orphan crops and greasing their production
with appropriately designed farmer-centric and market oriented
CSA practices can reposition them in land allocation decisions
especially in the drylands (Muzerengi and Tirivangasi, 2019).

Most of the aforementioned interventions have been designed
based on a top-bottom approach, and as such, in most countries
including Zimbabwe, their effectiveness has been relatively below
the expectations in terms of productivity, income and food
security gains (Mapfumo, 2017). This has induced lower than
expected adoption with on average 30% of farmers taking up the
technology against a target of above 80% (Shiferaw et al., 2013).
On one hand, smallholder farmers cultivate the crops on small
pieces of unproductive land averaging 0.15 hectares against an
expected benchmark of 0.3 hectares, while also using low yielding
varieties and recycled seed (Khonje et al., 2015; Mujeyi et al.,
2021). On the other end, sorghum processors and consumers
are not willing to pay competitive market prices and pay on
average 11.3% below the breakeven price for the produce, thus
further reducing the utility and subsequent adoption (Makindara
et al., 2013). The result is that in most parts of dryland southern
Africa, comprehensive understanding of the productivity and
income enhancing capacity of emerging blended CSA based
sorghum production practices is therefore presently missing
and/or inadequately explored (Tambo and Mockshell, 2018).

There is evidence that, in southern Africa, there is a
pattern where smallholder farmers are adopting a package of
technologies as opposed to singular adoption which dominated
during the early 1990s (Mujeyi et al., 2021; Ahmed, 2022;
Baiyegunhi et al., 2022). The study seeks to contribute to
this discussion by focusing on the blended high yielding seed
varieties and partial-organic fertilizer1 package that has been
designed by smallholder farmers in the mid-Zambezi Valley
of Zimbabwe in response to the call for CSA. To the best
of our knowledge, the complementarity between improved
seed and varieties and inorganic fertilizer has not adequately
been tapped into from the angle of technology re-design
to accommodate emerging commercial organic fertilizers and
traditional grains. It remains questionable as to whether there are
any productivity and income gains that may be generated from
the uptake of the blended and well-targeted improved seed and
organic fertilizer.

A number of studies (e.g., Ali and Abdulai, 2010; Di
Falco et al., 2011; Asfaw et al., 2012; Suresh et al., 2021)
have examined the impact of agricultural technologies on
food security and income, but the majority focused on
externally driven interventions emanating from either the
government, NGOs or the private players. Those which have
attempted to accommodate the fertilizer component have
focused on the inorganic fertilizers (Ahmed, 2022). This has
crowded out a reflection on farming community initiated
technologies designed in response to emerging challenges and
opportunities. Additionally, most studies targeting traditional
grains (e.g., Mapfumo, 2017; Musara and Musemwa, 2020;
Phiri et al., 2020), have also focused more on the food

1The fertilizer is not purely organic and is produced by a Zimbabwean firm. The
package was initiated by farmers in partnership with a NGO and is being promoted
in 7 of the 17 wards in Mbire district of Zimbabwe. The blending idea emanated
from the farmers and the NGO supports through training programmes. To the best
of our knowledge, this farmer initiated technology is a first in the district which
targets sorghum production.
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security dimension, which does not directly support the
industrialization and market based commercialization (with
proxies of income and productivity) drive being advocated
for by stakeholders in Zimbabwe and analyzed in this study
as a gap filling effort. Furthermore, in the existing analyses,
sorghum production is traditionally viewed by farmers as
a system requiring minimal fertilizers. Phiri et al. (2019)
reports that this mentality has subsequently spilled over to the
research agenda thus delineating the fertilizer component from
impact analyses.

We identify the potential of capturing this missing dimension
using sorghum as a pivotal crop in the drylands of Zimbabwe
due to its resilience to unfavorable conditions of short growing
season, limited rainfall and high temperatures. This is motivated
by the success of sorghum value chains in countries such as
Tanzania (Makindara et al., 2013), Zambia (Hamukwala et al.,
2010) and West Africa (Haussmann et al., 2012) that has been
attributed to scaling up of farmer driven productivity-enhancing
technologies. In these environments, productivity has increased
by on average 34.5%, food security by 29.3% while conflicting
findings have been reported for income gains within a range of
12.6-27.1% (Smale et al., 2018). The technology in this study was
initiated by the local farmers and culminated in a well-structured
improved seed and partial-organic fertilizer package used in the
study area over the past 3 seasons. The study therefore aims to fill
the gap of productivity and income impact analyses and target a
blended soil fertility enhancing strategy for sorghum, which is a
largely excluded crop. It further examines the impact of a farmer
designed package on productivity and income, a feat that is not
adequately covered in literature.

MATERIALS AND METHODS

Description of the Study Site
The study was conducted in Mashonaland Central province
which is located at 16.7644◦ S, 31.0794◦ E, has an area of
28,347 km², a population of 1,152,520 which represents ∼8.5%
of the total Zimbabwe population and has a human population
density of 41/km2 (ZimStat, 2013). The mid-Zambezi Valley of
Zimbabwe is situated in the province at an altitude of between
350-600 meters on the flat plain and 1228m on the highest point.
Figure 1 shows the study area.

Mbire district is located in the Lower Zambezi Trans-
Frontier Conservation Area (LZ-TFCA), and has multi-cultural
communities with a low human development index (HDI)
of on average 0.519. Despite poor sandy soils, erratic rainfall
(averaging 300mm/annum), high temperatures (averaging 35◦C)
and persistent crop destruction by wildlife (accounting for
more than 35% of field crop losses), households heavily
depend on agriculture for subsistence and income. The major
activities include crop production of mainly sorghum, cotton,
rapoko (Eleusine coracana) (in Zimbabwe- finger millet), and
pearl millet (Pennisetum glaucum), as well as livestock where
mainly cattle and goats are reared. These integrated production
systems marginally reduce the risks of extreme poverty but are
however not commercialized and linked to strategic markets in
surrounding towns such as Mvurwi (17.0278◦ S, 30.8556◦ E).

Data Type, Sources, and Sampling Design
A pragmatic philosophy was adopted for the study and merged
both the explanatory and exploratory research approaches in
a cross sectional survey design. Specifically, the study was
conducted in Mbire district of Mashonaland Central Province
in Zimbabwe. The district was selected since it is a dryland
located in the dryland region IV and V, which receives
low and erratic rainfall coupled with high temperatures. A
number of climate smart agriculture practices including soil
fertility enhancing options, water conservation pits and inorganic
fertilizer programs have also been widely supported by the
government, Non-Governmental Organizations and the private
sector players. From the seventeen wards in the district, five
wards, 2, 4 and 10, 12 and 15 were purposively selected
and included in the study. The first four wards are the
dominant sorghum producing areas in the district while Gonono
and Chikafa are closer to the border with Mozambique and
their inclusion offered scope for understanding decisions in
communities with mixed cultures and relations. Mahuwe is
centrally located in the district while Chisunga (Angwa) is
at the periphery of the Mid Zambezi Region. Chitsungo is
a unique Ward were sorghum production is minimal and
as such would also offer insights into the non-production of
sorghum. The data used in the study were collected from a
survey conducted during the cropping season between January
and March 2020. This was also basing on information gathered
from a pre-survey conducted between March and April 2016
and a series of preliminary stakeholder consultation meetings
in partnership with the French Agricultural Research Center
for International Development (CIRAD). The study adopted a
multistage sampling strategy starting with the purposive selection
of wards and stratified proportionate selection of villages to
account for the adoption and non-adoption variabilities across
the villages. This culminated in the proportionate random
sampling of respondents from each stratum for the survey.

The Yamane (1967) formula was utilized to determine the
sample size given its simplicity and wide application in social
science studies. The formula was presented as in Equation (1)
below.

n =
N

[

1+N
(

e2
)] (1)

where n is the sample size, N= is the population size, and e
is the precision level for confidence interval of 95% (=0.05).
This yielded 380 sorghum farmers who were then included
in the study. The sample size compares relatively well with
other similar studies (e.g., Abdulai and Huffman, 2014). The
purposive selection was based on a criteria of guaranteeing
the targeting of wards and villages where there was adoption
of the targeted package of an improved sorghum seed variety
and partial-organic fertilizer, while capturing the diversity of
household types, landholdings, access to markets among other
key factors. Proportionate stratified random sampling allowed
for a representative sample to be generated while accounting for
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FIGURE 1 | Map showing the study sites.

TABLE 1 | Ward composition and farmer selection.

Warda Total no. of farmers Share of farmers (%) No. in sample

Chisunga (2) 1,580 19.18 73

Gonono (4) 1,911 23.07 88

Chitsungo (10) 1,978 23.88 91

Chikafa (12) 1,587 19.17 73

Mahuwe (15) 1,224 14.70 56

Total 8,280 100 380

aThe ward number is placed in parenthesis.

the differences in farmer compositions across the locations of
interest. Table 1 shows the sampling strategy summary.

Detailed information was generated from the farmers using
a standardized questionnaire and validated by discussions with
authorities from the Ministry of Lands, Agriculture, Fisheries,
Water and Rural Resettlement (MLAFWRR), mainly through
local Department of Agricultural and Technical Extension
Services (AGRITEX) officers. The collected data covered
information on the technology’s characteristics, production
systems used by farmers, input access and use, transaction costs,
market prices, socio-economic characteristics, and plot-level
attributes. To cater for the instrument’s validity and reliability, a
pre-testing process was conducted. The data was captured in the
STATA 13 program, cleaned, coded and analyzed.

Method of Data Analysis
Rationally, farmers consider potential benefits when making
decisions to adopt emerging agricultural technologies. As such,
in impact evaluation studies, researchers need to consider the
nature of these technologies and avoid selection bias problems
emanating from truncated observed distributions of technology
outcomes (Kabunga et al., 2012). The selection bias manifests
whenever the unobservable factors influence both error terms in
the technology choice equation (ε) and the outcome equation
(µ). This results in correlation of the error terms of the two
equations, withcorr(ε,µ) = ρ. In this case, utilizing the generic
regression techniques such as ordinary least squares (OLS) would
generate biased results. Additionally, attempting to estimate the
impact of the adoption decision where there is no information on
the counterfactual condition would not be useful for influencing
policy and practice.

Alternative Estimation Approaches
A number of alternative approaches have been widely used in
technology adoption impact analyses. The Heckman two-step
method has been used by some authors (e.g., Ghimire andHuang,
2015) to deal with selection bias. The major limitation sets in due
to the method’s inherently restrictive normally distributed errors
assumption. An alternative approach of controlling for selection
bias is to utilize the instrumental variable (IV) method. It is
however difficult to find and identify valid instruments to include
in the estimation. Additionally, in the IV process, as is the case
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with OLS estimation, the linear functional form assumption does
not always hold since the coefficients on the control variables may
be different for adopters and non-adopters.

The propensity score matching (PSM) technique has
also been extensively used (e.g., Caliendo and Kopeinig,
2008; Becerril and Abdulai, 2010) to balance the observed
distributions of the covariates for the non-adoption (control)
and adoption (treatment) groups. The main drawback is the
Conditional Independence Assumption (CIA), which states
that, for selected covariates, the adoption is independent of
potential outcomes. However, selection into the treatment
group, based on unmeasured characteristics, may also trigger
systematic differences between the groups’ outcomes, regardless
of conditioning on the observables. Using PSM implies
that, the estimates from the binary model (probit or logit)
cannot be interpreted to imply the determinants of adoption.
In the current study, we however intend to determine the
adoption drivers of an emerging blended CSA technology
package and the associated impact on the productivity and
income. To achieve this, we utilized the endogenous switching
regression (ESR) model which accounts for the selection bias on
estimating the impact of adoption on the two farm outcomes
of interest. The method is a generalization of Heckman’s
selection correction approach and captures the selection on
unobservable by treating selectivity as an omitted variable
problem (Lokshin and Sajaia, 2004).

The Endogenous Switching Regression
Strategy
We used a two-step estimation strategy to fit the ESR model.
In the first step, we model farmers’ technology adoption
decisions using the probit model to generate inverse Mills ratios
while accounting for the unobserved heterogeneity (Alene and
Manyong, 2007). The relationship that we consider in examining
the impact of adoption on the productivity and income assumes
a linear function of a vector of explanatory variables, Xi and
an adoption dummy variable, Ai. Estimates αr then represent a
model for discrete Xi given as:

Yi = diXXβX +αrAi +µi (2)

Where Yi is the dependent variable (mean of the outcome
indicators); βX is the regression induced effect when Xi= X; αr
is the regression parameter; Ai is a dummy variable for the use
of the new technology such that Ai = 1 if the technology is
adopted and Ai = 0 when the technology is not adopted and
µi is a normal random disturbance term. Whether farmers adopt
the technology or not is dependent upon the interaction of the
characteristics of farmers and farms, hence the adoption decision
for the technology package is determined by each farmer’s self-
selection and not random assignment.

The subsequent outcome equations are then estimated in
the second step by factoring in the inverse Mills ratios as
an additional regressor to capture selection bias. Following
recommendations by Di Falco et al. (2011), we adopted the full

information maximum likelihood (FIML)2 estimation method.
This approach simultaneously estimates the probit criterion
(selection equation) and the regression equations, thus yielding
consistent standard errors. The outcome functions (yield/ha
and income/ha) are estimated for adopters and non-adopters
separately, thus taking into account the endogenous nature
of adoption decisions. The relationship between the outcome
variables and exogenous variables Xi for each possible regime is
thus specified by the following equations:

Ai = 1 (ziγ+ui> 0) , (3)

Regime 1: Y0i = X0iβ0+ε0i if Ai= 0(no adoption) (4)

Regime 2: Y1i = X1iβ1+ε1i if Ai= 1(with adoption) (5)

Where Equation (4) is the selection equation denoting the regime
that applies, zi is a 1×m vector of explanatory variables assumed
to explain the adoption probability, and ui, ε0i and ε1i are the
error terms. As farmers’ decision of adopting the blended pack
can be endogenous, the correlation between error terms ε0i and
ε1i based on the sample selection criteria has a non-zero expected
value (Abdulai and Huffman, 2014). As such, the parameters
(β1 andβ2) of OLS estimation may produce sample selection
bias3. Assuming that the three error terms, ui, ε0i, andε1i, have
a trivariate normal distribution with a zero mean, then, the
variance-covariance structure is:

cov(u1, ε1i, ε0i) =





δ2u δ1u δ20u
δ1u δ21 δ01
δ0u δ01 δ20



 (6)

Where δ2u, δ21, and δ20 are the variances of error terms ui,
ε1i, and ε0i, respectively; while δ1u denotes the covariance of ui
and ε1i; and δ0u denotes the covariance of ui and ε0i. We also
define the ρ as correlations between error terms, for farmers
who adopted and those who did not adopt the technology,
as ρ1µ= corr(ε1i,µ1) and ρ0µ= corr (ε0i,µ1). However, given the
nature of the sampling, Ai1 and Ai0 do not occur at the same
time, so the covariance between εi1 and εi0 is uncertain. Based
on this assumption, the expected values of ε1i and ε0i can be used
to account for the the inverse Mills ratio where λ( · ) which is
defined as:

λ1 =
Ø(ziγ)

f (ziγ)
if (Ai= 1) andλ0 =

Ø(ziγ)

1 - f (ziγ)
if (Ai= 0) (7)

Where Ø and φ are the pdf and cdf of the standard
normal variable, respectively. When ρ1 =ρ0 = 0 the endogenous
switching regime model equations switch to the exogenous
regime model. We recognize that there might be endogeneity
of adoption in the outcome. This was partially addressed by
including comprehensively selected covariates from literature

2The FIML estimates of the parameters of the endogenous switching regression
model were obtained using the movestay command in STATA.
3This is also known as the problem of missing variables (Lee, 1982).
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(Zeng et al., 2015). Additionally, by having a valid instrumental
variable that is exogenous, then λ1 and λ0 can be obtained
from the first stage and included in regimes Equations (3)
and (4) (Tufa et al., 2019). For identification purposes, our
guiding hypothesis is that the probability of a household to
adopt improved technology is an increasing function of its
prior exposure reflected by the two selection instruments which
are the soil fertility gradient and the storage4. Following Di
Falco et al. (2011), we determine the acceptability of these
instruments by conducting a rejection test of whether they
affect the CSA technology adoption decision and not the
income and productivity outcome variables among non-adopting
households. Results show that the two variables can be considered
as valid selection instruments.

In order to examine the effect of adoption on the productivity
and income, we utilized the estimated coefficients from the ESR
model to compute the average treatment effect (ATE). This
defines the difference between the expected values of observed
and counterfactual scenarios. In this study, we estimated the
average treatment effect on the treated group (ATET) as the
difference between Equations (7) and (8). ATET can be effectively
used to eliminate the estimation bias caused by observed and
unobserved factors and examine the overall effect of adopting the
blended pack on farmers’ productivity and income. In this regard,
we also assume that E

(

u2i
)

= 1, and hence the conditional
expectation of the outcome variable in Equations (3) and (4) can
be defined respectively as:

E (Y1i|xi, Ai= 1) = xiβ1+ρ1λ1 (ziγ) (8)

E (Y0i|xi, Ai= 1) = xiβ0+ρ0λ0 (ziγ) (9)

Informed by Paudel et al. (2020) the ATET was calculated using
Equation (9):

E(Y1i|xi,Ai= 1)−E (Y0i|xi,Ai= 1)= xi
(

β1–β0
)

+ρ1λ1-ρ0λ0 (10)

We then utilized the Nearest NeighborhoodMethod (NNM)5 for
mirroring experimental randomization and estimate the effects.
In Equations (7–9), the term E (Y0i|xi, Ai= 1) is the expected
value of Yi if the household had not adopted the CSA practice.
It is the unobserved component which was estimated using
counterfactual analysis as guided by Di Falco and Veronesi
(2013). The term E (Y1i|xi, Ai= 1) denotes the actual expected
value of farmers’ productivity and income.

RESULT AND DISCUSSIONS

This section presents the findings from the study and the
discussion in relation to the existing body of knowledge on the
adoption and impacts of agricultural technologies.

4Two instrumental variables, soil fertility and storage were selected as guided
by the socio-economic-institutional arrangements in the study area and applied
across all the outcome models.
5A detailed explanation of the method is found in (Ali and Abdulai, 2010; Becerril
and Abdulai, 2010; Amare et al., 2012). The Kernel Method has also been widely
used in literature but was not adopted in the current study.

Descriptive Analysis
Table 2 shows the descriptive statistics for the sampled
households and isolates some important indicators in terms of
differences between the adopters and non-adopters.

It can be observed from the table that the farmers who adopted
the technology for the 2020 cropping season had significantly
higher yield per hectare and income per hectare by differences
of 253.17 kg/ha and US$133.08/ha, respectively. The table shows
that the average income per hectare for the whole sample is
US$307.5/ha. The income per hectare are computed as the
difference between the gross income from marketable yield
(sales) after accounting for household consumption and the
total costs of buying inputs (seed, fertilizers, chemicals), land
preparation, weeding and harvesting. The opportunity cost of
labor was adopted on the basis of the farm wage rates paid by
farmers in the study area and the same approach was utilized for
transport costs to and from the markets. The smallholder farmers
have on average 4.3 ha of arable land which is characteristic of
most farmers in the similar contexts in southern Africa.

A perception based measurement of soil fertility was
adopted given that Tambo and Mockshell (2018), during a
conservation agriculture study, reports the accuracy of farmers’
characterization of the soils in their areas. The proportion of
fertile soil was computed relative to the total arable land for
the household and categorized as not fertile (0) and fertile
(1). The variable was significantly higher for adopters (49%)
as opposed to non-adopters (3%). The same was done for
the availability of storage facilities at the farm which was also
coded as, inadequate (0) and adequate (1) with response rates
of 49.2 and 50%, respectively. This was important so as to get
insights on the possible motivation to adopt the emerging CSA
technology based on the potential of the soils and storage to
generate income. The hypothesis was that farmers with more
fertile land and storage facilities are more likely to adopt the
emerging technology.

The dependency ratio had an average 35% and 33% for
adopters and non-adopters, respectively. This variable was
computed as the ratio of household members in the below 14 and
above 65 years category relative to active household members in
the 15–64 years range. Higher dependency ratios are usually an
indicator of the need to adopt technologies and produce more
to feed the dependents. For households with schooling, the total
number of completed years in school was used to represent the
education variable. Bahta et al. (2020) alluded to this when they
noted that family composition has a direct bearing on technical
efficiency gains as driven by sustainable agricultural management
practices. The results in Table 2 also show that the average
duration in schooling of the respondents was 8 years and this
was not significantly different across the adoption status. This
reinforces observations by Bahta et al. (2018) who also noted
homogeneity in the level of education among households in a
home garden study in South Africa.

There were significantly more males in the non-adoption
regime as was shown by the 15.2% difference relative to the
female counterparts. Bahta et al. (2019) also noted a similar result
when they recommended the need for women empowerment
in as a strategy to reduce food insecurity. They argued that,
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TABLE 2 | Description of variables included in the models and descriptive statistics.

Variable Description Unit of

measurement

Total sample

mean

Adopters

mean

Non-adopters mean Difference-test

Dependent

Productivity A continuous variable of sorghum produced

per hectare during the season

kg/ha 902.726 944.344 691.167 −2.326**

Income A continuous variable showing income per

hectare of sorghum

US$ 307.452 329.328 196.250 −2.973*

Independent

Age Continuous variable for age of household head Years 44.721 45.713 44.252 −0.916

Arable land Continuous variable for the total arable land for

the household

Hectare 4.3153 4.1869 4.3759 1.478

Log costs Continuous variable of logarithm of variable

costs per hectare

US$ 3.859 3.829 4.009 2.517***

Dependency Continuous variable showing proportion of

household dependent members

Percent 33.258 34.738 32.558 −1.083

Education Continuous variable of the duration in schooling

by the household head

Years 8.226 7.852 8.4031 1.253

Draft Continuous variable shoeing number of

effective draft animals available

Number 5.989 6.131 5.922 −0.5796

Experience Continuous variable of cumulative experience

years in sorghum production

Years 7.679 8.909 7.097 −2.078**

Aid value Continuous variable for the value of sorghum

aid received during the season

US$ 8.597 14.795 5.667 −4.383*

Associations Continuous variable for number of social

groupings for household members

Number 1.697 1.574 1.756 1.441

Distance Continuous variable for distance to the market

in kilometers

Minutes 73.647 73.525 73.705 0.019

Payment time Continuous variable of time between finalizing a

transaction and payment

Days 11.297 11.639 11.136 −0.220

Gender Dummy variable for gender of household head

(0=female, 1=male)

Dummy 0.718 0.615 0.767 2.345**

Instrumental

Soil fertility Dummy variable for perceived soil fertility

(0=not fertile, 1=fertile)

Dummy 0.4947 0.4868 0.2872 −2.279**

Storage Dummy variable of storage facilities adequacy

(0=inadequate, 1=adequate)

Dummy 0.4955 0.500 0.492 −0.236

Source: Authors’ own computation.

*; ** and *** indicate p-values significant at 1, 5, and 10% levels, respectively; t-test was used for continuous variables and chi-square for categorical variable.

this could be effectively achieved when policy interventions take
center stage. A similar approach can be adopted to support
gender inclusive CSA adoption pathways. Table 2 also highlights
that there were no differences in the level of farming experiences
but differences in the sorghum production experiences for the
adopting and non-adopting farming households in the study
area. However, similar studies show the likelihood of adopters to
have more experience in both the general agricultural practices
and specifically sorghum production. The diversity of livelihood
sources has a bearing on how the decision to adopt emerging
technologies will be made. In the study, the adopters had
significantly higher income diversity and crop diversity as shown
by the indices computed for the two clusters in Table 2.

Results also show that the adopters of the blended seed-
fertilizer technology fetch higher prices (US$40.13) in the
markets relative to the non-adopting counterparts (US$33.61).
The variability in the prices can be attributed to the pricing

adopted by buyers who highly grade the produce from adopters
based on a preconceived perception that they produce higher
quality grain. Some of the buyers are also contracted to processors
who are willing to pay higher prices for the organically produced
sorghum grain. In the same way, they also interact with more
buyers (∼4.0) in the markets as opposed to the non-adopting
farmers (∼3.0). This can be explained by the motivation to
search for buyers in more rewarding markets for the higher
outputs produced at the farms. These wider interactions also
create awareness among the producers on the prevailing market
prices, thus enhances their negotiating leverage. And with no
immediate alternative for the preferred organically produced
grain, the buyers end up offering higher prices in the markets.
The finding supports findings by Bahta and Enoch (2019) who
also reported a similar pattern in a study which recommended
the use of policy interventions among vegetable farmers in
South Africa. The results in Table 2 also show no differences in
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TABLE 3 | Full information maximum likelihood estimates of productivity and income.

Blended CSA adoption Yield/ha Blended CSA adoption Income/ha

Adopters Non-adopters Adopters Non-adopters

Variable Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient

Arable land 1.046* (0.608) 2.150*** (0.749) −3.411 (2.196) 0.014* (0.004) 0.35* (0.019) −0.49* (0.023)

Log costs −0.03* (0.008) −0.242***(0.037) 0.193*** (0.0345) −2.080* (0.677) −0.248* (0.131) 0.057 (0.064)

Age 0.02 (0.012) −0.67 (3.061) −0.150 (0.1049) −0.031 (0.013) 0.07 (0.617) −0.177 (0.107)

Dependency −0.01 (0.007) −0.98 (2.001) −0.221** (0.091) 0.022*** (0.008) 0.52 (0.405) 0.96 (0.779)

Education −0.06 (0.046) 0.107* (0.049) −0.322 (0.225) −0.054 (0.047) −0.876** (0.279) −2.74 (3.683)

Draft 0.13** (0.059) 0.347 (0.273) −0.034*** (0.010) 0.123*** (0.064) 1.24 (2.656) −0.363* (0.098)

Gender −0.41 (0.346) −0.726 (0.503) 0.033 (0.048) −0.642 (0.399) −0.474 (0.321) −0.2714 (0.2501)

Experience −0.69 (0.279) 2.291*** (0.3632) −0.225 (0.243) 0.332*** (0.089) −0.158 (0.104) 0.17 (0.980)

Aid value 0.01 (0.008) −1.876** (0.648) −1.38** (6.552) 0.031 (0.008) −0.934** (0.281) 0.65 (0.754)

Associations 0.24*** (0.140) 0.156** (0.064) −0.037 (0.0319) −0.423* (0.161) −0.145 (0.106) −0.555** (0.208)

Distance 0.03 (0.004) 0.51 (0.549) −3.52 (3.268) 0.014*** (0.006) 0.246** (0.111) 1.12* (0.367)

Payment time −0.555** (0.124) −1.12 (2.508) −3.212** (1.004) −0.013 (0.020) −0.19 (0.509) 3.31** (1.395)

Soil fertility −1.40** (0.585) −1.151** (0.339)

Storage −0.699** (0.279) −1.194*** (0.349)

Constant 6.69** (2.750) −0.717*** (0.278) −1.153*** (0.327) 0.992*** (0.3434) 4.69*** (0.4745) 2.56*** (0.4352)

rho0 −0.514 (0.1566) −0.552 (0.1680)

rho1 −0.1654 (0.2181) – 0.187 (0.2736)

/lns0 0.135*** (0.044) 3.744*** (0.2098)

/lns1 0.593*** (0.064) 4.461*** (0.0828)

/r0 0.568** (0.213) 0.979** (0.4481)

/r1 0.167 (0.224) 0.349 (0.7052)

Wald chi2 (12) 69.26*** 64.23***

Log likelihood −495.711 −514.601

LR test of indep. Eqns. 9.12** 7.16**

No. of obs. 380 380

Source: Authors’ own computation.

*; ** and *** indicate p-values significant at 1, 5, and 10% levels, respectively; z-values estimated on robust standard errors in parenthesis.

variables such as payment time, which shows the time between a
transaction and the point of payment, the distance to the markets
and the associations. In as much as there are some indicators
of differences across variables, this cannot be objectively used in
decision making since these are isolated summaries. Modeling
the impact of the adoption decision using ESR can therefore be
useful in informing the decisions while guided by the empirical
evidence from the mid-Zambezi valley of Zimbabwe.

Empirical Results
The empirical analyses were done using STATA 15 statistical
package where the adoption and outcome (yield/ha and
income/ha) equations are jointly estimated using full information
maximum likelihood approach. Table 36 shows results of the
ESR with the selection equation and the equations for the two
regimes (Equations 3, 4) as explained in earlier sections. The

6The variables, sigma, /lns1, lns2, /r1, and /r2, are ancillary parameters used in
the MLE procedure. Sigma1 and Sigma 2 are the square roots of the variances of
the residuals of the regression part of the model and lnsig is its log. r1 and r2 are
the transformation of the correlation between the errors from the two equations
(Lokshin and Sajaia, 2004).

selection equation is shown in the first columns and results
are explained as the normal probit model. We included the
categorized percentage of fertile land available for the farmer (soil
fertility) and adequacy of storage facilities as valid instrumental
variables in the selection equation to assure identification (Lee,
1982; Ngeno, 2017).

The instruments, while they are uncorrelated with the two
dependant variables (selected outcome indicators of income/ha
and yield/ha), they are also highly significant (p < 0.01) in
both selection models and hence we conclude that they are
valid. A strong negative co-relationship with the adoption
decision shows that farmers who have higher proportions
of fertile land are less likely to adopt the CSA practice of
using emerging varieties and inorganic fertilizers. This may
be because there is more competition for fertile land with
other major crops such as maize which is highly supported
by the government and its agents (Sinyolo, 2020). Farmers
with adequate storage facilities are also more likely to adopt
the technology in anticipation of incurring less post-harvest
losses after generating higher yields. This offers opportunities for
tapping into market windows during the lean season phases and
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fetch higher prices since commodities will be in shortage and
prices more favorable.

Based on the selection criterion shown in the first column of
Table 3, the most important factors affecting the adoption of the
blended seed-organic fertilizer technology as a CSA strategy at
the household level are arable land, variable costs, dependency
ratio, education, availability of draft power, experience in
sorghum production, value of aid, associations, distance to the
market, payment time. The availability of more arable land has
the propensity to significantly (p < 0.1). This can be explained
by the patterns where the available land facilitates access to space
to try out new technologies without compromising the farmer’s
land allocation plan, thus reducing the exposure to possible
failure of the technology. Bale et al. (2013) concurs with this
viewpoint and noted that, reduction in risks of crop failure is
also another benefit which emanates from the availability of
land where diversity in crop production helps to spread the
risk tendencies. This is a fundamental outcome since there is
scope for land reallocation among smallholder farmers toward
the intensive producers from a policy perspective to target the
production of sorghum, especially given the nature of land rights
in these communities.

Associations to which household members belong has a
positive bearing on the CSA adoption decision as shown in
Table 3. This is because of the ability of networking arrangements
to take place and information on the costs and benefits of these
technologies discussed. The result support findings by Mutenje
et al. (2016), Mapfumo (2017), and Baiyegunhi et al. (2022) who
alluded that associations are hubs of information which may
be critical in exposing farmers to new production systems and
viable markets thereby catalyzing adoption prospects. Nciizah
et al. (2021) showed that understanding this can facilitate
the design of climate change adaptation strategies in the
drylands of Zimbabwe. The results also show that availability
of effective draft power has a positive and significant effect
on the adoption decision. As such, rational farmers who
have access to reliable draft power are more likely to adopt
emerging productivity enhancing technologies. The variable
assures timely land preparation which also plays an integral
role in enhancing the performance of agricultural activities
especially in the drylands where rainfall unpredictability is
higher. In conservation agriculture studies by Nyanga (2012)
and Abdulai (2016), similar observations were made where the
multi-purpose uses of draft power in rural farming communities
of southern Africa, such as for transporting inputs from
markets and produce to the markets also played a part in the
adoption decision. Tapping into this variable from a policy
angle, as alluded to by Smale et al. (2018) can be done
through livestock revolving schemes in the drylands with the
aim of boosting the livestock herd and grease the production
of sorghum.

In the selection model, as the variable costs increase, the
likelihood of adopting emerging CSA technologies are observed
to decline. This may be because, farmers who experience higher
variable costs of production tend to shun these emerging
technologies and possibly opt for alternative practices which are
more cost effective. This is particularly so since variable costs

will increase as the scale of production increases, thus crowding
out prospects of adoption as driven by additional increases in
land allocated toward the crop will also pull with it the variable
costs structure and reduce the margins. This finding corroborates
the study by Martey et al. (2021) who reported that, in farming
systems, production costs are also directly related to the net
benefits and need to be managed at both the operational and
policy levels Makindara et al. (2013) weighs in and suggest that
market mechanisms need to be readjusted to accommodate these
peripheral crops if high value chains such as the clear beer chain
are to generate value for stakeholders. These are critical insights
into how the reduction of production costs can drive income
levels up.

The dependency ratio has a positive and significant effect
on the decision to adopt the blended CSA practice by the
farmer. Households with larger dependency bases are more
likely to be willing to experiment with emerging technologies
with the hoping of getting higher yields for food and income
needs. This is consistent with the findings and reasons of
Ng’ombe et al. (2017) who reported the higher incidences
on families with dependent members being more involved
in conservation farming and getting higher revenues in the
process. This isolates the need for oriented policies which aim
to cushion the farmers with larger dependency ratios through
for example proportional explicit subsidies. Payment time is
reported to have a negative and significant effect on the farmer’s
proclivity to adopt the blended CSA technology. If the target
crops’ marketing arrangements are open to delayed payments in
existing markets, then farmers will not be motivated to adopt
the technology regardless of the other benefits such as yield and
income gains. This is supported by Suresh et al. (2021) when
they observed that some climate change adaptation strategies
were less adopted because the output from their systems had
challenges with payment arrangements for supply delivered
to the markets. Thus, should motivate strategies which target
price efficiency in agricultural market through moral suasion of
legal proclamations.

The results for the two regime equations of adoption and
non-adoption are shown in the second and third columns of
Table 3. Variable costs emerge as a highly important determinant
in both regimes for the yield per hectare cultivated. The
same can be said for the arable land variable in relation to
income per hectare cultivated. However, the income effect is
relatively higher (0.49) for non-adopters as compared to the
adopters (0.35). Sinyolo (2020) postulates that, as a way of
looking into the future, this might act as a disincentive for
the present non-adopters to migrate into the adoption cluster
as they will lose a net benefit in the process. However, the
variable cost structure shows that as the variable increases, then
the income for the non-adopters decrease at a steeper rate
relative to the yield gains. As such, assuming favorable output
market prices, as currently offered by the government as an
additional support package, the net effect based decision from
yield and variable cost will be for farmers to adopt the emerging
CSA technologies.

The results also show that for the two regimes, under income
per hectare, the distance to the markets, value of aid, experience
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TABLE 4 | Average treatment effect of adoption on productivity and household income.

Index Productivity (kg/ha) Income ($/ha)

Estimate AI Robust Std. Err. z value Estimate AI Robust Std. Err. z value

ATT 243.598 124.081 1.80* 99.893 55.499 1.96**

ATU −232.125 108.5782 2.14** −58.958 28.663 2.06**

ATE 241.712 121.525 1.99** 93.164 50.455 1.85*

Source: Authors’ own computations.

* and ** indicate p-values significant at 1 and 5% levels, respectively.

and education are important determinants. As opposed to aprior
expectations, when the distance to the market increases, the
income also increases. This can be attributed to the observations
from the study area which showed that distant markets are the
ones which offer higher prices. As such the observed model
outcome is in tandem with these observations while defying the
existing hypothesis of a negative relationship between distance to
the markets and income. Evidence from similar previous studies
also report patterns in which experience with local markets
show that they are not as lucrative as external markets (e.g.,
Martey et al., 2021). Decentralization of these markets can help to
reduce the distance between buyers and sellers. Alternatively, the
sorghum value chain actors may also invest in digital marketing
alternatives. Thus, reaching out to a wider range of clients.
The value of aid is also reported as an important factor when
outcomes about possible gains in yield and income are made.
Access to aid packages will reduce the burden of searching for
and accessing inputs, thus reduces the transaction costs (Maina
et al., 2015). These costs are reported by Hamukwala et al. (2010)
need to be managed even from external to the farmer’s plot so as
to boast productivity and income.

The payment time is a significant consideration for non-
adopters in both the productivity and income clusters. However,
the direction of effect for the two regimes is different, and it is
positive in the former and negative in the latter outcome. The
variable is however insignificant in the adopters’ decisions in
contrast to findings by Suresh et al. (2021) who reported higher
income for farmers who were paid at a later stage. This can
be attributed to the likelihood that, the payment time as well
as the modes used are not considerably different among the
respondents in these clusters.

The treatment effects estimates for the adoption of blended
seed-fertilizer technology on productivity and household income
are reported in Table 4.

The Average Treatment Effect on the Treated (ATT) is
a measure of the difference between the productivity and
household income of the adopting units and the values, they
had not adopted the blended CSA. Results of the ATT shows
that the productivity for the treated group of farmers is
positive (243.598) and statistically significant. The same can
be said for the household income which is positive (99.893)
and statistically significant. This implies that, the blended CSA
adopting households would have been worse off in terms of
income and productivity had they decided not to adopt the
blended CSA package. The adoption effect of the technology
on farmer’s income/ha and yield/ha is approximately a 30.3 and

25.8% increase, respectively. Similarly, results from Table 4 show
that, using the Average Treatment Effect (ATE) outcomes, as
derived from ESR, the non-adopting households would have
attained income and productivity gains had they adopted the
blended CSA technologies. The Average Treatment Effect on
the Untreated (ATU), measures the difference between the
productivity and household income of the non-adopters and
the associated counterfactuals. The estimates account for the
selection bias, in contrast to the mean differences reported
in Table 2. Results show that, the ATU is negative for both
productivity and household income with values of −232.12
and −58.96, respectively. These findings reveal that adopters of
the blended CSA package would have been worse off, in both
productivity and income terms, had they opted not to adopt the
package, while the non-adopters would have also benefited if they
had opted for the adoption pathway.

The findings, as highlighted in Table 4 show that, the
adoption of blended improved sorghum seed and partial-
organic fertilizer CSA technology has a significant effect on
both the productivity and household income of the adopting
households. This result concurs with other studies, which also
reported the gains from adoption of the different dimensions
of CSA adoption (Musara and Musemwa, 2020; Mujeyi et al.,
2021). As reported by Ghimire and Huang (2015) in Nepal,
farmers who adopted improved maize varieties generated
household wealth as opposed to the non-adopting counterparts.
A study by Mujeyi et al. (2021) on the impact of CSA
on household welfare in smallholder integrated crop–livestock
farming systems also confirmed a robust relationship between
food security, income and CSA adoption. It therefore shows
that, the CSA interventions implemented in the smallholder
farming societies have the potential to support gains among
the adopting households in various dimensions including
productivity and income. Assuming that the income/ha and
yield/ha are the core desired objective for the farmers, then
adopting the blended improved sorghum seed and partial-
organic fertilizer package technology will be more valuable as
they are likely to gain from the adoption as compared to the state
of non-adoption.

CONCLUSIONS AND IMPLICATIONS FOR
POLICY

The study aim was to examine the impact of adopting farmer
initiated emerging CSA practices in the form of a blended
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improved sorghum seed variety and partial-organic fertilizer
pack on productivity and net income among smallholder
households in the drylands of Zimbabwe. Based on results from
an ESR model, it can be concluded that, a combination of farm
specific factors (arable land, variable costs) and external factors
(distance to the market, value of aid) have a bearing on the
adoption decision and the associated impact on productivity
and income for the reviewed technology. This intricate matrix
of determinants shows the crosscutting nature of these driving
factors and as such the associated complexity of managing
technologies through the adoption and impact management
lens. Based on the average treatment analysis, it can also be
reported that farmers who decide to adopt the CSA pack are
relatively better off in terms of productivity and income and thus
offering an incentive for adoption beyond the current coverage.
In light of the conclusions, the starting point of intervention
should center on multi-dimensional infrastructural development
initiatives such as seed banks, information hubs and storage
facilities which unlock the avenues for smallholder farmers
in marginalized drylands to interact efficiently and effectively
with link-agents of emerging technologies. The results could be
more generalizable if study focused on a national level scale
of the analysis while using a multinomial ESR for analysis. To
support this, additional research can also be done on the human
capital development options and how they affect the Indigenous
Technical Knowledge (ITK) based entrepreneurial capabilities
of the smallholder farmers in the framework of scaling out
the technology.
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