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Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7

are the major foodborne pathogens that have been implicated in outbreaks

related to consumption of contaminated cantaloupes. Current chlorine-based

decontamination strategies are not completely e�ective for inactivating the

aforementioned pathogens on cantaloupes, especially in the presence of

organic matter. This study investigated the e�cacy of eugenol nanoemulsion

(EGNE) wash treatments in inactivating L. monocytogenes, Salmonella spp.,

and E. coli O157:H7 on the surface of cantaloupes. In addition, the e�cacy

of EGNE in inhibiting the growth of the three pathogens on cantaloupes

during refrigerated and room temperature storage of 5 days was investigated.

Moreover, the e�ect of EGNE wash treatment on cantaloupe color was

assessed using aMiniscan
®
XE Plus. The EGNEwas preparedwith either Tween

80 (TW) or a combination of Gum arabic and Lecithin (GA) as emulsifiers.

The cantaloupe rind was washed with EGNE (0.3, 0.6, and 1.25%), in presence

or absence of 5% organic load, for 1, 5, or 10min at 25◦C. Enumeration of

surviving pathogens on cantaloupewas performed by serial dilution and plating

on Oxford, XLD or SMA agar followed by incubation at 37◦C for 24–48h.

EGNE-GA and EGNE-TW wash significantly reduced all three pathogens by

at least 3.5 log CFU/cm2 as early as 5min after treatment. EGNE-GA at

1.25% inactivated L. monocytogenes, E. coli O157:H7 and S. Enteritidis on

cantaloupes to below the detectable limit within 5 and 10min of treatment,

respectively (∼4 log CFU/cm2, P < 0.05). EGNE treatments significantly

reduced the survival of L. monocytogenes, S. Enteritidis, and E. coli O157:H7

on cantaloupe by at least 6 log CFU/cm2 at day 5 of storage at 25 and 4◦C (P <

0.05). Presence of organic matter did not modulate the antimicrobial e�cacy
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of nanoemulsion treatments (P> 0.05). EGNE treatments did not a�ect the rind

color of cantaloupes (P > 0.05). In conclusion, eugenol nanoemulsions could

potentially be used as a natural sanitizer to inactivate foodborne pathogens on

cantaloupes. Further investigations in an industry setting are warranted.
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Introduction

Fresh produce constitutes an integral part of the American

diet and the demand has surpassed domestic production for

more than a decade. Improvements in infrastructure, household

income, market access, and an understanding of the tremendous

health benefits of produce has fueled this trend. The inflation-

adjusted value of U.S fresh fruits imports increased from

∼$5 billion in 2009 to $14 billion in 2019 (ERS, 2020).

Currently, fresh produce is the largest portion of horticulture

imports, amounting to 21% in value (ERS, 2020). Therefore,

maintaining the microbiological safety of fresh produce is very

important. This is especially significant since fresh produce is

often consumed raw and there is no heat inactivation step as

encountered with cooked food. In the US, fresh produce has

been implicated in ∼13% of foodborne outbreaks (Doyle and

Erickson, 2008; Centers for Disease Control and Prevention,

2012; Callejón et al., 2015). Among the foodborne outbreaks

in fresh produce, cantaloupe (Cucumis melo L. var. reticulatus)

ranks fourth after leafy greens, sprouts, and tomatoes. The

United States is one of the world’s leading consumers of melon

with an average cantaloupe consumption of about 6.11 pounds

per capita/year in 2019 (ERS, 2020). There has been at least 34

foodborne outbreaks reported in cantaloupe in the United States

between 1973 and 2011 (Danyluk et al., 2014). Proximity of the

fruit to the soil, contact with irrigation water, insects, animals, or

humans during harvesting and processing can result in surface

contamination with pathogens (Shewfelt, 1987; Nguyen and

Carlin, 1994). The major foodborne pathogens associated with

cantaloupe outbreaks have been Salmonella spp., Escherichia

coli O157:H7 and Listeria monocytogenes (Scallan et al., 2011;

Centers for Disease Control and Prevention (CDC), 2018;

USDA, 2022). The deadliest outbreak in recent US history

occurred in 2011 due to the consumption of cantaloupes

contaminated with L. monocytogenes (Centers for Disease

Control and Prevention, 2011). This outbreak affected 28 states

and more than 1.5 million cantaloupes were recalled. The

outbreak resulted in twenty-nine deaths and one miscarriage.

According to FDA code of federal regulation title 21, current

decontamination strategies employed to reduce pathogen load

on cantaloupes include chlorine-based sanitizers, quaternary

ammonium compounds, and peracetic acid (Dharmarha et al.,

2020). Chlorine based sanitizers are used in the range of 50–200

ppm with 1–2min of contact time (Beuchat, 1992; FDA, 1998).

However, several researchers reported that treatment with both

chlorine or peracetic acid have resulted in a pathogen reduction

of ∼1.5 log CFU/sample (Ukuku and Sapers, 2001; Fan et al.,

2009; Upadhyay et al., 2014). Moreover, presence of organic

load (soil residues, farm debris, plant leaves and tissue fractions

etc.) in the wash water further reduces the antimicrobial

efficacy of the aforementioned compounds (Teng et al., 2018).

The microscopic lenticellar netting surface of the cantaloupe

facilitates the attachment and growth of bacteria thus reducing

the efficiency of aqueous disinfectants (Annous et al., 2004;

Wang et al., 2012). In addition, the netted surface protects the

bacteria from complete exposure to sanitizers, further reducing

the antimicrobial potential of these compounds. The organic

matter present in the wash water reacts with free chlorine,

which further reduces the antimicrobial efficacy of chlorine-

based treatments (Li et al., 2019). Moreover, offensive odor,

eye and respiratory irritation have been reported with the use

of ammonia-based compounds (Mrvos et al., 1993; White and

Martin, 2010). Furthermore, use of chlorine-based sanitizers

poses significant health safety concerns in humans due to the

formation of carcinogenic byproducts such as chloramines,

trihalomethanes and other organochlorine compounds (Zhang

and Farber, 1996; Richardson et al., 1998; Donato and Zani,

2010). Recently, quaternary ammonium compounds have been

detected in breast milk, raising concerns for the safety of infants

and newborns (Zheng et al., 2022). Therefore, there is a need for

an alternative strategy, that is safe, effective, and easy to use, to

control foodborne pathogens on cantaloupes.

Since ancient times, plant extracts have been used in

many cultures as food preservatives or in traditional medicine

for treating various diseases. Plant extracts contain several

phytochemicals that exhibit significant anti-cancer, anti-

parasitic, or antibacterial properties (Burt, 2004; Holley and

Patel, 2005; Upadhyay et al., 2014; Nirmala et al., 2019;

Niksic et al., 2021). Phytochemicals are secondary metabolites

produced as a result of reciprocal interactions between plants

and their environment and contribute to the natural defense

system of plants (Jones and Dangl, 2006; Reichling, 2010).

Due to the diverse mechanism of antibacterial action of

phytochemicals, the probability of resistance development

in bacteria is low (Apolónio et al., 2014; Borges et al., 2015).

The majority of phytochemicals are poorly soluble in water,
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yet highly soluble in organic solvents (Vergis et al., 2015;

Dhifi et al., 2020; Falleh et al., 2020). Eugenol is a Generally

Recognized as Safe (GRAS) phytochemical obtained from clove

(Eugenia caryophyllus) (Code of Federal Regulations 21 Part

172). Eugenol exerts significant antibacterial activity against L.

monocytogenes (Upadhyay et al., 2013, 2015, 2016b), Salmonella

(Devi et al., 2010; Mattson et al., 2011; Upadhyaya et al., 2013)

and E. coli O157:H7 (Pei et al., 2009; Ghosh et al., 2014; Niu

et al., 2019). However, eugenol, like most phytochemicals, has

low solubility in water (2,460 mg/L at 25◦C), which thwarts

its application as a water-soluble disinfectant (Yalkowsky and

Banerjee, 1992). To overcome this challenge, we prepared

eugenol nanoemulsion using food grade emulsifiers and

high-energy sonication method. This technique enables the

dispersion of phytochemicals in the aqueous phase by forming

nanoscale oil droplets in surfactants-containing aqueous

phase. Small particle between 20 and 200 nm provide high

thermodynamic stability against flocculation and coalescence,

thus increasing the distribution of the antimicrobial agent in

food matrices (Ezhilarasi et al., 2013; Yildirim et al., 2017; Chen

et al., 2018).

The objective of this study was to investigate the efficacy of

two types of eugenol nanoemulsions (prepared with tween-80

or a combination of gum arabic and lecithin) in inactivating

L. monocytogenes, Salmonella spp., and E. coli O157:H7 on

cantaloupe surface at 25◦C. In addition, the efficacy of eugenol

nanoemulsions in inhibiting the growth of the three pathogens

on cantaloupes during refrigerated and room temperature

storage of 5 days was investigated. Moreover, the effect of

eugenol nanoemulsions on cantaloupe color was studied under

storage conditions at refrigerated temperature.

Materials and methods

Bacterial strains, growth conditions,
preparation of cantaloupe and inoculum

Five strains of L. monocytogenes (Scott A, AT19115, LM1,

LM2, LM3), four strains of S. Enteritidis (SE28, SE31, SE12

and SE90) and four strains of E. coli O157:H7 (RM4688,

RM4407, RM1918 and RM4406) were used in this study.

AT19115 was procured fromATCC, Scott A is a human outbreak

strain. LM1, LM2, LM3 are wild type strains isolated from

produce. Similarly, E. coliO157:H7 strains were wild type strains

isolated from spinach and lettuce. The Salmonella strain SE

90 is of human origin while SE28, 31, 12 were isolated from

poultry. The organisms were streaked from their corresponding

glycerol stock on Oxford, Xylose Lysine Deoxycholate (XLD), or

SorbitolMacConkey (SMA) agar plates, respectively, followed by

incubation at 37◦C for 48 h. Individual colonies were selected

and cultured in 10ml of tryptic soy broth (Fisher Scientific

Co LLC, Hanover Park, IL) at 37◦C for 24 h. For inoculum

preparation, the individual overnight culture was centrifuged at

7,000 rpm for 15min at 25◦C. The bacterial pellet was washed

three times and resuspended in 10ml of sterile 1X PBS. Equal

portion of the washed cultures were mixed together and diluted

appropriately to yield a final inoculum concentration of 6 log

CFU/ml. The average inoculum on the cantaloupe was ∼5–5.5

log CFU/cm2. The concentration of the bacterial population in

the initial culture was confirmed by plating on the Oxford, XLD,

SMA agar followed by incubation at 37◦C for 24–48 h.

Fresh cantaloupes, free of any visual blemishes, were

procured from the local store in Storrs, Connecticut and were

used within 12 h for experiments. Circular cantaloupe rind plugs

(∼2 cm diameter,∼0.5 cm thickness) were prepared using a steel

corer as described previously (Sapers et al., 2001; Upadhyay

et al., 2014, 2016a). Cocktail of L. monocytogenes, S. Enteritidis

or E. coliO157:H7was spot inoculated separately (200µl volume

with 20 spots of 10 µl each; ∼5.5 log CFU/cm2) on cantaloupe

rind plugs followed by incubation for 2 h at 25◦C in the biosafety

cabinet, to facilitate bacterial attachment. The uninoculated rind

plugs were used as the negative control.

Preparation and characterization of
eugenol nanoemulsions

Two types of nanoemulsion were prepared as described

previously (Bhargava et al., 2015; Hu et al., 2021). For type

1 nanoemulsion (EGNE-GA), gum arabic and lecithin were

used as emulsifiers. A 4% stock solution of gum arabic or

lecithin was prepared separately in water (w/v) followed by

mixing equal volumes to prepare a gum arabic-lecithin mix

solution. Eugenol (Sigma Aldrich, Germany) stock prepared

in ethanol was added to appropriate volume of the solution

containing gum arabic and lecithin drop by drop to attain a

final concentration of 1.25%. The formulation (total volume

of 120ml) was sonicated using high speed homogenizer Q

700 (QSonica L.L.C, Newtown, CT, USA) for 10min with 10 s

On and 5 s Off cycle and amplitude of 60 Watts. The final

formulation of nanoemulsion had 1.25% eugenol, 0.5% of gum

arabic and 0.5% lecithin and ethanol as co-surfactant (16.67%).

The final formulation was appropriately diluted to prepare the

various wash treatments.

For the second type of nanoemulsion, Tween 80 (Sigma

Aldrich, Germany) was used as an emulsifier. For preparing a

5% eugenol nanoemulsion stock, 5ml of eugenol and 2.5ml of

Tween 80 were mixed using a magnetic stir plate for 30min

at a constant speed of approx. 500 rpm. Deionized water

(92.5ml) was added to the mixture drop by drop and was

mixed for 30min on a magnetic stir plate with a constant speed

of 500 rpm. The formulation was sonicated using high speed

homogenizer Q 700 for 20min with 5 s On and 3 s Off cycle and

an amplitude of 60Watts. The final concentration of the eugenol

in the nanoemulsion was 5% (w/v). The final formulation was

appropriately diluted to prepare the various wash treatments.
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The prepared nanoemulsions were stored at 25 and 4◦C for

a period of 8 weeks. The stability of the nanoemulsions was

measured by characterizing the size, PDI, and zeta potential

on week 0, 2, 4 and 8 using Nano Zetasizer. The antibacterial

efficacy was measured by estimating minimum bactericidal

concentration (CLSI, 2019).

ABTS antioxidant activity assay

The antioxidant activity of eugenol in water, eugenol in

ethanol and eugenol nanoemulsion was determined by 2,2
′

-

azinobis-(3-ethylenebenzothiazoline)-6-sulfonic acid (ABTS)

method as described before (Xue et al., 2019). The 2,2
′

-azino-bis

(3-ethylbenzothiazoline-6-sulfonate) radical cation (ABTS•+)

is reduced by a test antioxidant to colorless ABTS. The

assay measures the relative ability of antioxidants to neutralize

ABTS generated in aqueous phase and is a reflection of the

encapsulation efficiency/dispersion of the oil in the system. The

antioxidant activity was measured at regular intervals for a

period of 8 weeks. The ABTS working solution was prepared

by dissolving 68.5mg of ABTS and 13.5mg of 2,2-azobis

(2-amidinopropane) dihydrochloride (AAPH) into 100mL of

10mM pH 7.4 PBS buffer. The prepared mixture was heated

at 70◦C for 30min and filtrated through 0.45µm filter after

cooling down to room temperature. The working solution was

diluted with PBS until the absorbance at 734 nm achieved 0.64

± 0.37. Then, 20 µL of test solution was added into 96 cell

plates followed by the addition of 280 µL of ABTS working

solution. The mixture was incubated at 37◦C for 10min and

the absorbance at 734 nm was recorded using Biotek microplate

reader (Synergy H1M, Thermo Scientific, Waltham, MA, USA).

Final antioxidant activity was expressed as µg vitamin C

equivalent antioxidant capacity per micro liter sample (Xue

et al., 2021).

Transmission electron microscopy

The morphology of obtained nanocomplexes was

determined using transmission electron microscope (TEM) as

reported before (Xue et al., 2019). Briefly, 3 µL sample was

added on a copper coated 400 mesh grid and dried for 2min,

followed by staining with 0.5% uranyl acetate solution. After

the sample was completely dried, the grid was loaded into the

sample chamber of Tecnai T12 and the images were obtained by

a CCD camera (AMT 2k XR40).

Inactivation of foodborne pathogens
with eugenol nanoemulsion wash
treatments on cantaloupe rind plugs in
absence or presence of 5% organic load

Cantaloupe rind plugs inoculated with either L.

monocytogenes, Salmonella or E. coli O157:H7 were washed

TABLE 1 Treatments used for washing cantaloupe rind plugs at 25◦C.

Treatments Concentrations Time (min)

Control DI water

Chlorine 80, 200 ppm in DI water 1,5 or 10

Eugenol 0.3, 0.6, and 1.25% in DI water

Eugenol nanoemulsion

type 1 (EGNE-GA)

0.3, 0.6, and 1.25% in DI water

Eugenol nanoemulsion

type 2 (EGNE-TW80)

0.3, 0.6, and 1.25% in DI water

with DI water (control) or DI water containing eugenol (0.3,

0.6, 1.25%), eugenol nanoemulsion type 1 (GA, 0.3, 0.6, 1.25%),

eugenol nanoemulsion type 2 (TW, 0.3, 0.6, 1.25%) or chlorine

(80, 200 ppm; industry control) in a Whirl-PakTM bag (Nasco,

Fisher Scientific; 25ml treatment volume). The inoculated rind

plug without any treatment was used as a baseline to determine

the pathogen load on the rind. The treatment was carried out

at 25◦C for 1, 5 or 10min. The aforementioned treatments

along with corresponding dose and time are summarized in

Table 1.

The efficacy of the most effective treatments in inactivating

L. monocytogenes, Salmonella spp., and E. coli O157:H7 on

cantaloupe rind plugs was tested in presence of 5% organic load

(Yang et al., 2012; Zhang et al., 2016). Potting soil procured from

local store was used for preparing the organic load. Appropriate

amount of sterile potting soil was added to Whirl-PakTM bags

containing 25ml of DI water followed by addition of respective

treatments and inoculated cantaloupe rind plugs. The samples

were treated for 10min at 25◦C.

E�ect of eugenol nanoemulsions on the
survival of foodborne pathogens on
cantaloupe rind during refrigerated or
room temperature storage

The inoculated cantaloupe rind plugs were washed with

the most effective treatment from 2.3. The control and treated

plugs were stored in a sterile container at 4 or 25◦C for a

period of 5 days. The survival of the pathogens was enumerated

at 24 h interval by plating onto Oxford, XLD, or SMA agar

plates, respectively.

E�ect of eugenol nanoemulsion wash
treatments on cantaloupe color

The effect of the highest dose of eugenol or nanoemulsion

treatments on the color of cantaloupe was studied as described

previously (Shrestha et al., 2019). A separate batch of cantaloupe
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rind plug samples not inoculated with pathogens were allocated

for color analysis using a HunterLab MiniScan XE Plus

colorimeter (HunterLab Associates, Reston, VA, USA) with

illuminant A, 2.54-cm diameter aperture, and 10◦ standard

observer. L∗ (lightness), a∗ (redness), and b∗ (yellowness)

values for each sample were recorded every day for 5

days. The instrument was calibrated as per manufacturer’s

instructions using a custom white tile before the measurements.

Three readings were recorded on each sample, averaged,

and analyzed.

Statistical analysis

The experiment was done in a completely randomized

design with duplicate samples and replicated three times. For

antioxidant activity assay, the experiment had triplicates and was

repeated two times. The data was analyzed in R (version 4.0.2),

using ANOVA followed by Tukey HSD. P< 0.05 was considered

statistically significant.

Results

Preparation and characterization of
eugenol nanoemulsions

Particle size, polydispersity index, zeta potential

The average particle size, PDI and zeta potential of the

eugenol nanoemulsions on the day of preparation and during

storage at 25 or 4◦C for a period of 8 weeks is presented in

Table 2. The average particle size of EGNE-GA was ∼73 nm,

whereas the average particle size of EGNE-TW was ∼99 nm

on day 0. Storing the nanoemulsions at 25 or 4◦C for 8

weeks did not change the particle size in EGNE-GA (P >

0.05). However, an increase in particle size of EGNE-TW

was observed on week 4 and 8 (P < 0.05). Polydispersity

index (PDI) represents the uniformity of the particle size

distribution in nanoemulsions. A reduction in uniformity in

the particle size increases the PDI value. The PDI of EGNE-

GA and EGNE-TW was ∼0.25. Storing the nanoemulsion

for 8 weeks did not significantly modulate the PDI in both

types of nanoemulsion (P < 0.05). Zeta potential (ZP) is

a measure of surface charge of the particle in colloidal

system. ZP in the range of ±30mV indicates good stability

against coalescence of the particles. EGNE-GA and EGNE-TW

exhibited a zeta potential of∼ (-34) and∼ (-11) mV, respectively

(Table 2).

ABTS antioxidant activity assay

The antioxidant activity of eugenol in water, eugenol in

ethanol, and eugenol nanoemulsions, estimated over a storage

TABLE 2 Droplet size, polydispersity index, and zeta potential of

eugenol nanoemulsions.

Size (nm) PDI Zeta potential (mV)

EGNE-GA 25◦C

Week 0 73.79± 0.72a 0.25± 0.00a −34.85± 0.45a

Week 2 72.87± 2.78a 0.25± 0.00a −34.51± 1.90a

Week 4 72.97± 0.41a 0.26± 0.02a −31.00± 1.50a

Week 8 76.33± 4.17a 0.29± 0.00a −29.09± 0.59a

EGNE-GA 4◦C

Week 0 73.79± 0.72a 0.25± 0.00a −34.85± 0.45a

Week 2 74.53± 1.97a 0.25± 0.00a −33.95± 1.55a

Week 4 72.28± 2.28a 0.27± 0.01a −29.48± 1.03a

Week 8 77.75± 1.75a 0.29± 0.00a −29.70± 0.80a

EGNE-TW 25◦C

Week 0 99± 1.00b 0.25± 0.00a −11.25± 0.25a

Week 2 107.50± 2.50b 0.25± 0.00a −9.50± 0.50a

Week 4 135.80± 1.10a 0.25± 0.00a −8.50± 0.50a

Week 8 142.75± 2.75a 0.27± 0.00a −8.00± 1.00a

EGNE-TW 4◦C

Week 0 99± 1.00b 0.25± 0.00b −11.25± 0.25a

Week 2 103± 2.00b 0.26± 0.01ab −10.00± 1.00a

Week 4 132± 3.00a 0.26± 0.01ab −9.50± 0.50a

Week 8 144± 5.00a 0.29± 0.00a −9.00± 1.00a

Values are expressed asmean± SE. Superscripts with different letters represent significant

changes in size, PDI or zeta potential during storage for a nanoemulsions.

period of 8 weeks, is presented in Figure 1. The antioxidant

activity of eugenol oil was the lowest when compared with

eugenol in ethanol and eugenol nanoemulsions (GA and TW)

during refrigerated or room temperature storage for 8 weeks

(P < 0.05). Since eugenol has a high solubility in ethanol,

an increase in antioxidant activity was observed in ethanol

treatment as compared with eugenol in water (P < 0.05).

Both types of eugenol nanoemulsion displayed antioxidant

activity either higher (P < 0.05) or comparable (P > 0.05)

to eugenol in ethanol treatment, over a period of 8 weeks at

25 or 4◦C, indicating uniform dispersal of the essential oil in

the nanoemulsion.

Surface morphology of eugenol
nanoemulsions by TEM

The surface morphology of EGNE-GA and EGNE-

TW as observed by TEM is presented in Figure 2. The

droplet of both the nanoemulsions were spherical in

shape with size ranging between 70 and 100 nm. The

interfacial layer of nanoemulsion droplet was composed

of surfactant, and the eugenol was encapsulated in the

droplet core.
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FIGURE 1

Antioxidant activity (ug Vit. C equivalent/ml) of eugenol in water, eugenol in ethanol, EGNE-GA, and EGNE-TW stored at 25 (A,C) or 4◦C (B,D) for

a period of 8 weeks. The error bar represents mean ± SE. a−csuperscripts represents significance di�erence between each treatment within each

time point. Error bar represents SEM (n = 6).

Inactivation of foodborne pathogens
with eugenol nanoemulsion wash
treatments on cantaloupe rind plugs in
absence or presence of 5% organic load

The efficacy of eugenol nanoemulsions in inactivating

foodborne pathogens on cantaloupe rind plugs is shown

in Table 3. The presence of inherent L. monocytogenes, S.

Enteritidis and E. coli O157:H7 on the cantaloupe plug was

ruled out by plating representative samples on Oxford, XLD

and SMA plates, respectively (Data not shown). The average

L. monocytogenes, S. Enteritidis and E. coli O157:H7 recovered

from the inoculated cantaloupe plug (Baseline) was ∼5.5, 5

and 5.5 log CFU/cm2, respectively (Data not shown). In case

of cantaloupe plugs washed with sterile DI water (control)

∼5–5.3 log CFU/cm2 of L. monocytogenes, S. Enteritidis or

E. coli O157:H7 was recovered suggesting that washing with

water is not effective in reducing pathogen load significantly as

compared to baseline. Increase in treatment time of washing

with DI water from 1 to 5 or 10min showed no significant

increase in the reduction of L. monocytogenes, S. Enteritidis or

E. coli O157:H7 on the cantaloupes as compared to baseline

(P > 0.05).

Washing the cantaloupe rind with chlorine (80 and 200

ppm) for 1min significantly reduced L. monocytogenes, S.

Enteritidis and E. coli O157:H7 by ∼1–1.5 log CFU/cm2 as

compared with control (P < 0.05). Increasing treatment time to

5 or 10min did not enhance antimicrobial efficacy significantly

except against E. coliO157:H7 where after washing with chlorine

200 ppm for 10min, the pathogen load reduced to ∼3.3 log

CFU/cm2 (P < 0.05).

The wash treatments containing eugenol oil, EGNE-

TW80, and EGNE-GA significantly reduced L. monocytogenes,

Salmonella spp. and E. coli O157:H7 on cantaloupe rind, by

1–2 log CFU/cm2, as early as 1min of treatment time when

compared to control (P < 0.05). A dose dependent increase in

antimicrobial efficacy of eugenol oil (0.3 vs. 1.25%) was observed

against L. monocytogenes at 1, 5 or 10min washing (P < 0.05).

For example, eugenol oil 0.3% treatment at 1min, reduced

L. monocytogenes by ∼1 log CFU/cm2. Eugenol oil 1.25%

treatment reduced L. monocytogenes by∼1.9 log CFU/cm2 after

1min of treatment time (P < 0.05). However, this increase

was not observed against S. Enteritidis or E. coli O157:H7

(except Eugenol 0.3%, 1.25% at 10min). In case of EGNE-GA

and EGNE-TW, a dose dependent increase in antimicrobial

efficacy was observed at 10min of washing between 0.3 and
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FIGURE 2

Transmission electron micrograph of EGNE-GA (A) and

EGNE-TW (B).

1.25% treatments against L. monocytogenes and E. coli O157:H7

(P < 0.05).

Several treatments of EGNE-GA were found to be more

effective than eugenol oil in inactivating L. monocytogenes,

Salmonella and E. coli O157:H7 on cantaloupe rind. For

example, all EGNE-GA treatments, at all timepoints, were

more effective in inactivating E. coli O157:H7 than their

corresponding eugenol oil treatments (P < 0.05). EGNE-GA

0.6% and 1.25% wash reduced E. coli O157:H7 on cantaloupes

by more than 5 log CFU/cm2 at 10min of treatment time (P <

0.05). Similarly, EGNE-GA 1.25% treatment was more effective

than 1.25% eugenol oil treatment in inactivating S. Enteritidis

at a treatment time of 1min. By 10min of wash time, EGNE-GA

0.6 and 1.25% treatments reduced S. Enteritidis counts by>4 log

TABLE 3 Inactivation of L. monocytogenes, S. Enteritidis, or E. coli

O157:H7 on cantaloupe rind by eugenol or eugenol nanoemulsions

wash at 25◦C.

Treatments 1 min 5 min 10 min

(A) L. monocytogenes

Control 5.19 ± 0.07a 5.38 ± 0.05a 5.30 ± 0.04a

Chlorine 80 ppm 4.10 ± 0.04bc 3.99 ± 0.05bc 3.94 ± 0.04bc

Chlorine 200 ppm 3.73 ± 0.16bcd 3.71 ± 0.10bcd 3.36 ± 0.16bcd

Eugenol 0.3% 4.15 ± 0.09b 4.09 ± 0.18b 4.12 ± 0.13b

EGNE–TW80 0.3% 3.74 ± 0.05bcd 3.57 ± 0.09bcd 3.46 ± 0.09bcd

EGNE–GA 0.3% 3.19 ± 0.14def 3.42 ± 0.07bcd 3.23 ± 0.03bcd

Eugenol 0.6% 3.52 ± 0.15cde 3.31 ± 0.18cde 3.09 ± 0.16cde

EGNE–TW80 0.6% 3.48 ± 0.09de 3.12 ± 0.08de 3.17 ± 0.14de

EGNE–GA 0.6% 3.03 ± 0.07ef 2.30 ± 0.18f 2.07 ± 0.36f

Eugenol 1.25% 3.31 ± 0.11def 3.19 ± 0.06de 2.48 ± 0.20de

EGNE–TW80 1.25% 3.44 ± 0.18def 2.64 ± 0.13ef 2.94 ± 0.10ef

EGNE–GA 1.25% 2.75 ± 0.20f 1.50 ± 0.32g 1.48 ± 0.31g

(B) S. Enteritidis

Control 5.04 ± 0.17a 4.92 ± 0.16a 4.99 ± 0.20a

Chlorine 80 ppm 4.00 ± 0.11b 3.51 ± 0.29b 3.31 ± 0.25b

Chlorine 200 ppm 3.67 ± 0.11bc 2.96 ± 0.26bc 2.56 ± 0.50bc

Eugenol 0.3% 3.46 ± 0.05bc 3.18 ± 0.15bc 2.64 ± 0.39bc

EGNE–TW80 0.3% 3.01 ± 0.21c 2.47 ± 0.47bc 1.58 ± 0.27c

EGNE–GA 0.3% 2.95 ± 0.16c 2.94 ± 0.20bc 2.42 ± 0.46bc

Eugenol 0.6% 3.33 ± 0.11bc 3.22 ± 0.11bc 2.84 ± 0.15bc

EGNE–TW80 0.6% 3.11 ± 0.19c 2.86 ± 0.38bc 1.99 ± 0.34bc

EGNE–GA 0.6% 2.84 ± 0.21cd 2.64 ± 0.21bc 1.53 ± 0.35c

Eugenol 1.25% 3.29 ± 0.12bc 2.52 ± 0.36bc 2.62 ± 0.18bc

EGNE–TW80 1.25% 3.11 ± 0.12c 2.33 ± 0.32bc 1.60 ± 0.40c

EGNE–GA 1.25% 2.07 ± 0.38d 2.05 ± 0.37c 1.56 ± 0.36c

(C) E. coliO157:H7

Control 5.21 ± 0.06a 5.23 ± 0.02a 5.32 ± 0.04a

Chlorine 80 ppm 4.32 ± 0.06b 4.00 ± 0.12b 3.83 ± 0.04b

Chlorine 200 ppm 3.89 ± 0.03bc 3.78 ± 0.14bc 3.39 ± 0.07bc

Eugenol 0.3% 3.76 ± 0.12bc 3.46 ± 0.08bc 3.07 ± 0.07c

EGNE–TW80 0.3% 3.77 ± 0.05bc 2.97 ± 0.06bc 2.96 ± 0.04cd

EGNE–GA 0.3% 3.01 ± 0.09de 2.05 ± 0.34de 2.45 ± 0.18de

Eugenol 0.6% 3.40 ± 0.22cd 3.36 ± 0.10cd 2.91 ± 0.09cd

EGNE–TW80 0.6% 3.32 ± 0.07cd 2.80 ± 0.23cd 1.65 ± 0.30f

EGNE–GA 0.6% 2.52 ± 0.17e 1.33 ± 0.21e 1.00 ± 0.00g

Eugenol 1.25% 3.43 ± 0.07cd 3.20 ± 0.09cd 2.32 ± 0.12e

EGNE–TW80 1.25% 2.90 ± 0.09de 2.56 ± 0.15de 1.00 ± 0.00g

EGNE–GA 1.25% 2.45 ± 0.23e 1.00 ± 0.00e 1.00 ± 0.00g

The data were expressed as mean ± SE. Values with different superscripts represent

significant difference between treatments within each time point (P < 0.05) (n = 6).

*Detection limit (2 log CFU/cm2).

CFU/sample (P < 0.05). In case of L. monocytogenes, EGNE-GA

0.3, 0.6, and 1.25% were found to be more effective than eugenol

oil treatments at 1 and 10min, respectively (P< 0.05). By 10min

of wash time, EGNE-GA 1.25% reduced L. monocytogenes by
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∼ 4 log CFU/cm2 (P < 0.05). No significant difference in the

antimicrobial efficacy of EGNE-TW and corresponding eugenol

oil treatments was observed at any of the washing timepoints

(P > 0.05) except by 0.6 and 1.25% EGNE-TW against E. coli

O157:H7 at 10min of wash time (P < 0.05).

The efficacy of the highest dose of EGNE-TW (1.25%)

and EGNE-GA (1.25%) in reducing pathogen load in presence

of 5% organic matter is presented in Table 4. The efficacy of

eugenol was significantly reduced at 1 and 5min of treatment

time against L. monocytogenes and at 1min and 5min against

S. Enteritidis and E. coli O157:H7, respectively (P < 0.05).

Similarly, several of the chlorine-based treatments also reduced

in their efficacy in the presence of organic load. However, the

presence of organic load did not change the efficacy of EGNE-

TW or EGNE-GA treatments at 1, 5 or 10min against the three

pathogens (P > 0.05).

E�ect of eugenol nanoemulsions on the
survival of foodborne pathogens on
cantaloupe rind during refrigerated or
room temperature storage

Figure 3 shows the efficacy of EGNE-GA and EGNE-TW

(1.25%) wash treatments in reducing the survival of the three

pathogens on cantaloupe rind during storage at 25 or 4◦C

for 5 days. The pathogen inoculum on the cantaloupes before

the wash treatments was ∼5.5–6 log CFU/cm2. In the control

group, after washing with water, the surviving L. monocytogenes

population on the cantaloupe significantly increased from ∼6

to 8 log CFU/cm2 as early as day 3 at 25◦C and day 5 at

4◦C (Figures 3A,B). Similar observations were made with S.

Enteritidis (Figure 3C) and E. coliO157:H7 (Figure 3E), at 25◦C

storages, where the surviving pathogens in the control grew on

the fruit surface after washing. At 4◦C, ∼0.5 log increase in S.

Enteritidis (Figure 3D) and E. coli O157:H7 (Figure 3F) counts

was observed.

Washing with chlorine and eugenol treatments reduced

pathogen loads of L. monocytogenes, S. Enteritidis and E. coli

O157:H7 on day 0. However, the surviving pathogens recovered

during room temperature and refrigerated storage. For example,

after storage for 5 days at 25 or 4◦C, no difference in the

counts of L. monocytogenes or S. Enteritidis was observed on

control, chlorine, or eugenol oil treated cantaloupes (P > 0.05;

Figures 3A–D). In case of E. coliO157: H7, although cantaloupes

washed with chlorine and eugenol had lower counts than

control on day 5 (P < 0.05), the majority of the chlorine and

eugenol oil treated groups did increase the number of pathogens

compared to the corresponding counts on day 0 (P < 0.05).

However, no significant increase in pathogen load was observed

on cantaloupes washed with EGNE treatments upon storage for

5 days at 25 or 4◦C compared with day 0 (P > 0.05).

TABLE 4 Inactivation of L. monocytogenes, S. Enteritidis, or E. coli

O157:H7 by eugenol or eugenol nanoemulsions in presence of 5%

organic matter (OM).

1 min 5 min 10 min

(A) L. monocytogenes

Control 5.18 ± 0.04a 5.18 ± 0.10a 5.38 ± 0.05a

Control+ OM 5% 5.22 ± 0.05a 5.26 ± 0.03a 5.59 ± 0.05a

Chlorine 80 ppm 4.00 ± 0.04bcd 3.79 ± 0.04cd 3.94 ± 0.05bc

Chlorine 80 ppm+ OM 5% 4.43 ± 0.05b 4.32 ± 0.06b 3.94 ± 0.03b

Chlorine 200 ppm 3.86 ± 0.08bcde 3.68 ± 0.07cd 4.36 ± 0.05bc

Chlorine 200 ppm+ OM 5% 4.46 ± 0.08b 4.15 ± 0.06bc 4.02 ± 0.04b

Eugenol 1.25% 3.64 ± 0.08cde 3.40 ± 0.11d 2.85 ± 0.18de

Eugenol 1.25%+ OM 5% 4.17 ± 0.04bc 3.94 ± 0.10bc 3.35 ± 0.11cd

EGNE–TW80 1.25% 3.22 ± 0.06e 2.14 ± 0.24e 2.41 ± 0.16e

EGNE–TW80 1.25%+OM 5% 3.34 ± 0.13de 2.35 ± 0.15e 2.40 ± 0.14e

EGNE–GA 1.25% 1.99 ± 0.34f 1.00 ± 0.00f 1.38 ± 0.25f

EGNE–GA 1.25%+OM 5% 1.82 ± 0.27f 1.00 ± 0.00f 1.38 ± 0.25f

(B) S. Enteritidis

Control 5.24 ± 0.02a 5.30 ± 0.03a 5.24 ± 0.06a

Control+ OM 5.28 ± 0.03a 5.3 ± 0.03a 5.29 ± 0.01a

Chlorine 80 ppm 3.87 ± 0.05bc 3.96 ± 0.04bc 3.94 ± 0.03b

Chlorine 80 ppm+ OM 4.38 ± 0.03ab 4.31 ± 0.05bc 4.01 ± 0.04b

Chlorine 200 ppm 3.86 ± 0.03bc 3.63 ± 0.07c 3.19 ± 0.08c

Chlorine 200 ppm+ OM 4.39 ± 0.08ab 4.38 ± 0.05b 3.92 ± 0.06b

Eugenol 1.25% 3.19 ± 0.08cd 2.65 ± 0.18de 2.94 ± 0.04c

Eugenol 1.25%+ OM 3.66 ± 0.04bc 2.68 ± 0.18de 2.82 ± 0.24c

EGNE–TW80 1.25% 2.24 ± 0.48de 2.80 ± 0.18d 1.17 ± 0.17d

EGNE–TW80 1.25%+ OM 2.28 ± 0.29de 2.74 ± 0.10de 1.00 ± 0.00d

EGNE–GA 1.25% 1.45 ± 0.30e 2.08 ± 0.24ef 1.00 ± 0.00d

EGNE–GA 1.25%+ OM 1.60 ± 0.28e 1.82 ± 0.27f 1.33 ± 0.21d

(C) E. coliO157:H7

Control 5.37 ± 0.05a 5.40 ± 0.06a 5.38 ± 0.05a

Control+ OM 5.45 ± 0.04a 5.52 ± 0.03a 5.38 ± 0.04a

Chlorine 80 ppm 4.41 ± 0.07c 4.37 ± 0.03bc 3.91 ± 0.03bc

Chlorine 80 ppm+ OM 4.83 ± 0.02b 4.70 ± 0.04b 4.08 ± 0.04b

Chlorine 200 ppm 4.07 ± 0.04cd 3.86 ± 0.07d 3.64 ± 0.09c

Chlorine 200 ppm+ OM 4.87 ± 0.02b 4.76 ± 0.05b 4.04 ± 0.05bc

Eugenol 1.25% 3.71 ± 0.04de 3.16 ± 0.11e 2.54 ± 0.13d

Eugenol 1.25%+ OM 4.00 ± 0.08d 4.14 ± 0.05cd 2.30 ± 0.11d

EGNE–TW80 1.25% 3.01 ± 0.11f 2.50 ± 0.13f 2.41 ± 0.16d

EGNE–TW80 1.25%+ OM 3.40 ± 0.10ef 2.42 ± 0.12f 2.40 ± 0.14d

EGNE–GA 1.25% 2.32 ± 0.17g 1.00 ± 0.00g 1.00 ± 0.00e

EGNE–GA 1.25%+OM 2.45 ± 0.12g 1.38 ± 0.25g 1.00 ± 0.00e

The data were expressed as mean ± SE. Values with different superscripts represent

significant difference between treatments within each time point (P < 0.05) (n = 6).

*Detection limit (2 log CFU/cm2).

E�ect of eugenol nanoemulsion wash
treatments on cantaloupe color

Table 5 shows the effect of nanoemulsion wash treatments

on the color of cantaloupe during refrigerated storage. No
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FIGURE 3

Survival of L. monocytogenes (A,B), S. Enteritidis (C,D) and E. coli O157:H7 (E,F) (log CFU/cm2) on cantaloupe washed with eugenol

nanoemulsions during the 5-day storage at 25 and 4◦C (A,B). Error bar represents SEM (n = 6). The treatment groups are control, chlorine 80

ppm, chlorine 200 ppm, Eugenol 1.25%, EGNE-GA 1.25%, and EGNE-TW 1.25%.

significant change in cantaloupe surface color was observed after

the wash treatments and subsequent storage for 5 days at 4◦C

(P > 0.05).

Discussion

We prepared eugenol nanoemulsions with two types of

emulsifiers (Type 1 with gum arabic and lecithin combination

and type 2 with Tween-80) and tested their efficacy in

inactivating three major foodborne pathogens on cantaloupes

at 25◦C. Gum arabic and lecithin are food grade emulsifiers

and are used extensively in the food industry (Patel and Goyal,

2015; Sethuraman and Rajendran, 2019). Gum arabic is a

polysaccharide which has both hydrophobic and hydrophilic

ends. Hydrophobic end attaches to the droplet surfaces whereas

hydrophilic end provides stability against droplet aggregation

through steric and electrostatic repulsion (Anarjan and Tan,

2013). Lecithin is a mixture of glycerophospholipids and

is obtained from various sources such as soybean. The

emulsification functionality of lecithin is primarily attributed

to amphiphilic phospholipids (Bot et al., 2021). Tween-80 is a

hydrophilic non-ionic compound, widely used as a surfactant

in the food industry (Zhang et al., 2003; Tan and McClements,

2021). Several researchers have previously used Tween-80

or gum-arabic and lecithin for preparing phytochemical

nanoemulsions (Ghosh et al., 2014; Esmaeili et al., 2016; Ahmad

et al., 2018; Shrestha et al., 2019; Wagle et al., 2019; Hu et al.,

2021) followed by characterizing the formulations using size,

PDI and zeta potential. Size refers to the average dimensions of

the particles in the suspension. PDI represents the homogeneity

of the particle size distribution and correlates to the stability of

the nanoemulsion (Preetz et al., 2010; Tan et al., 2015; Narawi

et al., 2020). An emulsion with a particle size of <200 nm is

referred as nanoemulsion (Jaiswal et al., 2015). A PDI <0.08

is considered as monodispersed whereas a PDI in the range

of 0.08–0.7 is mid-range value. A PDI >0.7 indicates a very

broad size distribution of droplets in nanoemulsion (Tang

et al., 2013; Asmawati et al., 2014). The size and PDI of the

nanoparticles in the aforementioned studies ranged from (70

to 200 nm) and (0.2–0.3), respectively. In our study, EGNE-

GA and EGNE-TW had size in the range of 70–100 nm with a

PDI <0.3, which shows that the size and homogeneity of the

nanoemulsion was acceptable. Nanoemulsion prepared using
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TABLE 5 E�ect of wash treatments on color of cantaloupe rind plugs

stored at 4◦C.

L* a* b*

Day 1 Untreated 53.76± 1.71a 7.43± 0.92a 24.26± 0.41a

Control 59.43± 1.42a 8.24± 0.60a 24.88± 0.95a

Chlorine 80 ppm 56.56± 1.21a 8.60± 1.00a 25.07± 1.12a

Chlorine 200 ppm 56.89± 1.87a 8.27± 1.01a 24.27± 1.46a

Eugenol 1.25% 55.58± 2.66a 8.35± 1.04a 24.24± 1.44a

EGNE–TW80 1.25% 56.13± 2.05a 9.34± 0.69a 28.01± 1.20a

EGNE–GA 1.25% 51.99± 2.24a 7.93± 1.07a 25.21± 0.79a

Day 2 Untreated 52.47± 1.53a 7.96± 1.01a 25.02± 0.90a

Control 60.73± 1.70a 8.86± 0.66a 25.87± 1.08a

Chlorine 80 ppm 56.74± 1.92a 9.29± 1.03a 26.39± 1.02a

Chlorine 200 ppm 54.95± 1.88a 9.18± 1.15a 26.57± 1.65a

Eugenol 1.25% 56.08± 1.62a 9.51± 0.88a 26.67± 0.93a

EGNE–TW80 1.25% 54.02± 1.62a 9.82± 0.58a 28.44± 1.10a

EGNE–GA 1.25% 54.43± 2.51a 10.09± 1.13a 28.57± 1.86a

Day 3 Untreated 53.37± 1.69a 8.51± 1.06a 26.40± 0.46a

Control 55.97± 1.62a 8.66± 0.84a 24.67± 1.30a

Chlorine 80ppm 53.27± 1.35a 8.96± 1.22a 24.50± 1.52a

Chlorine 200ppm 55.52± 2.43a 9.51± 1.24a 26.42± 2.15a

Eugenol 1.25% 54.36± 2.29a 9.70± 0.93a 25.72± 0.83a

EGNE–TW80 1.25% 51.56± 2.06a 10.13± 0.93a 26.13± 2.07a

EGNE–GA 1.25% 54.32± 1.29a 10.02± 0.97a 28.02± 0.79a

Day 4 Untreated 50.05± 1.79a 8.11± 0.96a 24.75± 0.33a

Control 58.53± 1.85ab 9.54± 0.56a 26.61± 0.94a

Chlorine 80 ppm 55.43± 0.92ab 9.32± 1.25a 25.35± 1.46a

Chlorine 200 ppm 54.96± 1.57ab 9.64± 1.37a 26.78± 2.08a

Eugenol 1.25% 54.99± 0.96ab 9.76± 1.23a 26.32± 1.44a

EGNE–TW80 1.25% 50.03± 2.84ab 10.42± 1.23a 26.37± 2.22a

EGNE–GA 1.25% 49.12± 1.16b 9.43± 0.86a 24.98± 0.82a

Day 5 Untreated 48.43± 2.14a 7.92± 1.11a 24.39± 0.95a

Control 52.85± 2.27a 10.32± 1.98a 24.11± 1.68a

Chlorine 80 ppm 53.49± 0.92a 8.82± 1.12a 24.24± 1.26a

Chlorine 200 ppm 52.77± 1.10a 8.91± 1.05a 25.01± 1.54a

Eugenol 1.25% 48.41± 1.45a 8.82± 1.35a 23.73± 1.92a

EGNE–TW80 1.25% 45.44± 2.44a 9.78± 0.94a 24.47± 1.97a

EGNE–GA 1.25% 47.56± 2.04a 9.68± 1.11a 24.66± 1.80a

Values are expressed as mean ± SE. a,bsuperscripts represents significance difference

between each treatment within each time point. L* indicates brightness, a* indicates the

variation in red-green, b* indicates the variation of yellow-blue hue (n= 6).

gum arabic and lecithin as emulsifiers had smaller average

particle size as compared to the tween 80 type nanoemulsion.

This could be attributed to the hydrophilic part of gum arabic

that provides stability against droplet aggregation through steric

and electrostatic repulsion thereby reducing the particle size

(Anarjan and Tan, 2013). Zeta potential is a measure of the

surface charge of particles and plays a major role in flocculation,

dispersion, aggregation and stability of the colloidal system

(Sapsford et al., 2011; Pinto and Buss, 2020). In this study,

nanoemulsion prepared with gum arabic and lecithin exhibited

higher negative charge when compared to tween 80. This is

primarily due to the ionic nature of gum arabic and lecithin used

for preparing nanoemulsions (Wang et al., 2012; McClements

and Jafari, 2018). Ozturk et al. (2015) reported that gum arabic

stabilized the colloidal system against temperature, pH and salt

by steric repulsion due to the formation of thick interfacial

layers that inhibit droplet aggregation. Zhang et al. (2021)

demonstrated that presence of negatively charged phosphate

groups in lecithin impart a high negative zeta potential on

the particles. Since tween 80 is non-ionic, the zeta potential

observed in the nanoemulsion was low as compared to gum

arabic and lecithin.

ABTS antioxidant assay was performed to evaluate the

encapsulation efficiency/dispersion of the eugenol oil in the

system. An increase in ABTS value would directly correspond

to an increased dispersion of the oil in the system which in

turn supports its antimicrobial efficiency. Several researchers

have reported significant antioxidant and radical scavenging

activity of eugenol (Donsì et al., 2011; Gülçin, 2011; Nam and

Kim, 2013; Chen et al., 2017; Zhang et al., 2017). Moreover,

an increase in the antioxidant effect after nanoencapsulation

has been reported previously. For example, Hadidi et al. (2020)

reported that antioxidant activity of clove essential oil-loaded

chitosan nanoparticle was significantly higher than that of

free oil. Similarly, curcumin, resveratrol and grape extracts

when presented in lipid-based nanostructures also showed

increased antioxidant activity (Spigno et al., 2013; Coradini

et al., 2014). In line with the above findings, our results

indicated that eugenol nanoemulsion had higher antioxidant

activity during the storage period of 8 weeks at 25 or

4◦C as compared to eugenol oil. The increased antioxidant

activity after encapsulation may be due to a combination

of reduced evaporation rate of the volatile compounds and

increased dispersion in the system that facilitates enhanced

interaction with the test substrates (Woranuch and Yoksan,

2013).

Water is often used in dump tanks or flotation flumes

to transport cantaloupes from field to the packing facility.

In addition, water also is used for sanitation and washing

of the fruit. The amount of chlorine in the wash water is

usually up to 200 ppm as indicated in the Federal regulations

(21 CFR-Part 173 and 21 CFR Part 178 permit). However,

chlorine wash only achieves ∼1–3 log reductions depending

on type and method of application and presence of organic

matter (Ukuku et al., 2018). The organic particles may be

introduced in wash water from soil, plant leaves, or farm

debris. Organic load has been previously shown to reduce

sanitizer efficacy and also assist in cross-contamination (Shen

et al., 2013; Huang et al., 2020). Therefore, we tested the

efficacy of wash treatments both in the presence or absence of

organic load. Internalization of the pathogen in cantaloupes is

also a concern, especially if there is a temperature differential

between the fruit and the wash water (Macarisin et al., 2017).
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Therefore, we selected a wash temperature of 25◦C and the

cantaloupes were maintained at the same temperature. Washing

the cantaloupe with water for 1, 5 or 10min did not reduce

pathogen load. Similar results were observed by Upadhyay et al.

(2014) and Bhargava et al. (2015) that washing with water

had no effect in reducing the pathogens on cantaloupe and

lettuce surface.

In this study, several of EGNE-GA and EGNE-TW wash

treatments were found to be effective in reducing pathogen

load on cantaloupes, both in the absence (Table 3) or presence

(Table 4) of organic load. Similar results have been reported

previously by other researchers who prepared nanoemulsions

with oregano oil (Bhargava et al., 2015), clove/cinnamonmixture

(Majeed et al., 2016; Zhang et al., 2017), and thyme (Hu

et al., 2021). In our study, majority of EGNE-GA treatments

were found to be more effective in reducing the three test

pathogens (especially E. coli O157:H7) on cantaloupes than the

corresponding oil control (Table 3). The superior antimicrobial

efficacy of EGNE-GA over its oil control was also observed

in the presence of organic load (Table 4) suggesting that the

wash treatment could tolerate organic matter without losing

antimicrobial efficacy. This may be due to the smaller particle

size of EGNE-GA that increases the contact area with the

bacteria. EGNE-GA and TW 1.25% treatment was also more

effective in inhibiting the recovery and growth of surviving

L. monocytogenes, S. Enteritidis and E. coli O157:H7 on

cantaloupes during refrigerated or room temperature storage

as compared to control, chlorine, and eugenol treatments

(Figure 3). This could be due to potential cell injury following

wash treatment (Yuan et al., 2019). Even though chlorine

significantly reduced the bacterial population initially, the

survival of the pathogen was similar to control during storage

suggesting that chlorine treatment is not completely effective in

eradicating the pathogens.

In conclusion, this study demonstrated that

nanoencapsulation of eugenol increased the dispersion

and antimicrobial efficacy of the compound against the three

major foodborne pathogens on cantaloupes without affecting

rind color. In the long term, eugenol nanoemulsions could

be a viable alternative for enhancing the microbiological

safety of fresh produce in the industry. However, further

investigations in an industry setting are warranted to develop

the aforementioned treatments into natural and effective

sanitizers for industry application.
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