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The wastes generated by the shrimp industry are approximately between 50 and

60% of the catch volume. These residues such as head, viscera, and shell are

potential pollutants if they are not treated for proper disposal. Oneway to solve this

problem is to use the residues as functional food ingredients. In this regard, shrimp

residues are rich in chitin, the second most abundant biopolymer on the planet

after cellulose. Chitin is composed of N-acetyl glucosamine, a molecule used as a

sweetener in the food industry and as an aid in the treatment of coronary diseases

and gonarthrosis. N-acetyl glucosamine can be obtained by the hydrolysis

of colloidal chitin using chemical or enzymatic methods; however, chemical

methods are associated with pollution. In this study, we determined the hydrolysis

conditions of shrimp colloidal chitin for obtaining N-acetyl glucosamine, using

the extracellular enzymes produced by a marine bacterium isolated in the coastal

zone of Progreso, Yucatan, Mexico. The best N-acetyl glucosamine yield obtained

was 2.65%, using 10 mg/mL colloidal chitin, at 60◦C, and pH 8.9 with 3.5% NaCl.
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1. Introduction

In Mexico, the shrimp industry ranks second in the national fishing production and first
from an economic perspective. The historical production of shrimp in Mexico from 2011 to
2020, as presented in Table 1, indicates that the average production is 1,67,617 tons per year
(Anuario Estadístico de Acuacultura y Pesca, 2020). Considering that the amount of waste
is approximately between 40 and 66% of the total weight (50% average) (Xu et al., 2013), the
potential volume of solid waste generated during shrimp processing is 1,01,020 tons per year.
Solid shrimp wastes contain between 15 and 40% chitinous fraction (Yan and Chen, 2015);
therefore, the estimated amount of chitin ranges from 15,153 to 40,408 tons per year.

Despite the large volume of solid waste generated from shrimp, these are not fully
exploited, and only a small proportion is dried and added to agricultural soils to improve
consistency or added to balanced animal food (Kandra et al., 2012).

Diverse materials of industrial interest can be recovered from these residues (Figure 1).
Among these compounds, there are β-carotenes, which can be used in the food industry as
a pigment or as an antioxidant agent (Liñan-Cabello et al., 2002; Sachindra and Bhaskar,
2008; Pereira da Costa and Campos Miranda-Filho, 2020). The muscle proteins that remain
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TABLE 1 Historical shrimp production on the Mexican coast and potential

chitin (2011–2020).

Year Shrimp
production∗

(Tons)

Shrimp
wastes∗∗

(Tons)

Chitin
wastes∗∗∗

(Tons)

2011 184,123 92,061.50 27,618.45

2012 161,852 80,926.00 24,277.80

2013 127,517 63,758.50 19,127.55

2014 158,128 79,064.00 23,719.20

2015 212,684 106,342.00 31,902.60

2016 206,087 103,043.50 30,913.05

2017 227,929 113,964.50 34,189.35

2018 230,381 115,190.50 34,557.15

2019 231,900 115,950.00 34,785.00

2020 279,807 139,903.50 41,971.05

Total 2,011,408 1,010,204.00 303,061.20

Average 167,617 101,020.40 30,306.12

∗Anuario Estadístico de Acuacultura y Pesca (2020). ∗∗Calculate according to Xu et al. (2013).
∗∗∗Calculate according to Yan and Chen (2015).

attached to the cephalothorax can be recovered by enzymatic
hydrolysis and used as a food supplement or in the formulation
of culture media (Pereira et al., 2022). Chitin can be used as a
healing agent or in soil improvement, as well as in the production
of chitosan, N-acetyl-glucosamine (GlcNAc), or glucosamine.
Structurally, chitin is a polymer with unbranched chains of GlcNAc
units linked by β1–4 glycosidic bonds. It is present in the cuticle of
insects and in the shell of crustaceans such as shrimp, lobster, and
crab (Nagpure et al., 2014).

Chitinases are glycosyl hydrolases grouped in families 18,
19, and 20. Family 18 includes enzymes from a wide variety
of prokaryotes and eukaryotes, while family 19 holds enzymes
from higher plants. Gram-positive bacteria such as Streptomyces,
and some of viral origin to produce free GlcNAc. Family 20
includes chitobiases responsible for the hydrolysis of GlcNAc
dimers (Oyeleye and Normi, 2018).

GlcNAc can be obtained by chemical hydrolysis; however,
this method requires a purification process to remove unwanted
compounds generated during the hydrolysis. The cost of chemical
hydrolysis is high, and the yield is low. In this sense, enzymatic
hydrolysis becomes relevant as an environmentally friendlymethod
(Cardozo et al., 2019).

The total enzymatic hydrolysis of chitin to GlcNAc is
carried out by a chitinolytic system that acts synergistically and
consecutively (Patil et al., 2000). This enzymatic system comprises
endochitinases that produce GlcNAc multimers, exochitinases,
which catalyze the progressive release of chitobiose (low molecular
weight soluble dimer), and chitobiases responsible for the
hydrolysis of chitobiose to the chitin monomer, GlcNAc (Souza
et al., 2003).

Enzymatic methods reported to produce GlcNAc are presented
in Table 2. Despite the fact that different substrates were used
in these studies, the use of colloidal chitin is promising because

the amorphous structure facilitates the access of the enzymes,
increasing the rate of hydrolysis.

Chitinolytic enzymes are widely distributed in nature and play
a key role in the degradation of chitin (Nagpure et al., 2014;
Oyeleye and Normi, 2018). Therefore, chitinases are a viable option
for the transformation of solid shrimp waste into compounds of
pharmaceutical or food interest, such as low molecular weight
oligosaccharides and GlcNAc (Suresh, 2012).

GlcNAc is a biocompatible, innocuous, and biodegradable
compound used in the pharmaceutical and food industries
(Table 3) (Das et al., 2019; Mojumdar et al., 2019; Shintani,
2019). This molecule can be used in the treatment of diseases
such as osteoarthritis and Bowell’s inflammatory disease and as a
potential prebiotic and sweetener (Bode, 2012; Cardozo et al., 2019;
Verspecht et al., 2021).

In this sense, our group has been working in the use of
the extracellular chitinolytic enzymes produced by a halophilic
moderate bacterium PRO-III 115, isolated in the coastal area of the
Progreso Port, Yucatan, México (21◦ 16’ 14” N; 89◦ 41’ 55”). The
objective of this study was to establish the conditions to produce
GlcNAc using the colloidal chitin, produced from solid shrimp
waste, as a substrate and the extracellular enzymes produced by
PRO-III 115.

2. Materials and methods

2.1. Microorganism

Moderate halophilic bacteria PRO-III-115 isolated in the port
of Progreso, Yucatan, México was used.

2.2. Chitin obtention

The shrimp waste, used for the chitin recovery and later
for the colloidal chitin production, was collected in Lerma,
Campeche, México.

Shrimp wastes were dried in the sun for 5 days, ground using
a hammer mill, and sieved through a 20-mesh screen (particle size:
0.9mm). The retained material was used for the demineralization,
deproteinization, depigmentation, and bleaching process (No et al.,
1989).

2.2.1. Demineralization
The removal of minerals associated with the chitin matrix was

performed by soaking the shrimp shell fraction retained in the 20
meshes, in a 1.0N HCl solution for 30min at room temperature, in
a proportion 1:15 (w/v). At the end of this time, the material was
washed with demineralized water to eliminate the excess acid, left
in deionized water for 24 h, filtered, and dried at 70◦C for 24 h.

2.2.2. Deproteinization
Deproteinization of the demineralized material was carried out

using a 3.5% NaOH solution for two h at 65◦C. The solid:aqueous
ratio used was 1:10 (w/v). The obtained material was subjected
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FIGURE 1

Technological alternatives for integral use of shrimp solid wastes.

TABLE 2 N-Acetyl-glucosamine production process reported.

Substrate Process Catalyst References

Shrimp and crab shell Mechano-enzymatic hydrolysis N-acetylglucosaminidase (Ostrinia furnacalis) Yu et al., 2022

Endochitinase (Trichoderma viride)

Multifunctional chitinase (Chitinolyticbacter
meiyuanensis)

Shrimp shell Enzymatic hydrolysis Providencia stuartii immobilized cells Halim et al., 2022

Colloidal chitin Enzymatic hydrolysis Enzymatic cocktail from Aeromonas caviae CHZ306 Cardozo et al., 2019

Shrimp shell

Chitin flakes

Colloidal shrimp shell

Swollen shell Enzymatic hydrolysis Chitinase from Aspergillus terreus Das et al., 2019

Shellfish shell fungal biomass Acid HYDROLYSIS Enzymatic hydrolysis Hydrochloric acid, 17–20% chitinases, glucanases or
cellulases

Anderson et al., 2012

Shrimp processing biowaste Enzymatic hydrolysis Chitinase from marine bacteria Suresh, 2012

Chitin Enzymatic hydrolysis “Chitin degrading factors” from Chitinbacter tainanesis Chen et al., 2011

to successive washings using demineralized water to eliminate the
excess alkali.

2.2.3. Depigmentation
The pigments were extracted by the Soxhlet method

using acetone as the solvent. At the end of the process, the
material was dried at an environmental temperature in an
extraction hood.

2.2.4. Bleaching
The material was bleached using sodium hypochlorite solution

at 0.315% and the solid:solution ratio of 1:10 (w/v) for 5min.
The material obtained was subjected to successive washings with
demineralized water to eliminate residual chlorine.

2.3. Colloidal chitin preparation

Colloidal chitin was prepared according to Monreal and
Reese (1969) using phosphoric acid at 85% with a ratio of 1:10
(chitin/phosphoric acid) under refrigerated conditions for 48 h.
After this time, the colloidal chitin was recovered by precipitation
with an excess of demineralized water and subjected to successive
washings until a neutral pH was achieved. The excess water
was drained to obtain colloidal chitin. Finally, the moisture was
determined, and the material was kept refrigerated until use.

2.4. Culture medium

The culture medium used for the conservation and propagation
of the PRO-III-115 strain was composed of bacteriological agar
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TABLE 3 N-Acetyl-glucosamine applications.

Area Application References

Food industry Prebiotic for oral biofilm Verspecht et al., 2021

Prebiotic for infant formula György et al., 1955; Bode,
2012

Sweetener in foods Tago et al., 2007

Synthetic nutritional
formulations

Wassenaar, 2007

Supplement in food products
and beverages

Rogers et al., 2004

Pharmaceutical
industry

Articular cartilage lubrication Temple-Wong et al., 2021

Postmenopausal osteoporosis Jiang et al., 2018

Biomarker for Rheumatoid
arthritis diagnostic

Vordenbäumen et al.,
2016

Detection of tumors Rivlin and Navon, 2016

Osteoarthritis treatment Frisbie et al., 2016

Promote cartilage
regeneration

Kim et al., 2016

Regulate virulence properties
of microbes

Naseem and Konopka,
2015

Immune response attenuation Richter et al., 2014

Treatment of idiopathic
cystitis

Panchaphanpong et al.,
2011

Treatment of pediatric
chronic inflammatory bowel

Salvatore et al., 2000

(2%), yeast extract (0.5%), NaCl (3.5%), and colloidal chitin
(1.0%) at pH 7.9 (Carroad and Tom, 1978). The same culture
medium, without the addition of agar, was used for the growth and
production of chitinolytic activity.

2.5. Inoculum preparation

The inoculum used to produce chitinolytic enzymes was
prepared propagating the PRO-III-115 bacteria in Petri dishes with
the propagation medium and incubated at 30◦C for 15 days. After
this time, a hydrolysis zone of colloidal chitin became clear. Cells
obtained were suspended in a NaCl (3.554%) solution, and the cell
suspension had an optical density of 0.5 at 360 nm.

2.6. Fermentation system for the
extracellular chitinolytic enzymes
production

The free cell supernatant with chitinolytic activity was
produced in 250-mL Erlenmeyer flasks with 50mL of the medium.
Each flask was inoculated with 1.0mL of the PRO-II-115 cell
suspension. The flasks were incubated at 30◦C and 200 rpm for 7
days. After this time, the culture medium was centrifuged at 12,000
rpm for 7min at room temperature to remove the cells and residual

colloidal chitin. The obtained free cell supernatant was stored at
4◦C until use.

2.7. Chitinolytic assay

The chitinolytic activity of the free cell supernatant was
determined according to Monreal and Reese (1969). Reaction
mixtures containing 0.5mL of the cell-free supernatant and 1mL
of 1% colloidal chitin suspension in Trizma-base buffer (0.5M,
pH 7.9) were added to 18 × 175mm tubes. All the assays were
incubated for 1 h at 50◦C.

2.8. Factorial design 33 for the
determination of hydrolysis conditions of
colloidal chitin to obtain
N-acetyl-glucosamine

Colloidal chitin hydrolysis conditions, using the free cell
supernatant produced by the PRO-III-115 strain, were determined
using colloidal chitin (1%), and a 33 factorial design was based on
the fixed effects model, as shown in Table 4. The central points used
were 50◦C, pH 7.9, and 0.05M of Trizma-base buffer. To evaluate if
NaCl was an essential factor for the hydrolysis, a second experiment
was conducted with the same factorial design, evaluating the effect
of pH, temperature, buffer molarity, and suppressing NaCl.

2.9. Reducing sugar quantification

The GlcNAc released was quantified as reducing sugar
according to Miller (1959). For each assay, 3.0mL of DNS reagent
(3,5-dinitrosalicylic acid) was added, and the tubes were boiled in
a water bath for 5min. Subsequently, reactions were cooled and
diluted to obtain a final volume of 20.0mL. The optical density was
determined at 550 nm, and the concentration was calculated using
a GlcNAc concentrations standard curve.

2.10. Statistical analysis

Statistical analysis was performed with SPSS software (IBM,
2007) using the analysis of variance (ANOVA) technique. All
experiments were conducted in duplication using two replicas. The
p-value was 0.05.

3. Results

3.1. Colloidal chitin hydrolysis conditions in
the presence of NaCl

Figure 2 shows the effect of the evaluated factors on
GlcNAc production in the presence of NaCl. The highest
GlcNAc concentration obtained was 265µg/mL in the system
with a temperature of 60◦C, pH value of 8.9, and 0.04M
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TABLE 4 Factorial design 33 to evaluate conditions for colloidal chitin

hydrolysis to obtain N-Acetyl-glucosamine.

Temperature (◦C) pH value Molarity

40 6.9 0.04

0.05

0.06

7.9 0.04

0.05

0.06

8.9 0.04

0.05

0.06

50 6.9 0.04

0.05

0.06

7.9 0.04

0.05

0.06

8.9 0.04

0.05

0.06

60 6.9 0.04

0.05

0.06

7.9 0.04

0.05

0.06

8.9 0.04

0.05

0.06

Substrate concentration 10 mg/mL.

Trizma-base buffer. An increment in the concentration of the
buffer (0.05M) decreased the production of GlcNAc obtaining
216.7 µg /mL. Using a more acidic pH (6.9) and higher
concentration of the buffer (0.06M) increased the amount of
GlcNAc hydrolyzed (218.3µg/mL); however, this value was below
the highest obtained. In addition, the yield associated with
the highest concentration of GlcNAc were calculated, being
0.027mg GlcNAc/mg with a productivity of 0.265 mg/mL∗h,
respectively.

3.2. Colloidal chitin hydrolysis conditions in
the absence of NaCl

The effect of pH, temperature, and buffer molarity without
NaCl is presented in Figure 3. The GlcNAc concentrations were

lower than that obtained in the presence of NaCl. The conditions
that favor the chitin hydrolysis with NaCl were also favorable
without NaCl. In the system with 60◦C, a pH of 8.9 and a 0.04M
Trizma-base buffer were the highest values of GlcNAc that were
obtained (178.3µg/mL). Increasing the buffer concentration to
0.06M of Trizma-base buffer negatively affected the hydrolysis of
chitin (170 µg of GlcNAc/mL). A temperature decrement (50◦C)
with a higher concentration of buffer of 0.05M decreased the
concentration to a value of 166.7 µg GlcNAc/mL.

3.3. ANOVA analysis

ANOVA with 95% confidence indicated that temperature was
the factor that had a significant influence on chitin hydrolysis.
In this analysis, it was also found that no double interaction,
temperature–pH, temperature–molarity, and pH–molarity had an
influence on the GlcNAc concentration obtained. Similarly, the
interaction between the three factors had no significant influence
on the enzymatic hydrolysis system.

4. Discussion

Table 5 shows the concentration of GlcNAc reported by
different authors using enzymes from different microbial origins.
The yield and productivity of GlcNAc were calculated to compare
with the highest data obtained in this study.

Yu et al. (2022) used a mechano-enzymatic treatment
for the hydrolysis of shrimp and crab shells. The milling
process, associated with a fungal enzymatic cocktail,
produced the highest concentration of GlcNAc (61.3
mg/ml) and productivity (5.11 mg/mL∗h) among the
analyzed studies. This finding suggests that the particle
size of the chitinous material could have a strong impact
on the hydrolytic process since it generates a larger
contact surface between the colloidal chitin and enzymes.
However, the yield obtained was low reaching 0.204mg
GlcNAc/mg substrate.

Das et al. (2019) evaluated three different substrates: ground
shrimp shell, colloidal shrimp shell, and chitin flakes. By using
the ground shrimp shell, 15 mg/mL of GlcNAc was obtained,
and this behavior may be associated with the fact that this
substrate contains calcium carbonate (CaCO3) and has a highly
crystalline structure (Kurita, 2006; Joseph et al., 2020) that
results in a poor release of GlcNAc since both conditions hinder
the diffusion of enzymes through the matrix of the material.
On the other hand, by using the colloidal shrimp shell as a
substrate, it managed to release the highest concentration of
GlcNAc, i.e., 40 mg/mL, and this may be caused due to this
material having an amorphous structure (Sampath et al., 2022)
which facilitates the access of the enzymes to the material,
causing more efficient hydrolysis. Finally, when chitin flakes were
used as a substrate, 36.5 mg/mL of GlcNAc was released, and
this may be caused because this material no longer contains
CaCO3 its crystalline structure is not entirely accessible as
in the case of colloidal chitin (Joseph et al., 2020). These
results suggest that the pretreatment of chitinous material has
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FIGURE 2

Joint e�ect of temperature, pH, and molarity of the bu�er with NaCl at 3.554%.

FIGURE 3

Joint e�ect of temperature, pH, and bu�er molarity in absence of NaCl.

Frontiers in Sustainable FoodSystems 06 frontiersin.org

https://doi.org/10.3389/fsufs.2023.1077429
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Rivera-Solís et al. 10.3389/fsufs.2023.1077429

T
A
B
L
E
5

N
-A

c
e
ty
l-
g
lu
c
o
sa
m
in
e
p
ro
d
u
c
ti
o
n
b
y
e
n
z
y
m
a
ti
c
p
ro
c
e
ss
,
u
si
n
g
th
e
c
ru
st
a
c
e
a
n
sh

e
ll
o
r
d
e
ri
v
a
te
s
fr
o
m

th
e
m
.

S
u
b
st
ra
te

C
a
ta
ly
st

S
u
b
st
ra
te

c
o
n
c
e
n
tr
a
ti
o
n

(m
g
/m

L
)

T
e
m
p
e
ra
tu
re

(◦
C
)

p
H

T
im

e
(h
o
u
rs
)

C
o
n
c
e
n
tr
a
ti
o
n

o
f
G
lc
N
A
c

(m
g
/m

L
)

Y
ie
ld

(m
g
G
lc
N
A
c
/

m
g
su

b
st
ra
te
)

P
ro
d
u
c
ti
v
it
y
o
f

G
lc
N
A
c

(m
g
/m

L
∗
h
)

R
e
fe
re
n
c
e
s

Sh
ri
m
p
an
d
cr
ab

sh
el
l

E
n
zy
m
at
ic
C
oc
kt
ai
lw

it
h
:

N
-a
ce
ty
lg
lu
co
sa
m
in
id
as
e

(O
st
ri
n
ia
fu
rn
a
ca
li
s)

E
n
do

ch
it
in
as
e

(T
ri
ch
od
er
m
a
vi
ri
d
e)

M
ul
ti
fu
n
ct
io
n
al
ch
it
in
as
e

(C
h
it
in
ol
yt
ic
ba
ct
er
m
ei
yu
a
n
en
si
s)

30
0

45
5.
5

12
61
.3

0.
20
4

5.
11

Y
u
et
al
.,
20
22

G
ro
un

d
Sh

ri
m
p

sh
el
l

C
h
it
in
as
e
fr
om

A
sp
er
gi
ll
u
s

te
rr
eu
s

50
45

5.
5

12
0

15
0.
3

0.
12
5

D
as

et
al
.,
20
19

C
ol
lo
id
al
sh
ri
m
p

sh
el
l

C
h
it
in
as
e
fr
om

A
sp
er
gi
ll
u
s

te
rr
eu
s

40
.0

0.
8

0.
33
3

C
h
it
in

fla
ke
s

C
h
it
in
as
e
fr
om

A
sp
er
gi
ll
u
s

te
rr
eu
s

36
.5

0.
73

0.
31
3

C
ol
lo
id
al
ch
it
in

E
n
zy
m
at
ic
co
ck
ta
il
fr
om

A
er
om

on
a
s
ca
vi
a
e
C
H
Z
30
6

50
46

6.
0

12
1.
4

0.
02
8

0.
16
7

C
ar
do

zo
et
al
.,
20
19

C
o
ll
o
id
a
l
c
h
it
in

C
h
it
in
a
s
e
fr
o
m

m
a
r
in
e
b
a
c
te
r
ia

P
R
O
-I
I
I
-1
1
5

1
0

6
0

8
.9

1
0
.2
6
5

0
.0
2
7

0
.2
6
5

P
r
e
s
e
n
t
W
o
r
k

T
he

bo
ld

le
tt
er
s
w
er
e
us
ed

to
hi
gh

lig
ht

da
ta
re
su
lt
in
g
fr
om

th
is
w
or
k.

a strong impact on the release of GlcNAc. With regard to
productivity, the obtained values were 0.125, 0.333, and 0.313
GlcNAc mg/mL∗h, respectively, using a hydrolysis time of
120 h.

In this study, 0.265 mg/mL of GlcNAc was produced
with a yield of 0.027mg GlcNAc/mg substrate and a
productivity of 0.265 mg/mL∗h of GlcNAc using colloidal
chitin as the substrate in 1 h (Cardozo et al., 2019). Using the
same substrate, we obtained a concentration of 1.4 mg/ml
of GlcNAc but a yield (0.028mg GlcNAc/mg substrate)
and productivity (0.167 mg/mL∗h of GlcNAc) values. The
differences can be attributed to the amount of substrate used
by Cardozo et al. (2019), which was five times higher than
our system.

The enzymatic production of GlcNAc from colloidal
chitin suggests that the strain PRO-III-115 produces
extracellular endochitinase, exochitinase, and chitobiose
hydrolase enzymes. Furthermore, the highest concentration
of GlcNAc was obtained in 1 h of processing, using a
salinity close to marine water at alkaline pH (8.9) and 60◦C.
The NaCl presence incremented the GlcNAc production,
suggesting that it may affect both the enzyme and the
colloidal chitin structure. NaCl may affect the surface
charges of chitin (Gonzalez-Davila and Millero, 1990),
favoring the attachment of the enzymes; in addition, it
has been found that the modification of the conditions
of pH, temperature, ionic strength, and the speed of
agitation has a strong impact on the adsorption capacity
of these ions (Anastopoulos et al., 2017). This could
explain why the marine bacterium PRO-III-115 and its
extracellular enzymes are capable of catalyzing reactions
under conditions of high ionic strength, alkaline pH, and
high temperature. Furthermore, these conditions could prevent
the proliferation of unwanted microorganisms during aseptic
GlcNAc production.

Regarding the results obtained in this study, it should
be considered that shrimp wastes used as the raw material
for the production of colloidal chitin were collected in a
shrimp processing plant; therefore, this material is a mixture
of shrimp shells of different species and chemical composition.
Given the chitin recovery process was carried out in a single
condition, it is possible that the colloidal chitin produced
contains particles with random chemical composition (particularly
CaCO3). This factor is likely to have a steric impediment
during the hydrolysis process, and it is possible that the values
of the standard deviations in Figures 2, 3 are associated with
this condition.

5. Conclusion

According to the ANOVA analysis, the factor that significantly
changed the sugar-free titer was the temperature at 60◦C with
which the highest activity titer was obtained, i.e., 265 µg of
GlcNAc/mL. The variance analysis also points out that the pH and
the buffer’s molarity did not significantly influence the chitinolytic
activity present in the cell-free supernatant obtained with the
bacteria PRO-III-115.
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Since the filtrates with enzymatic activity were produced by
a moderate halophilic marine bacterium, it is logical that the
presence of NaCl in the hydrolysis system is essential for the
chitinolytic enzymes produced by the PRO-III-115 strain to work
more efficiently. This is reinforced by the fact that the chitinolytic
activity in the absence of NaCl decreased by 33% in the system in
which a temperature of 60◦C, pH 8.90, and a 0.04M Trizma-base
buffer were used.

The aforementioned characteristics allow us to think about
the possibility that the hydrolysis of colloidal chitin occurs
under aseptic conditions, without the need to sterilize the
substrate. These results, allow us to think about the possibility to
design an enzymatic process in which colloidal chitin, obtained
from solid shrimp waste, will be oriented to the production
of GlcNAc.
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