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Orchards in acid soils are at risk of magnesium (Mg) deficiency which negatively affects

the plant growth, yield, and quality. However, the impacts of Mg supplementation on

fruit yield, quality, and environmental and economic benefits have only been rarely

addressed. We conducted 15 pomelo (Citrus grandis L.) orchard trials in South China

to assess more efficient integrated nutrient management (INM) practices, including

local farmer fertilization practices (FP; average application rate of nitrogen, phosphorus,

and potassium were 1,075 kg N ha−1, 826 kg P2O5 ha−1, and 948 kg K2O ha−1,

respectively), optimum fertilization practice (OPT; average application rate of nitrogen,

phosphorus, and potassium were 550 kg N ha−1, 295 kg P2O5 ha−1, and 498 kg K2O

ha−1, respectively) and optimum fertilization supplemented with Mg (OPT+Mg; average

application rate of Mg was 196 kg MgO ha−1). The results showed that the yield, total

soluble solid-to-titratable acidity ratio, and economic benefits under OPT practice were

not significantly different from those of FP, while those of OPT+Mg were significantly

higher than those of FP, by 8.76, 8.79, and 15.00%, respectively, while titratable acidity

contents were significantly lower by 7.35%. In addition, compared with those from FP, the

energy inputs and greenhouse gas (GHG) emissions from OPT were 31.00 and 26.48%

lower, and those from OPT+Mg were 26.71 and 23.40% lower, respectively. Compared

with those of OPT, the marginal efficiency of energy, GHG emissions, and capital of

Mg under OPT+Mg were reduced by 62.30, 44.19, and 21.07%, respectively. Overall,

adopting OPT+Mg for pomelo production could further enhance yield, fruit quality, and

economic benefits while reducing the environmental burdens.

Keywords: magnesium fertilizer, yield, energy balance, greenhouse gas emission, economic benefit

KEY POINTS

- Agronomic-environmental-economic indicators of pomelo production are evaluated.
- Integrated nutrient management (INM) practices can increase fruit yield and quality.
- INM practices reduced energy inputs by 23–27% and GHG emissions by 27–31%.
- INM practices increased the economic efficiency of energy inputs and GHG emissions.
- Magnesium helps to obtain more and better products with lower environmental costs.
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INTRODUCTION

Excessive nitrogen (N), phosphorus (P), and potassium (K)
fertilizer application in agricultural production has caused severe
negative environmental impacts, such as soil acidification (Guo
et al., 2010), eutrophication (Conley et al., 2009; Huang et al.,
2017), decreased air and water quality (Liu et al., 2013), and
global warming (Paerl and Scott, 2010; Steffen et al., 2015).
Integrated nutrient management (INM), therefore, is urgently
required for the sustainability of higher crop production while
improving the soil health and environmental safety (Verma et al.,
2010; Yu et al., 2017), which has also been proven to be achievable
and highly successful (Chen et al., 2014; Cui et al., 2018).
Currently, INM practices are applied to major cereal crops (Nath
et al., 2011; Jiao et al., 2018) and greenhouse vegetables (Yang
et al., 2016; Wang et al., 2021). However, little is known about the
effects of INM in orchard systems. Therefore, it is imperative to
address the issues and challenges related to nutrient management
in fruit production systems to overcome the problems of poor
yield and quality.

Pomelo (Citrus grandis L.) is the third major type of citrus
in production after mandarin (Citrus reticulata L.) and oranges
(Citrus sinensis L.) (Li et al., 2015). Pinghe County is a key
area of pomelo cultivation in China (Wei et al., 2020). However,
excessive fertilization has caused various problems in pomelo
orchard, such as sharp declines in fruit and soil quality and with
a high product carbon footprint in recent years (Zhang et al.,
2003; Li et al., 2015; Guo et al., 2019; Chen et al., 2020). Large
amounts of N, P, and K fertilizer are applied in this region, but
soil magnesium (Mg) deficiency is typically ignored. In contrast,
Mg deficiency frequently occurs in orchards (Wallace, 1940;
Diao et al., 2013) and can affect yield (Li et al., 2015; Dechen
et al., 2016). However, the impacts of Mg on yield and quality
improvement in agricultural products have been overlooked (Yan
and Hou, 2018; Guo et al., 2020). Recently, a meta-analysis of
data from 99 field studies revealed that Mg application could
increase crop yield by∼8.5% (Wang et al., 2020). Therefore, INM
for citrus production must address the management of macro-
elements and secondary macronutrients such as Mg during crop
production system (Hien et al., 2017).

In China, energy consumption and greenhouse gas (GHG)
emissions caused by agriculture account for approximately
6 and 17% of the national total energy consumption and
GHG emissions, respectively (Dong et al., 2008; Lin and Fei,
2015). More agricultural production will lead to greater energy
consumption and carbon emissions (Koondhar et al., 2020).
Generally, fertilizer is considered an important factor influencing
energy consumption and GHG emissions in different agricultural
crop production systems (Moradi et al., 2018; Baran et al., 2020;
Khanali et al., 2021). Whereas, reducing fertilizer application is
known to reduce energy inputs and GHG emissions (Chen et al.,
2020), but it remains unclear whether adding Mg fertilizer with
reduced fertilizer inputs would further amplify this efficiency
or not?

Overall, in addition to on-farm evaluations of fruit products
and economic benefits, understanding and quantifying the
environmental costs of fruit production under different nutrient

management systems may provide additional information to
help identify greener and more efficient INM strategies (Wang
et al., 2018). Therefore, this study aims to demonstrate a
suitable fertilization strategy for the sustainable production
of pomelo in terms of yield, fruit quality, energy inputs,
GHG emissions, and economic benefits and to provide a
reference for highly intensive and potentially Mg-deficient citrus
production worldwide.

MATERIALS AND METHODS

Study Area
The study area is located in Pinghe County (24◦02

′
-24◦35

′

N, 116◦54
′
-117◦31

′
E, and 10–1,545m above sea level),

Zhangzhou city, Fujian Province, Southeast China (Figure 1).
It is characterized by a subtropical oceanic monsoon climate
with an annual average temperature of 17.5–21.3◦C. The annual
precipitation is approximately 1,600–2,000mm. The soil types in
this study area are ferralsols, classified as red soils in the Chinese
soil classification (Smith, 2014). Low-elevation mountains and
hills are the main landforms in Pinghe County; these landforms
are distributed mostly in the valleys and intermountain regions
of the Huashanxi Basin, accounting for 91.5% of the total
area (www.pinghe.gov.cn).

Field Experimental Design
Fifteen pomelo orchards trials in total were conducted during
2017–2020 in Pinghe County (Figure 1) to explore the effects
of reduced chemical fertilizers input and their integrated
use with Mg fertilizer on the yield, quality, energy balance,
GHG emissions, and economic benefits of pomelo production
during the entire production and packing process. Urea,
superphosphate, potassium sulfate, and magnesium sulfate were
used as the sources of N, P2O5, K2O, and MgO in fertilizer,
respectively, and were applied to pomelo orchards in each
growing season (Figure 2). The tested nutrient management
practices included local farmer practices (FP; in 10 orchards
with 95 trees) as the control and INM strategies, namely, an
optimum NPK treatment (OPT; in 13 orchards with 105 trees)
and the optimumNPK treatment withmagnesium (OPT+Mg; in
13 orchards with 105 trees), as the experimental treatments. The
fertilizer application rates for the OPT strategies were determined
by agronomist recommendations based on the target yield and
the soil fertility level, which varied from field to field (Obreza
andMorgan, 2008; Li et al., 2019). Themean fertilizer application
rates for N, P2O5, K2O, and MgO have been shown in Figure 2.
Except for the differences in fertilizer use, all management
methods applied to the orchards were the same. The detailed
information about the fertilizer usage and other material (energy)
inputs are shown in Supplementary Table 1. Titratable acid (TA)
was determined by the titration method (Jiang et al., 2004), and
the total soluble solid (TSS) concentration was measured by
a hand-held Brix meter (Japan, PAL-1). The soil physical and
chemical properties of the experimental sites have been shown
in Supplementary Table 2.
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FIGURE 1 | Geographical distribution of field experimental sites within Pinghe County, China, in 2017–2020.

System Boundaries and Functional Units
The system boundaries included the pomelo production
upstream stage, the planting stage, and the postharvest stage
(Figure 3). The upstream stage included all inputs used in
pomelo production, such as chemical fertilizers, farmyard
manure, pesticides, paper bags (for fruit bagging), diesel
fuel, and human labor (considered only as an energy flow).
The postharvest stage included electricity, packing bags,
and human labor (considered only an energy flow). The
energy output in the planting stage was highly dependent
on the pomelo harvest, and the GHG emissions (in
carbon dioxide equivalents; CO2 eq) from the planting
stage included direct nitrous oxide (N2O), indirect N2O
(ammonia (NH3) emissions, and nitrate (NO−

3 ) runoff
and leaching), and methane (CH4) (IPCC, 2019; Chen
et al., 2020). The functional units for pomelo production
were one ton (t) of fresh product and one hectare (ha)
of orchard area.

Energy and GHG Emission Quantification
The energy inputs, energy outputs, and net energy
outputs of pomelo production were estimated using the
following equations (Equations 1–3). The energy input

per unit area (ha) was calculated as the sum of the
partial energy equivalent of each input used in GJ ha−1

(GJ= 109 J).

Energy Input (GJ ha−1) =
∑

(II × EEi) (1)

Energy Output = Yield× EEpomelo (2)

Net Energy Output = Energy Output− Energy Input (3)

Where I represent the kind of input, Ii is the amount
of the ith input, EEi is the energy equivalent of the ith
input, and EEpomelo represents the energy equivalent of the
pomelo output.

The GHG emissions (t CO2 eq ha−1) were calculated using
the following equations (Equations 4–9). The upstream
GHG emissions per unit area (ha) were calculated as
the sum of the partial CO2 emissions of each input
used in pomelo production. The GHG emissions in
the planting stage were estimated as described in Chen
et al. (2020). The postharvest GHG emissions per unit
area (ha) were calculated as the sum of the partial
CO2 emissions from each input used in the pomelo
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FIGURE 2 | Chemical fertilizer application time and amount in the different treatments of pomelo production. The black error bars in the figure indicate the overall

standard deviations (SDs). Different letters above histogram bars indicate statistically significant differences at P < 0.05.

postharvest stage.

GHG Emissions = GHG upstream + GHG plant

+ GHGpostharvest (4)

GHG upstream =
∑

(Ij× EFj) (5)

GHG plant = GHG EmissionN2O

+ GHG EmissionCH4 (6)

GHG Emission N2O = {CN × (1.2%+ 10.8%× 0.01+ 10.0%

× 0.0075)+MN × (0.6%+ 29.3%× 0.01)}

×
44

28
× 265 (7)

GHG Emission CH4 = MC × 0.20%×
16

12
× 28 (8)

GHG postharvest =
∑

(Ik × EFk) (9)

Where j represents the type of upstream input; Ij is the amount
of the jth input; EFj is the emission coefficient of the jth input;
CN and MN are the quantities of N in chemical fertilizer and
farmyard manure applied during the annual production season,
respectively; MC represents the total carbon input from manure
application; 1.20% (Xie et al., 2014), 10.80% (Ge et al., 2011),
and 10.00% (Qian et al., 2012; Ventura et al., 2013) are the
scaling factors for N2O, NH3, and NO−

3 emissions or runoff
and leaching from chemical N fertilizer application; 0.60% and
29.30% represent the scaling factors for N2O and NH3 emissions
from farmyard manure application (Zhang et al., 2017); 0.01
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FIGURE 3 | The system boundaries of pomelo production.

and 0.0075 are the conversion coefficients of NH3 volatilization
and NO−

3 runoff and leaching, respectively, in N2O equivalents
(Eggleston et al., 2006); 44/28 is the molecular conversion factor
of N2 to N2O; 265 is the global warming potential of N2O for
a 100-year period (Change, 2014); 0.20% is the CH4 emission
coefficient of farmyard manure applied in the field (Wan et al.,
2014); 16/12 is the molecular conversion factor of C to CH4; 28
is the global warming potential of CH4 for a 100-year period
(Change, 2014); k represents the type of postharvest input; Ik is
the amount of the kth input; and EFk is the emission coefficient
of the kth input. All energy equivalents and CO2 emission
coefficients used are listed in Table 1.

The environmental cost efficiency was calculated with
Equation (10). To measure the benefits of Mg fertilization,
three indicators were set up and modeled on the concept of
marginal benefit in economics (Slemrod and Yitzhaki, 2001):
marginal energy efficiency, marginal GHG emission efficiency,
and marginal capital efficiency (Equation 11). These three
indicators represent the energy input cost, GHG emission cost,
and capital investment cost of the increased yield due to
Mg fertilization.

Environmental cost efficiency =
U′

Yield
(10)

Marginal efficiency =
U′

OPT+Mg − U′
OPT

YieldOPT+Mg − YieldOPT
(11)

where U refers to energy input (GJ), GHG emissions (t CO2

eq), and capital investment (million CNY, only for marginal
efficiency calculation).

Data Analysis
Data processing and visualization were performed using
Microsoft Office Excel 2019, ArcGIS 10.2, and Easy Paint
Tool SAI 1.2.0. Note that nearest-neighbor interpolation in the
curve fitting tool of MATLAB R2019b was used to make the
contour map of energy input, GHG emissions, and economic
benefits. All statistical analyses were conducted using SPSS 21.0.
One-way analysis of variance (ANOVA) and least significant
difference (LSD) tests were used to detect the differences
among different nutrient managements. The levels of significance
were defined at P < 0.05 (∗), P < 0.01 (∗∗), and P <

0.001 (∗∗∗).

RESULTS

Yield and Quality
The different fertilization treatments significantly affected the
pomelo yield and fruit quality (Table 2). The yield under
OPT was not significantly different from that under FP, but
OPT+Mg resulted in 8.76% higher yield than FP. The number
of hanging fruits was the decisive factor in this significant
difference. Compared with FP, OPT, and OPT+Mg did not
affect the edible rate and TSS concentration, while OPT+Mg
treatment significantly reduced the TA concentration by 7.35%
and increased the TSS/TA by 8.79%.

Energy Balance
The energy input was highest under FP (176.29 GJ ha−1),
while inputs of 129.60 and 135.04 GJ ha−1 were required
for OPT and OPT+Mg, respectively (Figure 4A). Chemical
fertilizer and paper bags were the major sources of energy
input in all fertilization treatments (Figure 4B). The average
chemical fertilizer and paper bag energy inputs of FP,
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TABLE 1 | Energy equivalents and greenhouse gas (GHG) emission coefficients in agricultural production.

Inputs and outputs (unit) Energy equivalents (MJ unit−1) Emission coefficient (kg CO2 eq kg−1)

Inputs

Human labor (h) 1.96 (Mobtaker et al., 2012) –

Nitrogen (kg) 66.14 (Esengun et al., 2007) 8.30 (Zhang et al., 2013)

Phosphorus (kg) 12.44 (Unakitan et al., 2010) 2.33 (Chen et al., 2015)

Potassium (kg) 11.12 (Mobtaker et al., 2010) 0.66 (Chen et al., 2015)

Magnesium (kg) 6.70 (Mihov and Tringovska, 2010) 3.80 (Luong et al., 2018)

Farmyard manure (kg) 0.30 (Bojaca and Schrevens, 2010) 0.20 (Li J. Z. et al., 2016)

Pesticides (kg) 199.00 (Ozkan et al., 2004) 18.0 (Yang et al., 2014)

Diesel fuel (L) 56.31 (Unakitan et al., 2010) 2.76 (Dyer and Desjardins, 2003)

Paper bags (kg) 46.60 (Liu et al., 2010) 1.54 (Chen and Qiu, 2014)

Electricity (kWh) 12.0 (Khoshnevisan et al., 2013) 0.61 (Khoshnevisan et al., 2013)

Packing bags (kg) 90.0 (Heidari and Omid, 2011) 22.72 (Wang et al., 2017)

Output

Pomelo (kg) 1.90 (Ozkan et al., 2004) –

TABLE 2 | Pomelo yield and fruit quality under the different fertilization treatments (Mean ± SD).

Treatment Pomelo yield

(t ha−1)

Individual fruit

weight (kg)

Number of fruits

per tree

Edible rate (%) TSS concentration

(%)

TA concentration

(%)

TSS/TA ratio

FP 50.12 ± 13.21 b 1.34 ± 0.18 ab 45.64 ± 11.25 b 73.30 ± 6.29 a 10.85 ± 0.78 a 0.68 ± 0.11 a 16.39 ± 2.58 b

OPT 49.05 ± 11.42 b 1.30 ± 0.13 b 46.53 ± 10.54 ab 72.41 ± 6.07 a 10.86 ± 0.98 a 0.66 ± 0.12 ab 16.93 ± 3.58 ab

OPT+Mg 54.51 ± 14.79 a 1.36 ± 0.17 a 49.11 ± 11.62 a 71.51 ± 7.31 a 10.89 ± 0.92 a 0.63 ± 0.11 b 17.83 ± 3.46 a

The edible rate is equal to the percentage of fruit weight accounted for by the pulp. TSS and TA refer to total soluble solids and titratable acidity, respectively. Different letters indicate

statistically significant differences at P < 0.05.

OPT, and OPT+Mg accounted for 51.92 and 19.44%, 35.28
and 26.38%, and 34.89 and 27.66% of their total energy
inputs, respectively.

Compared with the FP treatment, the OPT and OPT+Mg
treatments significantly reduced the energy inputs of the
upstream and planting stages, while no significant difference
was recorded between these treatments (Figure 4C). The highest
energy output for the postharvest stage was observed in
OPT+Mg, but no significant difference was found between FP
and OPT. In addition, the net energy outputs of OPT (−36.40
GJ ha−1) and OPT+Mg (−31.46 GJ ha−1) were also significantly
different from that of FP (−81.07 GJ ha−1). The average energy
efficiency values (Figure 4D) were 2.74 GJ t−1 under OPT and
2.62 GJ t−1 under OPT+Mg, which were significantly lower than
that under FP (3.67 GJ t−1).

GHG Emissions
The GHG emissions from both OPT (18.99 t CO2 eq ha−1) and
OPT+Mg (20.17 t CO2 eq ha−1) treatments were significantly
lower than that from FP (27.52 t CO2 eq ha

−1), and there was no
significant difference between OPT and OPT+Mg (Figure 5A).
The application of chemical fertilizer had the highest impact
on the total GHG emissions, accounting for 63.90, 45.69, and
46.59% of emissions under FP, OPT, and OPT+Mg, respectively
(Figures 5A,B). Packing bags were the second major source of
GHG emissions, accounting for 22.43, 32.86, and 32.64%, and

other emission sources accounted for 13.67, 21.45, and 20.77%
of emissions from FP, OPT, and OPT+Mg, respectively.

The GHG emissions from the upstream and planting stages
under both OPT (12.48 t CO2 eq ha−1) and OPT+Mg (13.29 t
CO2 eq ha−1) were significantly lower than those under FP
(21.01 t CO2 eq ha

−1), while there were no significant differences
between OPT and OPT+Mg (Figure 5C). The GHG emissions
from the postharvest stage were not significantly different among
the three treatments. In this study, the GHG emission efficiency
from FP was 0.58 t CO2 eq t−1, which was significantly higher
than those from OPT and OPT+Mg (by 40.80 and 43.17%,
respectively) (Figure 5D).

Economic Benefits
The economic costs of FP were significantly higher than those
of OPT and OPT+Mg (by 13.49 and 4.97%, respectively),
and the cost of OPT was significantly lower than that of
OPT+Mg (Figure 6A). Human labor had the highest impact
and represented 49.52, 55.02, and 53.57% of the total costs of
FP, OPT, and OPT+Mg, respectively (Figures 6A,B). Compared
with FP, the proportion of chemical fertilizer costs in OPT and
OPT+Mg decreased from 21.56% to 11.39–14.52%. In addition,
pesticides (accounting for 12.58–13.73% of costs) and paper
bags (accounting for 11.01–12.56% of costs) were also important
sources of economic costs.

The costs from the upstream stage to the planting stage
of FP were significantly different from those of OPT and
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FIGURE 4 | Different sources (A) and proportions (B) of energy input, energy input and output (C), and energy efficiency (D) under different fertilization treatments in

pomelo production. The black error bars in the figure indicate the standard deviation (SDs). Different letters above histogram bars with the same color indicate

statistically significant differences at P < 0.05.

OPT+Mg, while the highest costs in the postharvest stage
were observed under the OPT+Mg treatment. The income of
OPT+Mg was significantly higher than that of FP and OPT,
by 10.46 and 10.80%, respectively (Figure 6C). The economic
benefit of OPT+Mg (0.23 million CNY ha−1) was significantly
higher than that of FP (0.20 million CNY ha−1) and OPT (0.21
million CNY ha−1). The income-to-cost ratio was 4.62 under
OPT and 4.72 under OPT+Mg, both significantly higher than
that under FP (4.09) (Figure 6D).

Coupled Analysis of Yield, Energy Input,
and GHG Emissions
Compared with FP, OPT and OPT+Mg resulted in the
same yield with lower energy inputs and GHG emissions
(Figures 7A,B). Although there was no significant linear
relationship between economic benefit and GHG emissions or
energy input (Figures 7C,D), the contour map of yield-energy
input-GHG emissions clearly shows that OPT+Mg is better than
OPT and FP and that OPT+Mg provided the highest economic

benefits with the lowest energy inputs and GHG emissions
(Figure 8).

DISCUSSION

Integrated nutrient management (INM) is a feasible way to
receive future economic and environmental benefits from
agricultural production (Chen et al., 2014; Zhang et al., 2016;
Cui et al., 2018). Our results suggest that Mg management
during INMpractices is integral to promoting green, high-quality
development in agricultural systems.

Strengthening Mg and Optimizing NPK to
Further Increase Yield
To achieve a high yield, smallholders in China often depend
on using large amounts of external inputs (especially high
levels of N, P, and K fertilizers) (Zhang Q. et al., 2020).
Empirical evidence has shown that when fruit yield nears the
theoretically highest level, the yield responses to additional
N, P, and K fertilizer application become almost nil (Zhang
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FIGURE 5 | Different sources (A) and proportions (B) of greenhouse gas (GHG) emissions, GHG emissions from different stages (C), and GHG emissions efficiency

(D) under different fertilization treatments in pomelo production. The black error bars in the figure indicate the standard deviations (SDs). Different letters above

histogram bars with the same pattern indicate statistically significant differences at P < 0.05.

et al., 2012; Ahmed et al., 2017), while the secondary
macronutrient element, such as Mg has become the key
factors responsible for further increases in fruit yield,
especially in areas where soil Mg is deficient (Wang et al.,
2020).

According to Li et al. (2019), the recommended rates of N,
P2O5, and K2O fertilizer application to produce one ton of
citrus fruit are 10.4, 5.2, and 8.2 kg on average, respectively.
However, these values in Pinghe County were 21.45 (N), 16.48
(P2O5), and 18.92 (K2O) kg on average in conventional practices
(Figure 2). It indicates that in Pinghe County, farmer knowledge
about the nutrient management needed to meet pomelo nutrient
requirements is very limited (Li Q. et al., 2016; Chen et al.,
2020). The current study showed that the traditional fertilizer
application rate could be reduced by nearly 53% (49, 47, and
64% for N, P2O5, and K2O, respectively) on average without
significantly reducing the pomelo yield (Table 2). Therefore,
this fertilizer reduction measure proved effective for pomelo
production in Pinghe County. This strategy has also been

proven effective for apple orchards in China (Wang et al.,
2016).

As an essential nutrient for plant growth, Mg is involved
in physiological and biochemical processes such as chlorophyll
synthesis, photosynthesis, and enzyme activation (Cakmak and
Yazici, 2010; Chen et al., 2018; Tian et al., 2021). Mg is also
involved in carbohydrate transport from source-to-sink organs;
hence, the excess carbohydrate accumulation in leaves rather
than transported to fruit and grain results from Mg deficiency
(Farhat et al., 2016; Tian et al., 2021). Therefore, an adequate
amount of Mg is particularly required during the period of
reproductive growth (Römheld and Kirkby, 2009). Various
studies have shown that higher Mg concentration enhances the
plant resistance to various environmental stresses such as light,
heat, and drought (Cakmak, 2013; Gransee and Führs, 2013;
Mengutay et al., 2013). Moreover, Mg deficiency also interferes
with N metabolism, which has important implications for crop
production and the environment (Grzebisz, 2013; Zhang et al.,
2021). Therefore, Mg deficiency would affect plant development
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FIGURE 6 | Different sources (A) and proportions of economic costs (B), costs and income (C), and income-to-cost ratio (D) under different fertilization treatments in

pomelo production. The black error bars in the figure indicate the overall standard deviations (SDs). Different letters above histogram bars indicate statistically

significant differences at P < 0.05.

and the formation of yield and quality. However, despite this
recognition, the role of Mg in crop nutrition management has
not received much attention compared to other major nutrients
(Cakmak and Yazici, 2010; Guo et al., 2016).

Mg uptake by plants can be low due to competition from
other cations, including potassium (K+), ammonium (NH+

4 ),
and aluminum (Al3+), especially in acidic soils that are low in
Mg (Gransee and Führs, 2013). The soil survey results showed
that the soil pH of all 44 samples from pomelo orchards in
Pinghe County ranged from 3.5 to 4.9, which is lower than
the optimum range of 5.0–6.5 for pomelo growth (Guo et al.,
2019). Previous research showed that the improvement of crop
production by Mg in acidic soils was three times greater
than that in calcareous soils (Wang et al., 2020). Despite the
importance of Mg, few farmers have considered its role in
pomelo production. Therefore, the positive response of pomelo
yield to fertilizer reduction and Mg fertilizer addition is not
surprising (Table 2; Figure 7). Although the yield under OPT
was not significantly different from that under FP, OPT+Mg
resulted in an 8.77% higher yield than FP (Table 2). Many other

orchard experiments also revealed that Mg enhances the yield
and quality of pear (Fawzi et al., 2010), vine grapes (Zlámalová
et al., 2015), wax gourd (Zhang B. et al., 2020), and pepper
(Lu et al., 2021). In short, to facilitate the sustainable and
green development of agriculture in Mg-deficient regions, it
is necessary to strengthen cooperation among governments,
enterprises, and institutions to guide farmers (Zhang et al.,
2016) to use the Mg fertilizer scientifically while reducing the
application of N, P and K fertilizers.

Environmental Cost Efficiency
The energy inputs and GHG emissions of OPT and OPT+Mg
were significantly lower than those of FP (Figures 4A, 5A)
and were influenced mostly by chemical fertilizer (Figures 4B,
5B). Therefore, reducing fertilizer application is important for
improving energy and GHG efficiency in pomelo production.
These findings are consistent with existing reports that energy
inputs and GHG emissions can be reduced substantially under
advanced INM practices (Chen et al., 2014; Wu and Ma, 2015;
Sarkar et al., 2018; Fathi et al., 2020). Although OPT+Mg slightly
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FIGURE 7 | Linear relationship between yield and GHG emissions (A), yield and energy input (B), GHG emissions and benefit (C), energy input and benefit (D). The

different colors of the scattered dots, lines, shadows, and formulas represent the different fertilizer treatments. The shaded areas represent the 95% confidence

intervals.

FIGURE 8 | Contour maps of energy inputs, GHG emissions, and economic benefits in different fertilizer treatments. (A–C) represent FP, OPT, and OPT+Mg,

respectively. The dotted lines represent the average values of energy input and GHG emissions. The black dots represent the three-dimensional coordinates of the

original data points, and the different numbers on the contour lines indicate the economic benefit values.

increased the energy inputs and GHG emissions in pomelo
production by 4.20 and 6.21% (Figures 4A, 5A), respectively,

the pomelo yield was significantly higher (by 11.14%) than
that under OPT (Table 2). Indeed, the potential of Mg to
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FIGURE 9 | Energy input (A) and GHG emissions (B) per million CNY of economic benefit under different fertilization treatments. The black error bars in the figure

indicate the standard deviations (SDs). Different letters on the histogram bars indicate statistically significant differences at P < 0.05.

FIGURE 10 | Graphical conclusion.
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increase the economic benefits of agricultural production cannot
be neglected. Compared with FP, the economic benefits of
OPT and OPT+Mg were 3.40 and 15.33% higher, respectively,
because of cost savings and income increments (Figure 6A).
Mg application can also improve economic efficiency in other
systems, such as maize and tea gardens (Jat et al., 2018; Huang
et al., 2020).

Further analysis revealed that adding Mg fertilizer can
provide higher economic benefits with lower environmental
costs (Figure 8). In addition, compared with that in OPT,
the marginal efficiency of energy, GHG emissions and capital
of Mg in OPT+Mg were reduced by 62.30, 44.19 and
21.07%, respectively (Table 2; Figures 3–5). INM practices
can increase the economic efficiency of energy inputs and
GHG emissions (Figure 9). The average energy consumption
values needed to obtain one unit of economic benefit were
665.26 and 637.09 GJ per million CNY under OPT and
OPT+Mg, respectively, which were significantly lower than
that under FP (982.05 GJ per million CNY). The GHG
emissions needed to obtain one unit of economic benefit
under FP, OPT, and OPT+Mg were 155.01, 99.40, and
98.27 t CO2 eq per million CNY, respectively. Unfortunately,
very little research has been conducted on the influences
of Mg fertilizer application on energy and GHG emission
efficiency in agroecosystems. Therefore, the present study
provides strong evidence for promoting Mg application in
agricultural production.

Outlook and Limitations
Although we quantitatively evaluated the effects of different
nutrient management strategies on yield, quality, economic
benefits, energy consumption, and GHG emissions in pomelo
production, the present study had several limitations. First,
carbon sequestration in orchard systems (Chen et al., 2020)
was ignored at the research boundary because this was not
the focus of the present study. This will introduce uncertainty
because the capability for carbon sequestration in orchards
depends on fruit tree age (Wu et al., 2012), vegetation, climate,
and management practices (Liu et al., 2011). Second, due to
data and method limitations, we used a set of commonly
used empirical N2O and NH3 emission parameters and NO−

3
runoff and leaching rates. However, reactive N loss and N
surplus have an exponential relationship rather than a linear
relationship (Cui et al., 2013), and N2O, NH3, and NO−

3
losses from fertilizer application are greatly impacted by the
application rate (Ge et al., 2011; Wang et al., 2019), especially in
extremely overfertilized systems. Therefore, the GHG emissions
in this study may be underestimated. Third, fertilization based
on the “4 Rs” (right rate, right source, right time, and
right place) is the critical nutrient management approach for
sustaining crop productivity (Mikkelsen, 2011; Chen et al.,
2020). The findings of this study showed that reducing NPK
fertilizer application while adding Mg fertilizer resulted in higher
yields and better fruit quality with lower environmental costs.
However, the potential for fertilizer reduction and a scientifically
determined appropriate Mg application rate has yet to be
precisely determined.

CONCLUSION

Over fertilization with nitrogen (N), phosphorus (P), and
potassium (K) in pursuit of higher economic benefits is
very common in the fruit production system of China. In
the present study, different nutrient management strategies
for pomelo production were evaluated based on yield, fruit
quality, energy balance, greenhouse gas (GHG) emissions,
and economic benefits. The results suggested that reducing
conventional N, P, and K fertilization by 53% is feasible.
This reduction would increase the efficiency of energy input
and GHG emissions in pomelo production systems. Moreover,
adding magnesium (Mg) while reducing N, P, and K fertilizer
application could further mitigate the environmental costs
and enhance the yield, fruit quality, and economic benefits
(Figure 10). Therefore, China’s traditional intensive, high-input
nutrient management practices in fruit systems urgently need
to be changed. A key focus of the future green development
of fruit production will be how to obtain the highest
return with the lowest input, and Mg could prove to be a
key component.
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